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Imaginary-time or Matsubara formalism

Quantum field theory (QFT) describes interactions of elementary particles, like electrons and
photons, and it is mostly focused on scattering processes of particles which occur in vacuum.
An objective of statistical quantum field theory is to describe a many-body system, like that
of many electrons and photons, in terms of quantum field theory of its constituents. However,
elementary interaction processes, which are responsible for a behavior of many-body system,
occur not in vacuum but in an environment of many particles. We will use the term ‘vacuum
QFT’ as a counterpart of ‘statistical QFT’.

There are two formulations of statistical QFT: the imaginary-time or Matsubara formalism
and the real-time or Keldysh-Schwinger formalism. We start the introduction to statistical
quantum field theory with the former one which is also called as thermal field theory. The
method was discovered by Takeo Matsubara (1921-2014) in 1955.

Basic concepts

� As we remember, the partition function, which carries a complete information on a many-
body system in equilibrium, is defined as

Z ≡ Tr[e−βĤ ] ≡
∑
α

〈α|e−βĤ |α〉, (1)

where β ≡ T−1 is the inverse temperature, Ĥ is the system’s Hamiltonian and the sum is
performed over a complete set of states of the system under consideration. The hats are
used to denote operators acting in the space of states.

� The basic idea of the Matsubara formalism is that the density matrix ρ̂ = e−βĤ , which
enters the partition function (1), can be formally treated as a quantum evolution operator

e−iĤt in imaginary time from t = 0 to t = −iβ. It is important to note here that the full
Hamiltonian Ĥ is assumed to be time independent.

� The main object of the Matsubara formalism is the temperature Green’s function which is
defined for the complex scalar field φ̂ in the following way

∆(τ,x) ≡ 〈T φ̂(−iτ,x) φ̂†(0,0)〉, (2)

where the operation 〈. . .〉 is understood as

〈. . .〉 ≡ 1

Z
Tr[e−βĤ . . . ], (3)

and the symbol T represents ordering in the imaginary time that is

T φ̂(−iτ1,x1) φ̂
†(−iτ2,x2) = Θ(τ1 − τ2) φ̂(−iτ1,x1) φ̂

†(−iτ2,x2)

+ Θ(τ2 − τ1) φ̂†(−iτ2,x2) φ̂(−iτ1,x1). (4)

The definition (2) assumes that the system under consideration is translationally invariant.

� We have assumed that 0 < τ < β, but actually the function ∆(τ,x) is periodic in τ with
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the period β. Indeed, one finds

∆(τ,x) =
1

Z
Tr[e−βĤT φ̂(−iτ,x) φ̂†(0,0)] =

1

Z
Tr[e−βĤ φ̂(−iτ,x) φ̂†(0,0)]

=
1

Z
Tr[φ̂†(0,0) e−βĤ φ̂(−iτ,x)] =

1

Z
Tr[e−βĤeβĤ φ̂†(0,0) e−βĤ φ̂(−iτ,x)]

=
1

Z
Tr[e−βĤ φ̂†(−iβ,0) φ̂(−iτ,x)] =

1

Z
Tr[e−βĤT φ̂(−iτ,x)φ̂†(−iβ,0)]

= ∆(τ − β,x). (5)

Free temperature Green’s function

We derive here an explicit form of the Green’s function of noninteracting fields, applying the
method which was used in Lecture II to get the partition function of free fields (see Eq. (7) of
Lecture II).

Green’s function in coordinate space

� Let us introduce the auxiliary functions ∆>(τ,x) and ∆<(τ,x) defined as

∆>(τ,x) ≡ 〈φ̂(−iτ,x) φ̂†(0,0)〉, (6)

∆<(τ,x) ≡ 〈φ̂†(0,0)φ̂(−iτ,x) 〉. (7)

� We will first compute ∆>(τ,x) and ∆<(τ,x) and using the identity

∆(τ,x) = Θ(τ) ∆>(τ,x) + Θ(−τ) ∆<(τ,x), (8)

we will find the function ∆(τ,x).

� As we remember, the free field can decomposed in plane waves as

φ̂(x) =

∫
d3k

(2π)3
√

2ωk

(
â(k)e−ikx + â†(k)eikx

)
, (9)

where kµ = (ωk,k) and ωk ≡
√

k2 +m2. The discrete version of the plane-wave decompo-
sition is

φ̂(x) =
√

∆k

∑
i

1√
2ωi

(
âie
−ikix + â†ie

ikix
)
, (10)

with ∆k being the volume of a momentum-space cell and âi ≡
√

∆kâ(ki) and â†i ≡√
∆kâ

†(ki).

� The discrete operators âi and â†i are dimensionless and satisfy the following commutation
relations [

âi, â
†
j

]
= δij,

[
âi, âj

]
= 0,

[
â†i , â

†
j

]
= 0. (11)

� The discrete normally ordered Hamiltonian is

Ĥ =
∑
i

ωiâ
†
i âi =

∑
i

ωin̂i, (12)

where n̂i ≡ â†i âi.
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� As discussed in Lecture I, the Fock space is built of the mutually orthogonal energy eigen-
states |n1, n2, n3, . . .〉, and the action of the annihilation and creation operators is defined
in the following way

âi|n1, n2, . . . , ni, . . .〉 =
√
ni |n1, n2, . . . , ni − 1, . . .〉, (13)

â†i |n1, n2, . . . , ni, . . .〉 =
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉. (14)

� Keeping in mind that the Green’s function ∆>(τ,x) equals

∆>(τ,x) = Z−1
∫

d3k d3p

2(2π)3
√
ωkωp

∑
n1

∑
n2

∑
n3

. . . (15)

×
〈
n1, n2, . . .

∣∣ exp (−βĤ)
(
â(k)e−ikx + â†(k)eikx

)
×
(
â(p) + â†(p)

)∣∣n1, n2, . . .
〉
,

the discrete version is written as

∆>(τ,x) = Z−1∆k

∑
n1

∑
n2

∑
n3

. . . e−βω1n1e−βω2n2e−βω3n3 · · ·
∑
i

∑
j

1

2
√
ωiωj

(16)

×
[
e−ikix

〈
n1, . . . , ni, . . .

∣∣âiâj∣∣n1, . . . , nj, . . .
〉

+e−ikix
〈
n1, . . . , ni, . . .

∣∣âiâ†j∣∣n1, . . . , nj, . . .
〉

+eikix
〈
n1, . . . , ni, . . .

∣∣â†i âj∣∣n1, . . . , nj, . . .
〉

+eikix
〈
n1, . . . , ni, . . .

∣∣â†i â†j∣∣n1, . . . , nj, . . .
〉]
,

where xµ = (−iτ,x), kµi = (ωi,ki) and pµi = (ωi,pi).

� Computing 〈
n1, . . . , ni, . . .

∣∣âiâj∣∣n1, . . . , nj, . . .
〉

= 0, (17)〈
n1, . . . , ni, . . .

∣∣â†i â†j∣∣n1, . . . , nj, . . .
〉

= 0, (18)〈
n1, . . . , ni, . . .

∣∣âiâ†j∣∣n1, . . . , nj, . . .
〉

=
√

(ni + 1)(nj + 1) δij, (19)〈
n1, . . . , ni, . . .

∣∣â†i âj∣∣n1, . . . , nj, . . .
〉

=
√
ninj δ

ij, (20)

one finds

∆>(τ,x) = Z−1∆k

∑
n1

∑
n2

∑
n3

. . . e−βω1n1e−βω2n2e−βω3n3 . . . (21)

×
∑
i

1

2ωi

[
ni

(
e−ikix + eikix

)
+ e−ikix

]
.

� Using the formulas
∞∑
n=0

qn =
1

1− q
,

∞∑
n=0

nqn =
q

(1− q)2
, (22)
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one obtains

∆>(x) = ∆k

∑
i

1

2ωi

[
e−βωi

1− e−βωi
(
e−ikix + eikix

)
+ e−ikix

]
, (23)

where the partition function Z (given by Eq. (17) of Lecture II) cancels out.

� In the final step we change a discrete momentum space into a continuous one and we get

∆>(τ,x) =

∫
d3k

(2π)3
1

2ωk

[(
f(ωk) + 1

)
e−ωkτeik·x + f(ωk)eωkτe−ik·x

]
, (24)

where the boson distribution function equals

f(ωk) ≡ 1

eβωk − 1
. (25)

� Repeating the same steps as in case of ∆>, we find ∆< as

∆<(τ,x) =

∫
d3k

(2π)3
1

2ωk

[
f(ωk)e−ωkτeik·x +

(
f(ωk) + 1

)
eωkτe−ik·x

]
. (26)

Exercise: Derive the formula (26).

� Due to the identity (8) we have

∆(τ,x) =

∫
d3k

(2π)3
f(ωk)

2ωk

[
e−ωkτeik·x + eωkτe−ik·x

]
(27)

+

∫
d3k

(2π)3
1

2ωk

[
Θ(τ)e−ωkτeik·x + Θ(−τ)eωkτe−ik·x

]
. (28)

Green’s function in momentum space

� Since the function ∆(τ,x) is periodic in τ with the period equal to β, the Fourier transfor-
mation of ∆(τ,x) is

∆(ωn,p) ≡
∫ β

0

dτ

∫
d3x ei(ωnτ−p·x)∆(τ,x) (29)

and its inverse equals

∆(τ,x) = T
∞∑

n=−∞

∫
d3p

(2π)3
e−i(ωnτ−p·x)∆(ωn,p), (30)

where
ωn ≡ 2πT n. (31)

The frequencies ωn are known as the Matsubara frequencies.
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� Using the formulas∫ β

0

dτ eaτ =
eaβ − 1

a
,

∫
d3x e±iq·x = (2π)3δ(3)(q), (32)

one performs the Fourier transformation (29) of the function (27) and obtains

∆(ωn,p) =
1

2ωp

[(
f(ωp) + 1)

e(iωn−ωp)β − 1

iωn − ωp

+ f(ωp)
e(iωn+ωp)β − 1

iωn + ωp

]
. (33)

� Keeping in mind that eiωnβ = e2πni = 1, the formula (33) becomes

∆(ωn,p) =
1

2ωp

[(
f(ωp) + 1)

e−βωp − 1

iωn − ωp

+ f(ωp)
eβωp − 1

iωn + ωp

]
. (34)

� Since f(ωp) = (eβωp − 1)−1, one finally finds

∆(ωn,p) =
1

ω2
n + ω2

p

. (35)

Perturbative expansion

An objective of the perturabive expansion, which plays a crucially important role in quantum
field theory, is to express quantities characterizing a system of interacting fields through those
of noninteracting ones. The procedure assumes a weakness of the interaction.

� The key observation, which allows one to obtain the perturbative expansion in QFT, is that
an operator ÔH(t) in the Heisenberg picture can be written through the operator Ôint(t) in
the interaction picture as

ÔH(t) = Ûint(0, t) Ôint(t) Ûint(t, 0), (36)

where Ûint(t, 0) is the evolution operator in the interaction picture which is

Ûint(t, 0) = Te−i
∫ t
0 dt

′ ĤI
int(t

′) (37)

= 1− i
∫ t

0

dt′ ĤI
int(t

′) +
(−i)2

2!

∫ t

0

dt1

∫ t

0

dt2 TĤ
I
int(t1) Ĥ

I
int(t2) + . . .

T denotes “left later” ordering and ĤI
int is the interaction Hamiltonian in the interaction

picture.

Exercise: Discus and prove the equality (36).

� Introducing the imaginary time τ = it such that 0 < τ < β, one writes

Tr
[
e−βĤÔH(−iτ)

]
= Tr

[
e−βĤÛint(0,−iτ) Ôint(−iτ) Ûint(−iτ, 0)

]
. (38)



Lecture III Statistical Quantum Field Theory 6

� Using the equation (36), one finds the relation

e−βĤ = Ûint(0,−iβ) e−βĤint Ûint(−iβ, 0)

= T [e−
∫ 0
β dτ

′ ĤI
int(−iτ

′)] e−βĤint Ûint(−iβ, 0) = e−βĤ
0
int Ûint(−iβ, 0), (39)

which substituted into the formula (38) gives

Tr
[
e−βĤÔH(−iτ)

]
= Tr

[
e−βĤ

0
int Ûint(−iβ, 0)Ûint(0,−iτ) Ôint(−iτ) Ûint(−iτ, 0)

]
= Tr

[
e−βĤ

0
int Ûint(−iβ,−iτ) Ôint(−iτ) Ûint(−iτ, 0)

]
= Tr

[
e−βĤ

0
int T [Ûint(−iβ, 0) Ôint(−iτ)]

]
= Tr

[
e−βĤ

0
int T [e−

∫ β
0 dτ ′ ĤI

int(−iτ
′) Ôint(−iτ)]

]
. (40)

� We temporarily define the expectation value of an operator as

〈ÔH(−iτ)〉 ≡
Tr
[
e−βĤ

0
intT [e−

∫ β
0 dτ ′ ĤI

int(−iτ
′)Ôint(−iτ)]

]
Tr
[
e−βĤ

0
int

] . (41)

As we will show later on, the free Hamiltonian from the denominator in Eq. (41) should be
replaced by the full Hamiltonian. In this way contributions corresponding to the so-called
disconnected Feynman diagrams are eliminated.

� Generalizing the formula (41), the temperature Green’s function (2) is written as

i∆(τ,x) =
〈
T
[
e−

∫ β
0 dτ ĤI

int(−iτ
′) φ̂int(−iτ,x) φ̂†int(0,0)

]〉
. (42)

� Expanding the exponential function in the formula (42) as in Eq. (37), we get the pertur-
bative expansion of temperature Green’s function.

� One may worry that the operators in Eq. (42) are in the interaction picture while the states
are in the Heisenberg picture. However, when the exponential function is expanded and
the Wick theorem, which is discussed further on, is applied, the Green’s function (42) is
expressed as a sum of products of free Green’s functions. And when we deal with free fields
the Heisenberg and interaction pictures coincide with each other.

� The problem to be solved is how to calculate the expressions which originate from the
perturbative expansion of the formula (42) which are of the form〈

T
[
ĤI

int(−iτ1) ĤI
int(−iτ2) . . . ĤI

int(−iτn) φ̂int(−iτx,x) φ̂†int(−iτy,y)
]〉
, (43)

where n numerates the terms in the expansion (37).

� Further on, we suppress the subscript ‘int’.

� The Lagrangian density of interacting fields includes, except the terms quadratic in fields,
the term or terms of higher power. As an example, we consider the interacting scalar
complex field of the Lagrangian density

L̂(x) = ∂µφ̂(x)∂µφ̂
†(x)−m2φ̂(x)φ̂†(x)− λ

2! 2!

(
φ̂(x)φ̂†(x)

)2
, (44)

where the last quartic term represents the interaction and λ is the coupling constant which
is assumed to be a small number.
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� There is a conserved charge in the theory described by the Lagrangian (44) and there are
positively and negatively charged particles.

� The interaction Hamiltonian equals

ĤI(t) =
λ

2! 2!

∫
d3x

(
φ̂(x)φ̂†(x)

)2
, (45)

where x = (t,x).

� The perturbative expansion is constructed out of non-interacting fields which obey Klein-
Gordon equations. Therefore, the fields are expressed as superpositions of plane waves

φ̂(x) =

∫
d3k

(2π)3
√

2ωk

[
e−ikxâ(k) + eikx b̂†(k)

]
, (46)

φ̂†(x) =

∫
d3k

(2π)3
√

2ωk

[
e−ikx b̂(k) + eikxâ†(k)

]
. (47)

where kµ = (ωk,k) with ωk ≡
√
m2 + k2, and â†(k), b̂†(k) are creation operators of posi-

tively and negatively charged particles, respectively, and â(k), b̂(k) are annihilation opera-
tors.

� We see that the expression (43) is the expectation value of a product of field operators
ordered in imaginary time. The fields are expressed through the creation and annihilation
operators due to Eqs. (46, 47). So, the expression to be computed is

〈α̂1α̂2 . . . α̂m〉, (48)

where αi is either the annihilation or creation operator.

Wick’s theorem

� The Wick’s theorem shows that the expectation value 〈α̂1α̂2 . . . α̂m〉 can be expressed as a
sum of products of 〈α̂iα̂j〉.

� We are going to compute 〈α̂1α̂2 . . . α̂m〉. Since the trace is taken over the eigenstates of
particle number operator, the numbers of creation and annihilation operators of a given
particle species must be the same in 〈α̂1α̂2 . . . α̂m〉. So, the number m must be even.
Otherwise the expectation value vanishes.

� We manipulate the expression 〈α̂1α̂2 . . . α̂m〉 moving the operator α̂1 from left to right. In
the first step we get

〈α̂1α̂2 . . . α̂m〉 = 〈[α̂1, α̂2]α̂3 . . . α̂m〉+ 〈α̂2α̂1α̂3 . . . α̂m〉, (49)

where [α̂1, α̂2] is the commutator of α̂1 and α̂2 which is assumed to be a c−number. There-
fore, it can be pull-out of the expectation value. So, we have

〈α̂1α̂2 . . . α̂m〉 = [α̂1, α̂2]〈α̂3 . . . α̂m〉+ 〈α̂2α̂1α̂3 . . . α̂m〉. (50)

� Moving α1 further to the right we commute it with α3, α4, etc. Thus, we obtain

〈α̂1α̂2 . . . α̂m〉 = [α̂1, α̂2]〈α̂3 . . . α̂m〉+ [α̂1, α̂3]〈α̂2 . . . α̂m〉+ · · ·+ [α̂1, α̂m]〈α̂2 . . . α̂m−1〉

+〈α̂2α̂3 . . . α̂mα̂1〉. (51)
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� Now, we write down the last term explicitly and use the cyclic property of trace

〈α̂2α̂3 . . . α̂mα̂1〉 ≡
Tr[ρ̂ α̂2α̂3 . . . α̂mα̂1]

Tr[ρ̂]
=

Tr[α̂1ρ̂ α̂2α̂3 . . . α̂m]

Tr[ρ̂]
. (52)

� In the next step, we make an important assumption about the density matrix ρ̂. Specifically,
we assume that

α̂iρ̂ = ρ̂ α̂i ηi (53)

where ηi is a c−number. The assumption (53) limits a class of states which allow for the
Wick’s decomposition. As we will see, it is satisfied by the equilibrium density matrix

ρ̂ = e−βĤ
0
.

� Using the equality (53), Eq. (52) provides

〈α̂2α̂3 . . . α̂mα̂1〉 = η1〈α̂1α̂2 . . . α̂m〉. (54)

� Substituting the result (54) into Eq. (51), we get

〈α̂1α̂2 . . . α̂m〉 =
[α̂1, α̂2]

1− η1
〈α̂3 . . . α̂m〉+

[α̂1, α̂3]

1− η1
〈α̂2 . . . α̂m〉+ · · ·+

[α̂1, α̂m]

1− η1
〈α̂2 . . . α̂m−1〉. (55)

� In the l.h.s. of Eq. (55) there is the expectation value of the product of m operators while
in the r.h.s. of the equation there is a sum of the expectation values of the products of
(m−2) operators. Applying repeatedly the same procedure to every expectation value from
Eq. (55), we finally obtain

〈α̂1α̂2 . . . α̂m〉 =
∑

permutations

[α̂1, α̂2]

1− η1
[α̂3, α̂4]

1− η3
. . .

[α̂m−1, α̂m]

1− ηm−1
, (56)

where the sum is over all permutations of pairs (contractions) of the operators α̂i and α̂j.

� Since

〈α̂iα̂j〉 =
[α̂i, α̂j]

1− ηi
, (57)

we see that the equality (56) can be rewritten as

〈α̂1α̂2 . . . α̂m〉 =
∑

permutations

〈α̂1α̂2〉〈α̂3α̂4〉〈α̂m−1α̂m〉, (58)

which shows that the expectation value of the product of m operators (m > 2) can be
expressed as a sum of products of expectation values of products of two operators. This is
the statement of Wick’s theorem.

� We note that a big part of terms in Eq. (58), which are obtained by permutation of the
operators α̂1, α̂2, . . . α̂m vanish. A non-zero contribution is provided only by the terms where
all two-operator expectation values include one creation and one annihilation operator of
the same particle species.
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Simple examples

� To see how the Wick’s theorem works, let us first consider the expectation value 〈â†i âj〉,
where â†i and âj are the creation and annihilation operators of the discretized model of
real scalar field which is discussed in detail in Lecture I. The field is in thermodynamic

equilibrium and the density matrix is ρ̂ = e−βĤ
0
. So, we are going to consider the following

expression

〈â†i âj〉 =
Tr[e−βĤ

0
â†i âj]

Tr[e−βĤ0 ]
. (59)

� Since the trace is computed with the eigenstates of the particle number operator n̂i = â†i âi,
one immediately realizes that the expression (59) is nonzero only for i = j. Then, one finds

〈â†i âj〉 = δij
Tr[e−βĤ

0
n̂i]

Tr[e−βĤ0 ]
= δijni. (60)

� On the other hand Eq. (57) tell us that

〈â†i âj〉 =
[â†i , âj]

1− ηi
. (61)

� We are going to show that the r.h.s of Eq. (59) equals the the r.h.s of Eq. (61).

� Since the annihilation and creation operators satisfy the commutation relation

[âi, â
†
j] = δij, (62)

see Lecture I, Eq. (61) becomes

〈â†i âj〉 =
δij

ηi − 1
. (63)

� So, we have to find ηi which is defined through Eq. (53). For αi = â†i and ρ̂ = e−βĤ
0
,

Eq. (53) is

â†ie
−βĤ0

= e−βĤ
0

â†iηi, (64)

where Ĥ0 =
∑

j ωj â
†
j âj.

� Expanding the exponential function, one commutes â†i with ρ̂ and finds after a rather tedious
analysis that

â†ie
−βĤ0

= e−βĤ
0

â†i + e−βĤ
0(
eβωi − 1

)
â†i = e−βĤ

0

â†i e
βωi . (65)

Therefore,

ηi = eβωi =
ni + 1

ni
, (66)

where

ni =
1

eβωi − 1
. (67)

Exercise: Prove the equality (64) with ηi = eβωi .

� Substituting the result (66) into Eq. (63), we reproduce Eq. (60).
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Figure 1: The first order contributions to the Green’s function

� Let us now consider 〈âiâ†j〉. Analogously to Eq. (60), one finds

〈âiâ†j〉 =
Tr[e−βĤ

0
(δij + δijn̂i)]

Tr[e−βĤ0 ]
= δij(ni + 1). (68)

� The analog of Eq. (63) is

〈âiâ†j〉 =
δij

1− ηi
, (69)

and ηi in this case equals

ηi = e−βωi =
ni

ni + 1
. (70)

Exercise: Derive Eq. (70) from Eq. (53) for αi = âi and ρ̂ = e−βĤ
0
.

Feynman rules

A calculation of successive terms of perturbative expansion of the temperature Green’s func-
tion can be changed into an algorithmic procedure with a set of mnemonic rules analogous to
the Feynman rules of the vacuum QFT. The key element of the procedure are the Feynman
diagrams. We are not going to elaborate the Feynman rule which depend on the field theory
under consideration. Since the Feynman rules of the Matsubara formalism are rather similar to
those of the vacuum QFT, we discuss here only the differences.

� In the vacuum QFT this is the Feynman, or time-ordered, propagator which is perturab-
tively expanded. In the Matsubara formalism the temperature Green’s function ordered
in imaginary time is expanded. Instead of the real time integration from −∞ to ∞, we
integrate over the imaginary time from 0 to β.

� The next difference is a role the tadpoles i.e. the loops formed by single lines as that one
shown in Fig. 1. A tadpole corresponds to the Green’s function of vanishing space-time
argument ∆(0). The tadpoles do not appear in the vacuum QFT as long the field vacuum
expectation values vanish. In the operator formalism they are effectively eliminated by the
operator normal ordering of the interaction Hamiltonian HI . Then, 〈0| : φ̂(x) φ̂†(x) : |0〉 = 0.
In the path-integral formulation the tadpoles, which are actually infinite, show up but are
canceled by properly chosen counterterms.

� In statistical QFT the tadpoles play an important physical role. They appear due finite
system’s density. Since the function ∆(0) is ill defined (the ordering does not work), the
tadpole is represented by ∆>(0).
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� The perturbative expansion in momentum space in thermal QFT is analogous to that
in vacuum QFT. However, the frequencies are discrete and coincide with the Matsubara
frequencies (31). Consequently, instead of integrations over energies there are sums of
Matsubara frequencies.

The differences will be illustrated with a few examples discussed in the following lectures.

First-order contributions to ∆

� Let us now discuss the first-order correction to the Green’s function in a theory of self-
interacting complex scalar field described by the Lagrangian (44). The expression to be
computed is

∆(1)(x− y) = − λ

2! 2!

∫ β

0

d4z
〈
T
[(
φ̂(z)φ̂†(z)

)2
φ̂(x)φ̂†(y)

]〉
, (71)

where we use the notation ∫ β

0

d4x =

∫ β

0

dτ

∫
d3x (72)

and the expectation value is temporarily defined as

〈. . . 〉 =
Tr
[
e−βĤ

0T [e−
∫ β
0 dτ ′ ĤI

int(−iτ
′) . . . ]

]
Tr
[
e−βĤ0

] , (73)

that is the free partition function is in the denominator. The four-positions like x are
x = (τx,x) and the integration over z0 = τz is performed from 0 to β. When x is the

argument of the field operator φ̂(x) it should be understood as φ̂(−iτx,x).

� The plane-wave decompositions (46, 47) show that the expectation values like 〈T φ̂(z)φ̂(x)〉
and 〈T φ̂(z)†φ̂†(y)〉 vanish. So, one realizes that there are two contributions

∆(1)
a (x− y) = −λ

∫ β

0

d4z〈T [φ̂(z)φ̂†(y)]〉〈T [φ̂(z)φ̂†(z)]〉〈T [φ̂†(z)φ̂(x)]〉, (74)

∆
(1)
b (x− y) = −λ

2
〈T [φ̂(x)φ̂†(y)]〉

∫ β

0

d4z〈T [φ̂(z)φ̂†(z)]〉〈T [φ̂(z)φ̂†(z)]〉. (75)

In case of the contribution a, there are two operators φ̂(z) to be paired with φ̂†(y) and

two operators φ̂†(z) to be paired with φ̂(z), the combinatorial factor of 4 is included in the
formula (74). In case of the contribution b, the combinatorial factor equals 2.

� The results (74, 75) can be written as

∆(1)
a (x− y) = −λ

∫ β

0

d4z∆(x− z) ∆(0) ∆(z − y), (76)

∆
(1)
b (x− y) = −λ

2
∆(x− y)

∫ β

0

d4z
(
∆(0)

)2
. (77)

The two contributions are represented graphically by two diagrams shown in Fig. 1.
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Figure 2: The second order contributions to the Green’s function

Second-order contributions to ∆

� The expression to be computed is

∆(2)(x−y) =
λ2

(2! 2!)22!

∫ β

0

d4z1

∫ β

0

d4z2
〈
T
[(
φ̂(z1)φ̂

†(z1)
)2(

φ̂(z2)φ̂
†(z2)

)2
φ̂(x)φ̂†(y)

]〉
. (78)

� There are seven second-order contributions

∆(2)
a (x− y) = #λ2

∫ β

0

d4z1

∫ β

0

d4z2 ∆(x− z1) ∆(0) ∆(z1 − z2) ∆(0) ∆(z2 − y),(79)

∆
(2)
b (x− y) = #λ2

∫ β

0

d4z1

∫ β

0

d4z2 ∆(x− z1) ∆(z1 − z2) ∆(z2 − z1) ∆(0) ∆(z1 − y),(80)

∆(2)
c (x− y) = #λ2∆(x− y)

∫ β

0

d4z1

∫ β

0

d4z2∆(0) ∆(z1 − z2) ∆(z2 − z1) ∆(0),(81)

∆
(2)
d (x− y) = #λ2

∫ β

0

d4z1 ∆(x− z1) ∆(0) ∆(z1 − y)

∫ β

0

d4z2 ∆(0) ∆(0),(82)

∆(2)
e (x− y) = #λ2∆(x− y)

∫ β

0

d4z1 ∆(0) ∆(0)

∫ β

0

d4z2 ∆(0) ∆(0),(83)

∆
(2)
f (x− y) = #λ2

∫ β

0

d4z1

∫ β

0

d4z2 ∆(x− z1) ∆(z1 − z2) ∆(z1 − z2) ∆(z2 − z1) ∆(z2 − y),(84)

∆(2)
g (x− y) = #λ2∆(x− y)

∫ β

0

d4z1

∫ β

0

d4z2 ∆(z1 − z2) ∆(z1 − z2) ∆(z2 − z1) ∆(z2 − z1),(85)

where # denotes a numerical coefficient. The contributions are represented by the diagrams
shown in Fig. 2.

Exercise: Derive the numerical factors in Eqs. (79 - 85).
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Figure 3: The first and second order contributions to the quantity (86)

Connected and disconnected diagrams

� The diagram b) in Fig. 1 and the diagrams c), d) and e) in Fig. 2 can be split each into
two diagrams not cutting any line. These are the disconnected diagrams.

� One observes that the perturbative expansion of the quantity

Tr
[
e−βĤ

0
intT [e−

∫ β
0 dτ ĤI

int(−iτ)]
]

Tr[e−βĤ
0
int ]

(86)

gives unity in the zeroth order, the diagram a) from Fig. 3 in the first order and the diagrams
b), c) and d) from Fig. 3 in the second order.

� It is also not difficult to observe that the perturbative expansion of the temperature Green’s
function can be expressed in a way which is shown graphically in Fig. 4.

� Combing the observation, one finds that the disconnected diagrams are eliminated from the
perturbative expansion of Green’s function is defined as

∆(x− y) ≡
Tr
[
e−βĤ

0
intT [e−

∫ β
0 dτ ĤI

int(−iτ) φ̂int(x) φ̂†int(y)]
]

Tr
[
e−βĤ

0
intT [e−

∫ β
0 dτ ĤI

int(−iτ)]
] , (87)

that is the partition function in the denominator is not free but the interacting one, as in
the original definition (2).

� Further on, we will use the definition (87).

Figure 4: The perturbative expansion of the Green’s function


