Boson gas

In this lecture the method of thermal field theory will be applied to a weakly interacting boson gas.

Partition function

- We consider a boson gas described the Lagrangian density

$$
\begin{equation*}
\mathcal{L}(x)=\frac{1}{2} \partial^{\mu} \phi(x) \partial_{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x)-\frac{\lambda}{4!} \phi^{4}(x), \tag{1}
\end{equation*}
$$

where $\phi(x)$ is the real scalar, m is the mass parameter and λ is the coupling constant.

- As we remember from the Lecture II, the partition function defined as

$$
\begin{equation*}
Z \equiv \sum_{\alpha}\langle\alpha| e^{-\beta \hat{H}}|\alpha\rangle, \tag{2}
\end{equation*}
$$

where $\beta \equiv T^{-1}$ is the inverse temperature and \hat{H} is the system's Hamiltonian.

- The partition function of non-interacting boson gas derived in Lecture II is

$$
\begin{equation*}
Z_{0}=\exp \left[-V \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \left(1-e^{-\beta \omega_{\mathbf{k}}}\right)\right] \tag{3}
\end{equation*}
$$

where V is the system's volume and $\omega_{\mathbf{k}} \equiv \sqrt{\mathbf{p}^{2}+m^{2}}$.

- One computes the partition function as

$$
\begin{equation*}
\ln Z_{0}=-\frac{V}{2 \pi^{2}} \int_{0}^{\infty} d k k^{2} \ln \left(1-e^{-\beta \sqrt{m^{2}+k^{2}}}\right)=-\frac{V}{6 \pi^{2}} \int_{0}^{\infty} d k \frac{d k^{3}}{d k} \ln \left(1-e^{-\beta \sqrt{m^{2}+k^{2}}}\right) \tag{4}
\end{equation*}
$$

- Performing the partial integration, one finds

$$
\begin{equation*}
\ln Z_{0}=\frac{V}{6 \pi^{2} T} \int_{0}^{\infty} \frac{d k k^{4}}{\sqrt{m^{2}+k^{2}}} \frac{1}{e^{\beta \sqrt{m^{2}+k^{2}}}-1} . \tag{5}
\end{equation*}
$$

- Further on, we will be mostly interested in the hot gas such that $T \gg m$. Then, the bosons can be treated as massless and for $m=0$ we will deal with simple analytical formulas. The partition function equals

$$
\begin{equation*}
\ln Z_{0}=\frac{V T^{3}}{6 \pi^{2}} \underbrace{\int_{0}^{\infty} \frac{d x x^{3}}{e^{x}-1}}_{=\frac{\pi^{4}}{15}}=\frac{\pi^{2} V T^{3}}{90} . \tag{6}
\end{equation*}
$$

- The system's energy U, free energy $F=U-T S$ and pressure p are

$$
\begin{equation*}
U \equiv-\frac{d}{d \beta} \ln Z(T), \quad F \equiv-T \ln Z(T), \quad \quad p=-\left(\frac{\partial F}{\partial V}\right)_{T} \tag{7}
\end{equation*}
$$

- The partition function (6) gives

$$
\begin{equation*}
U_{0}=\frac{\pi^{2} V T^{4}}{30}, \quad F_{0}=-\frac{\pi^{2} V T^{4}}{90}, \quad \quad p_{0}=\frac{\pi^{2} T^{4}}{90} \tag{8}
\end{equation*}
$$

First order correction to partition function

- As we remember from the Lecture III, the partition function, which is of the form appropriate for perturbative expansion, is

$$
\begin{equation*}
Z=\operatorname{Tr}\left[e^{-\beta \hat{H}^{0}} \mathcal{T}\left[e^{-\int_{0}^{\beta} d \tau \hat{H}_{\mathrm{int}}^{I}(-i \tau)}\right]\right] . \tag{9}
\end{equation*}
$$

- The zeroth order contribution to $\mathcal{T}\left[e^{-\int_{0}^{\beta} d \tau \hat{H}_{\text {int }}^{I}(-i \tau)}\right]$ is unity and the first order contribution, which corresponds to the diagram shown in Fig. 1, equals

$$
\begin{array}{r}
Z_{(1)}=\operatorname{Tr}\left[e^{-\beta \hat{H}^{0}} \mathcal{T}\left[e^{-\int_{0}^{\beta} d \tau \hat{H}_{\text {int }}^{I}(-i \tau)}\right]\right]_{(1)}=\left.\operatorname{Tr}\left[e^{-\beta \hat{H}^{0}}\right] \frac{\operatorname{Tr}\left[e^{-\beta \hat{H}^{0}} \mathcal{T}\left[e^{-\int_{0}^{\beta} d \tau \hat{H}_{\text {int }}^{I}(-i \tau)}\right]\right.}{\operatorname{Tr}\left[e^{-\beta \hat{H}^{0}}\right]}\right|_{(1)} \\
=-Z_{0} \frac{\lambda}{8} \int_{0}^{\beta} d^{4} x \Delta(0) \Delta(0)=-Z_{0} \frac{\lambda}{8}(\Delta(0))^{2} \int_{0}^{\beta} d^{4} x \tag{10}
\end{array}
$$

- As we remember, the function $\Delta(0)$ is identified with the function $\Delta^{>}(0)$. Since the function $\Delta^{>}(\tau, \mathbf{x})$ is, see Eq. (24) of Lecture III,

$$
\begin{equation*}
\Delta^{>}(\tau, \mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{\mathbf{k}}}\left[\left(f\left(\omega_{\mathbf{k}}\right)+1\right) e^{-\omega_{\mathbf{k}} \tau} e^{i \mathbf{k} \cdot \mathbf{x}}+f\left(\omega_{\mathbf{k}}\right) e^{\omega_{\mathbf{k}} \tau} e^{-i \mathbf{k} \cdot \mathbf{x}}\right] \tag{11}
\end{equation*}
$$

where the boson distribution function equals

$$
\begin{equation*}
f\left(\omega_{\mathbf{k}}\right) \equiv \frac{1}{e^{\beta \omega_{\mathbf{k}}}-1} \tag{12}
\end{equation*}
$$

the function $\Delta^{>}(0)$ is

$$
\begin{equation*}
\Delta^{>}(0)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2 f\left(\omega_{\mathbf{k}}\right)+1}{2 \omega_{\mathbf{k}}} \tag{13}
\end{equation*}
$$

- After performing the trivial angular integral, Eq. (13) becomes

$$
\begin{equation*}
\Delta^{>}(0)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d k k^{2}}{\sqrt{m^{2}+k^{2}}} \frac{1+e^{-\beta \sqrt{m^{2}+k^{2}}}}{1-e^{-\beta \sqrt{m^{2}+k^{2}}}} \tag{14}
\end{equation*}
$$

- Since for $k \gg m$ and $k \gg T$ the integrand linearly grows with k, the integral in Eq. (14) is quadratically divergent. One observes that the divergence remains in the zero temperature limit that is when $\beta \rightarrow \infty$. Therefore, it is the ultraviolet divergence which is well known in vacuum QFT.
- To get a finite result one should subtract the vacuum contribution from the formula (13). Since $f\left(\omega_{\mathbf{k}}\right)=0$ in vacuum, the subtraction is done as follows

$$
\begin{equation*}
\Delta_{R}^{>}(0)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2 f\left(\omega_{\mathbf{k}}\right)+1}{2 \omega_{\mathbf{k}}}-\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{\mathbf{k}}}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{f\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}} \tag{15}
\end{equation*}
$$

Figure 1: The first order contribution to the partition function (9)
and the renormalized Green's function, which is finite, equals

$$
\begin{equation*}
\Delta_{R}^{>}(0)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \frac{d k k^{2}}{\sqrt{m^{2}+k^{2}}} \frac{1}{e^{\beta \sqrt{m^{2}+k^{2}}}-1} . \tag{16}
\end{equation*}
$$

- Assuming that $m=0$, one finds

$$
\begin{equation*}
\Delta_{R}^{>}(0)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \frac{d k k}{e^{\beta k}-1}=\frac{T^{2}}{2 \pi^{2}} \underbrace{\int_{0}^{\infty} \frac{d x x}{e^{x}-1}}_{=\frac{\pi^{2}}{6}}=\frac{T^{2}}{12} . \tag{17}
\end{equation*}
$$

- The four-dimensional integral over x is

$$
\begin{equation*}
\int_{0}^{\beta} d^{4} x \equiv \int_{0}^{\beta} d \tau \int d^{3} x=\beta V, \tag{18}
\end{equation*}
$$

where V is the system's volume.

- The first order correction to the partition function is

$$
\begin{equation*}
Z_{(1)}=-Z_{0} \frac{\lambda}{1152} V T^{3} . \tag{19}
\end{equation*}
$$

- Using the expression (6) of Z_{0}, the partition function is found as

$$
\begin{equation*}
Z=\exp \left(\frac{\pi^{2} V T^{3}}{90}\right)\left[1-\frac{\lambda}{1152} V T^{3}\right] . \tag{20}
\end{equation*}
$$

- Since the second term in the square bracket in Eq. (20) should be, as a perturbative correction, much smaller than unity, the expression in the bracket can be approximated as

$$
\begin{equation*}
1-\frac{\lambda}{1152} V T^{3} \approx \exp \left(-\frac{\lambda}{1152} V T^{3}\right) \tag{21}
\end{equation*}
$$

which allows one to rewrite the partition function (20) in the following form

$$
\begin{equation*}
\ln Z=\frac{\pi^{2} V T^{3}}{90}-\frac{\lambda}{1152} V T^{3}=\frac{\pi^{2} V T^{3}}{90}\left[1-\frac{5 \lambda}{64 \pi^{2}}\right] \tag{22}
\end{equation*}
$$

- The energy, free energy and pressure, which include the first order corrections, are

$$
\begin{align*}
U & =\frac{\pi^{2} V T^{4}}{30}\left[1-\frac{5 \lambda}{64 \pi^{2}}\right] \tag{23}\\
F & =-\frac{\pi^{2} V T^{4}}{90}\left[1-\frac{5 \lambda}{64 \pi^{2}}\right] \tag{24}\\
p & =\frac{\pi^{2} T^{4}}{90}\left[1-\frac{5 \lambda}{64 \pi^{2}}\right] \tag{25}
\end{align*}
$$

- Using the apparatus of thermal field theory, we have manged to go beyond the ideal gas approximation.
- Needless to say, the procedure of perturbative expansion can be systematically extended to higher orders.

