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Phase transitions
In this lecture we will use the methods of effective potential introduced in Lecture IV to

discuss phase transitions of systems of quantum fields.

Phase transitions

� A phase transition is the physical process which changes one phase (state) of a system to
a qualitatively different phase. Each phase is characterized by a different value of an order
parameter.

� An order parameter, which is a measure of the degree of order across the boundaries in a
phase transition, typically changes from zero in one phase and nonzero in the other. An
example of an order parameter is the magnetization in a ferromagnetic system undergoing
a phase transition. For solid-liquid and liquid-gas transitions, the order parameter is the
difference of the densities. In case of systems of quantum fields, an expectation value of the
field is usually the order parameter.

� A phase transition is usually identified as a singularity of a partition function in the ther-
modynamic limit which is the limit V →∞, C →∞ at fixed C/V , where V is the system’s
volume and C is a conserved charge. In nonrelativistic systems C is usually identified with
a particle number.

� If the thermodynamic limit is not taken, the partition function, which is a sum of exponential
functions e−βEn , where En is the energy of the n−th state of the system under consideration,
is expected to be an analytic function of V and T . So, there are no phase transitions.

� According to the classification introduced by Paul Ehrenfest, a phase transitions is charac-
terized by the behavior of the free energy as a function of other thermodynamic variables
(e.g. T or V ) in the thermodynamical limit.

� A phase transition is labeled by the lowest derivative of the free energy that is discontinuous
at the transition.

� The first-order phase transitions exhibit a discontinuity in the first derivative of the free
energy with respect to some thermodynamic variables. Various solid-liquid and liquid-gas
transitions are classified as first-order transitions. The transitions are associated with the
energy transfer – release or absorption – due to the latent heat which results from the
difference in energy density of the phases.

� The second-order phase transitions are continuous in the first derivative but exhibit dis-
continuity in a second derivative of the free energy. These include the ferromagnetic-
paramagnetic transition in materials such as iron. The magnetization, which is the first
derivative of the free energy with respect to the applied magnetic field, vanishes above the
Curie temperature and it is finite below.

� There are phase transitions, like a conductor-insulator transition, which do not fit to the
Ehrenfest classification.
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Thermal effective potential

� As we remember, the information about a system of fields in thermodynamic equilibrium
is encoded in the partition function Z. The path integral representation of Z is

Z(T, V ) =

∫
Dφ(x) exp

(
SE[φ]

)
, (1)

where SE[φ] is the Euclidean action which for the scalar field equals

SE[φ] ≡
∫ β

0

d4xL =

∫ β

0

d4x
[
− 1

2

(∂φ
∂τ

)2

− 1

2
(∇φ)2 − 1

2
m2φ2 − V (φ)

]
. (2)

� We rewrite the partition function (1) as

Z(T, V ) =

∫ ∞
−∞

dφ̄

∫
Dφ(x) exp

(
SE[φ+ φ̄]

)
, (3)

where φ̄ is a constant and homogeneous field and φ′(x) is a fluctuation around it.

� As discussed in Lecture XIV, the effective action equals

Γ[φ0] = −i ln
[ ∫
Dφ(x) exp

(
iS[φ+ φ0]

)]
. (4)

� When φ0(x) is independent of x that is φ0(x) = φ̄, the effective action is expressed through
the effective potential Veff(φ̄) as

Γ[φ̄] = −
∫
d4xVeff(φ̄) = V T Veff(φ̄), (5)

where

V T ≡
∫
d4x. (6)

� Combining Eqs. (4) and (5) and changing the action in the Minkowski space into the
Euclidean action relevant for a system in thermal equilibrium, we have

Veff(φ̄, T ) = −T
V

ln
[ ∫
Dφ(x) exp

(
SE[φ+ φ̄]

)]
, (7)

where the temperature T is explicitly shown as an argument of the effective potential to
stress that we deal with the thermal effective potential. The factor T/V occurs in Eq. (7)
because

∫
d4x is replaced by∫ β

0

d4x ≡
∫ β

0

dτ

∫
d3x = βV =

V

T
. (8)

� Comparing to each other the formulas (3) and (7), we find

Z(T, V ) =

∫ ∞
−∞

dφ̄ exp
[
− βV Veff(φ̄, T )

]
. (9)
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� Let us expand the effective potential around its absolute minimum at φ̄min as

Veff(φ̄, T ) = Veff(φ̄min, T ) +
1

2

d2Veff(φ̄, T )

dφ̄2

∣∣∣∣
φ̄=φ̄min︸ ︷︷ ︸

≡V ′′eff(φ̄min,T )

(φ̄− φ̄min)2 + . . . (10)

The first derivative is absent in the expansion as it vanishes at φ̄min.

� Substituting the expansion (10) into Eq. (9), one finds

Z(T ) = exp
[
− βV Veff(φ̄min, T )

]√ 2πT

V ′′eff(φ̄min, T )V
. (11)

� Since the free energy equals F = −T lnZ, Eq. (11) gives

F (T, V ) = V Veff(φ̄min, T )− T ln

√
2πT

V ′′eff(φ̄min, T )V
. (12)

� The first term in the formula (12) is proportional to the macroscopic volume V while in the
second term the volume enters under the logarithm. Consequently, the first term is much
bigger than the second one because V � lnV . So, the free energy density equals

f(T ) ≡ F (T, V )

V
= Veff(φ̄min, T ). (13)

� In case of the first order phase transition at T = Tc, the free energy density is continuous
at T = Tc but the first derivative exhibits a discontinuity. Since

df(T )

dT
=
∂Veff(φ̄, T )

∂T

∣∣∣∣
φ̄=φ̄min

+
∂Veff(φ̄, T )

∂φ̄

∣∣∣∣
φ̄=φ̄min

dφ̄min

dT
=
∂Veff(φ̄, T )

∂T

∣∣∣∣
φ̄=φ̄min

, (14)

where we have taken into account that φ̄min minimizes Veff .

� Since Veff(φ̄, T ) is expected to be an analytic function of its arguments, Eq. (14) shows that
a first order phase transition occurs when

φ̄min

∣∣∣
T=T−c

6= φ̄min

∣∣∣
T=T+

c

, (15)

that is when a position of the minimum of Veff changes in a discontinuous way at T = Tc.

Figure 1: The effective potential corresponding to a first order phase transition
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� The effective potential corresponding to a first order phase transition is shown in Fig. 1.
At the critical temperature Tc the depth of minima at a finite and vanishing φ̄ are equal to
each other. For T < Tc the minimum at φ̄ 6= 0 is absolute but the absolute minimum for
T > Tc is at vanishing φ̄. Therefore, when Tc is approached from below, we appear in the
minimum at φ 6= 0 but when we approach Tc from above, we find the minimum at φ̄ = 0.

� The potential from Fig. 1 nicely illustrates an existence of metastable overheated and super-
cooled phases. When we heat up the system, which is initially in the asymmetric phase with
φ̄ 6= 0, the system remains in the local minimum even above Tc – the phase is overheated
– and it takes some times before the global minimum is reached. Analogously, when the
system, which is initially in the symmetric phase with φ̄ = 0, is cooled down, it stays in the
supercooled phase below Tc before the system appears in the global minimum.

Computation of thermal effective potential

� We again consider to the Lagrangian density

L =
1

2
∂µφ(x)∂µφ(x) +

1

2
µ2φ2(x)− λ

4!
φ4(x) (16)

where the mass term has a ‘wrong’ sign (µ2 > 0) which causes the spontaneous symmetry
breaking in vacuum.

� As we remember, the effective potential is expanded in powers of a constant field φ̄ as

Veff(φ̄) =
∞∑
n=0

1

n!
Γ(n)(0, 0, . . . , 0) φ̄n, (17)

where Γ(n)(0, 0, . . . , 0) are one-particle irreducible vertex functions with vanishing external
momenta.

� To identify the vertices to be used in the computation of the effective potential, we consider
the Lagrangian which enters the action (4) of ‘shifted field’. The Lagrangian reads

L =
1

2
∂µφ(x)∂µφ(x) +

1

2
µ2
(
φ(x) + φ̄

)2 − λ

4!

(
φ(x) + φ̄

)4
(18)

=
1

2
µ2φ̄2 − λ

4!
φ̄4 +

1

2
∂µφ(x)∂µφ(x) +

1

2
µ2φ2(x)

+
(
− µ2φ̄+

λ

6
φ̄3
)
φ(x)− λ

4
φ̄2φ2(x)− λ

6
φ̄φ3(x)− λ

24
φ4(x).

� The zero-loop vertex functions, which occur due to the mass (−1
2
µ2φ̄2) and interaction

( λ
4!
φ̄4) terms of the Lagrangian (18), are

Γ
(2)
0−loop(0, 0) = −2!

1

2
µ2 = −µ2, Γ

(4)
0−loop(0, 0, 0, 0) = 4!

λ

4!
= λ, (19)

where the combinatoric factors 2! and 4! reflect in how many ways two or four fields φ̄ can
be attached to the two- and four-point vertices.
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� Substituting the vertices (19) into the expansion (17) we get

V 0−loop
eff (φ̄) = −1

2
µ2φ̄2 +

λ

4!
φ̄4, (20)

which is just the classical potential.

One-loop contribution

� A derivation of a general form the one-loop contribution to the effective potential is fully
analogous to the vacuum calculation discussed in detail in Lecture XIV. The derivation is
even simpler as we do not need to perform the Wick rotation because we already work in
the Euclidean space.

� As we remember, the one-loop contribution to the vacuum effective potential can be written
as

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
1 +
−µ2 + 1

2
λ φ̄2

k2
E

)
, (21)

which is the formula (90) of Lecture XIV with m2 = −µ2, or as

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
k2
E − µ2 + 1

2
λ φ̄2

−µ2

)
, (22)

which is the formula (92). The two expressions differ from each other by a contribution
which is independent of φ̄.

� In case of fields in thermodynamic equilibrium, the formulas (21) and (22) change into

V 1−loop
eff (φ̄, T ) =

1

2
T

∞∑
n=−∞

∫
d3k

(2π)3
ln

(
1 +

−µ2 + 1
2
λ φ̄2

(2πTn)2 + k2

)
, (23)

V 1−loop
eff (φ̄, T ) =

1

2
T

∞∑
n=−∞

∫
d3k

(2π)3
ln

(
(2πTn)2 + k2 − µ2 + 1

2
λ φ̄2

−µ2

)
, (24)

where 2πTn is the Matsubara frequency.

� The formula (24) is more convenient for further calculations but one observes that the sum
over Matsubara frequencies diverges in Eq. (24). However, the sum converges in Eq. (23).
So, we rewrite the formula (23) as

V 1−loop
eff (φ̄, T ) =

1

2
T

∞∑
n=−∞

∫
d3k

(2π)3

[
ln

(
(2πTn)2 + k2 − µ2 + 1

2
λ φ̄2

−µ2

)
(25)

− ln

(
(2πTn)2 + k2 − µ2

−µ2

)]
.

� Now, we can perform the sum over Matsubara frequencies, using the following trick. We
define

S(a) =
∞∑

n=−∞

(
ln(n2 + a2 + c2)− ln(n2 + a2)

)
(26)

and we observe that

dS(a)

da
= 2a

∞∑
n=−∞

( 1

n2 + a2 + c2
− 1

n2 + a2

)
. (27)
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� Knowing that
∞∑

n=−∞

1

n2 + a2
=
π

a
cth(πa), (28)

one finds
dS(a)

da
=

2πa√
a2 + c2

cth(π
√
a2 + c2 )− 2π cth(πa). (29)

� Since the indefinite integral of cthx equals∫
dx cthx = ln(shx), (30)

we obtain
S(a) = 2 ln

(
sh(π
√
a2 + c2 )

)
− 2 ln

(
sh(π a)

)
. (31)

� Keeping in mind that the parameters a and c from Eq. (26) are

a2 ≡ k2 − µ2

(2πT )2
, c2 ≡ λ φ̄2

2(2πT )2
, (32)

the potential (25) equals

V 1−loop
eff (φ̄, T ) = T

∫
d3k

(2π)3

[
ln

(
sh

(
β

2

√
k2 − µ2 +

1

2
λ φ̄2

))
(33)

− ln
(

sh
(β

2

√
k2 − µ2

))]
.

� One observes that the second term in the formula (33) is independent of φ̄ and thus it can
be ignored. So, we have

V 1−loop
eff (φ̄, T ) =

T

2π2

∫ Λ

0

dk k2 ln

(
sh

(
β

2

√
k2 − µ2 +

1

2
λ φ̄2

))
, (34)

where the trivial angular integral is taken and the upper cut-off Λ is introduced to regularize
the integral.

� Since
ln(shx) = x+ ln(1− e−2x)− ln 2, (35)

the formula (34) is rewritten as

V 1−loop
eff (φ̄, T ) =

1

2π2

∫ Λ

0

dk k2

[
1

2

√
k2 − µ2 +

1

2
λ φ̄2 (36)

+ T ln

(
1− exp

(
− β

√
k2 − µ2 +

1

2
λ φ̄2

))]
,

where again the term proportional to ln 2, which is independent of φ̄, is neglected.
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One-loop vacuum contribution

� With the formula (36), one can easily take the limit T → 0 which is simply the first term
in Eq. (36). Consequently,

V 1−loop
eff (φ̄, T = 0) =

1

4π2

∫ Λ

0

dk k2

√
k2 − µ2 +

1

2
λ φ̄2. (37)

� To compute the real part of the potential (37), we split the integral as

<V 1−loop
eff (φ̄, T = 0) =

1

4π2

[
Θ(M2)

∫ Λ

0

dk k2
√
k2 +M2 (38)

+ Θ(−M2)

(∫ √−M2

0

dk k2
√
−k2 −M2 +

∫ Λ

√
−M2

dk k2
√
k2 +M2

)]
,

where M2 ≡ −µ2 + 1
2
λ φ̄2.

� Since the indefinite integral of interest equals∫
dx x2

√
1 + x2 =

1

4
x(1 + x2)3/2 − 1

8
x(1 + x2)1/2 − 1

8
ln
(
x+
√

1 + x2
)
, (39)

the effective potential (38) for M2 > 0 is

<V 1−loop
eff (φ̄, T = 0) =

1

4π2

∫ Λ

0

dk k2
√
k2 +M2 (40)

=
1

16π2

[
Λ(Λ2 +M2)3/2 − 1

2
ΛM2(Λ2 +M2)1/2 − 1

2
M4 ln

(Λ + (Λ2 +M2)1/2

M

)]
≈ 1

16π2

[
Λ4 − 1

2
Λ2M2 − 1

4
M4 ln

( Λ2

M2

)]
,

where the terms, which vanish in the limit Λ→∞, are neglected.

� When M2 < 0, one finds, as expected, the result (40) with M2 replaced by −M2. So, we
write

<V 1−loop
eff (φ̄, T = 0) =

1

16π2

[
Λ4 − 1

2
Λ2|M2| − 1

4
M4 ln

( Λ2

|M2|

)]
. (41)

Renormalization

� Combining the zero- and one-loop results (20) and (41), the effective potential becomes

<Veff(φ̄, T = 0) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 +

1

2
δm2φ̄2 +

δλ

4!
φ̄4 (42)

+
Λ4

16π2
− Λ2

32π2

∣∣∣− µ2 +
1

2
λ φ̄2

∣∣∣− 1

64π2

(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣ Λ2

−µ2 + 1
2
λ φ̄2

∣∣∣,
where we have included the mass and coupling constant counterterms to implement a renor-
malization procedure which allows one to eliminate the dependence of the effective potential
on the cut-off parameter Λ.
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� We adopt, as previously, the following renormalization conditions

d2Veff(φ̄, T = 0)

dφ̄2

∣∣∣∣
φ̄=0

= −µ2, (43)

d4Veff(φ̄, T = 0)

dφ̄4

∣∣∣∣
φ̄=0

= λ. (44)

� Since
d2Veff(φ̄, T = 0)

dφ̄2

∣∣∣∣
φ̄=0

= −µ2 + δm2 +
λ

32π2

[
µ2

(
ln
(Λ2

µ2

)
− 1

2

)
− Λ2

]
, (45)

the condition (43) gives

δm2 = − λ

32π2

[
µ2

(
ln
(Λ2

µ2

)
− 1

2

)
− Λ2

]
. (46)

� Because
d4Veff(φ̄, T = 0)

dφ̄4

∣∣∣∣
φ̄=0

= λ+ δλ− 3λ2

32π2

[
ln
(Λ2

µ2

)
− 3

2

]
, (47)

the condition (44) provides

δλ =
3λ2

32π2

[
ln
(Λ2

µ2

)
− 3

2

]
. (48)

� Substituting the results (46) and (48) into Eq. (42), one finds

<Veff(φ̄, T = 0) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 (49)

− λ

64π2

[
µ2

(
ln
(Λ2

µ2

)
− 1

2

)
− Λ2

]
φ̄2 +

λ2

256π2

[
ln
(Λ2

µ2

)
− 3

2

]
φ̄4

+
Λ4

16π2
− Λ2

32π2

∣∣∣− µ2 +
1

2
λ φ̄2

∣∣∣− 1

64π2

(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣ Λ2

−µ2 + 1
2
λ φ̄2

∣∣∣,
which is manipulated to the form

<Veff(φ̄, T = 0) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 (50)

+
1

64π2

[(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣−µ2 + 1

2
λ φ̄2

µ2

∣∣∣+
λ

2
µ2 φ̄2 − 3λ2

8
φ̄4
]
,

where the terms, which are independent of φ̄, are neglected. Needless to say, the effective
potential (50) fully agrees with the analogous result discussed in Lecture XIV which was
obtained somewhat differently.

One-loop thermal contribution

� The thermal one-loop contribution, which is given by the second term in Eq. (36), equals

V 1−loop−th
eff (φ̄, T ) =

T

2π2

∫ ∞
0

dk k2 ln
(
1− e−β

√
k2+M2 )

, (51)

where, as previously, M2 ≡ −µ2 + 1
2
λ φ̄2. The upper cut-off is not needed as the integral is

ultraviolet convergent.
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� We have already encountered the integral (54) – it determines the free partition function
Z0(T, V ). Specifically,

lnZ0(T, V ) = − V

2π2

∫ ∞
0

dk k2 ln
(
1− e−β

√
k2+M2 )

. (52)

� In Lecture XIII we have discussed lnZ0(T, V ) when M2 � T 2. The expansion around
M2 = 0 is

1

V
lnZ0(T, V ) =

π2T 3

90
− TM2

24
+
M3

12π
+

M4

64π2
ln(β2M2) +O

(M4

T

)
. (53)

� Using the expansion (53), one finds the one-loop effective thermal potential as

V 1−loop−th
eff (φ̄, T ) = −π

2T 4

90
+
T 2M2

24
− TM3

12π
− M4

64π2
ln(β2M2) +O

(
M4
)
. (54)

Further on, the first term, which is independent of φ̄, is ignored.

Complete effective potential

� Combing the results (50) and (54), we get the complete effective potential

<Veff(φ̄, T ) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 (55)

+
1

64π2

[(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣−µ2 + 1

2
λ φ̄2

µ2

∣∣∣+
λ

2
µ2 φ̄2 − 3λ2

8
φ̄4
]

+
T 2

24

(
− µ2 +

1

2
λ φ̄2

)
− T

12π

∣∣∣− µ2 +
1

2
λ φ̄2

∣∣∣3/2
− 1

64π2

(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣β2
(
− µ2 +

1

2
λ φ̄2

)∣∣∣,
which includes the zero- and one-loop vacuum contributions and one-loop thermal one.

Figure 2: The real part of the effective potential (55) for three temperatures
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� In the formula (55) we observe an interesting cancellation between the vacuum and thermal
contributions (from the 2-nd and the 4-th lines of Eq. (55)) which eliminates the field φ̄
from the logarithms. Specifically,

ln
∣∣∣−µ2 + 1

2
λ φ̄2

µ2

∣∣∣− ln
∣∣∣β2
(
− µ2 +

1

2
λ φ̄2

)∣∣∣ = − ln(β2µ2). (56)

� Taking into account the cancellation (56), the effective potential reads

<Veff(φ̄, T ) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 +

1

64π2

(λ
2
µ2 φ̄2 − 3λ2

8
φ̄4
)

+
T 2

24

(
− µ2 +

1

2
λ φ̄2

)
− T

12π

∣∣∣− µ2 +
1

2
λ φ̄2

∣∣∣3/2 − 1

64π2

(
− µ2 +

1

2
λ φ̄2

)2

ln(β2µ2). (57)

� The real part of the effective potential (57) is shown in Fig. 2 for three temperatures. As
one sees, there is the symmetry breaking at low temperatures – the field expectation value
φ̄, which minimizes the potential, is finite. At high temperatures the symmetry is restored
– the field expectation value φ̄, which minimizes the potential, vanishes.

Simplified model

� An analysis of the potential (57) is rather complex and its conclusions depend on how the
potential is modified by higher order corrections. The problem is discussed in M. Carrington,
Phys. Rev. D 45, 2933 (1992). Here we limit our discussion to mostly qualitative analysis
based on the potential which approximates (57).

� To understand a mechanism of the symmetry restoration, we roughly approximate the
potential (57) as

Veff(φ̄, T ) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 +

T 2

24

(
− µ2 +

1

2
λ φ̄2

)
, (58)

which holds for µ2 6= 0 and λ� 1. Since the potential (58) is real, there is no need to keep
the symbol <.

� Although the approximation (58) includes, except the classical potential, only the dominant
thermal correction, one checks numerically that the potential (58) reproduces well the curves
in Fig. 2.

� Rewriting the potential (58) as

Veff(φ̄, T ) =
1

2

(
− µ2 +

λT 2

24

)
φ̄2 +

λ

4!
φ̄4, (59)

where the term independent of φ̄ is neglected, one realizes that this is the effect of mass
generation of the field which is responsible for the symmetry restoration. When the ther-
mal mass

m2
eff ≡

λT 2

24
, (60)

which is discussed in Lectures 8 and 13, is bigger than µ2, the symmetry is restored.
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� The critical temperature equals

Tc =

√
24µ2

λ
, (61)

and for λ = 0.1 it is Tc ≈ 15µ, as can be inferred from Fig. 2.

� Let us now discuss what is the order of the phase transition. The derivative of the simplified
potential (59) equals

∂Veff(φ̄, T )

∂φ̄
= φ̄

(
− µ2 +

λT 2

24
+
λ

6
φ̄2
)
. (62)

So, there are at most three different real values of φ̄ which extremize the potential.

� When T < Tc, the potential (59) has one local maximum at φ̄ = 0 and two minima at

φ̄± = ±
√

6

λ

(
µ2 − λT 2

24

)
. (63)

� When T → Tc, the points φ̄± → 0 and at T = Tc, the three extreme points merge into
one at φ̄ = 0. When T > Tc, there is only one minimum at φ̄ = 0. Such a behavior of
the effective potential suggests a second order or a smooth phase transition also called a
crossover.

� A character of a phase transition is determined by a behavior of the free energy and its
derivatives at a critical temperature. The effective potential at φ̄min equals the free energy,
see Eq. (13), but computing the potential we have ignored the contributions independent
of φ̄, including those which are infinite. So, the effective potentials (57) and (58) do not
provide the complete free energy. Therefore, instead of analyzing the free energy and its
derivatives as functions of temperature, we rather consider the effective potential at φ̄min

and its derivative.

� The effective potential φ̄min and its first two temperature derivatives are

Veff(φ̄min, T ) =

{
−3µ4

2λ
+ µ2T 2

8
− λT 4

384
for T < Tc,

0 for T > Tc,
(64)

dVeff(φ̄min, T )

dT
=

{
µ2T

4
− λT 3

96
for T < Tc,

0 for T > Tc,
(65)

d2Veff(φ̄min, T )

dT 2
=

{
µ2

4
− λT 2

32
for T < Tc,

0 for T > Tc.
(66)

� One finds that the effective potential and its first derivative are smooth functions of T at
T = Tc. The second derivative, however, is discontinuous. So, we conclude that in case of
the simplified potential (59), we deal with the second order phase transition.


