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Classical and quantum scalar field

Our introduction to statistical quantum field theory will mostly deal with scalar real fields.
So, let’s start with a reminder of the classical free scalar field and its canonical quantization.

Classical description of a scalar field

e The fundamental quantity of classical and quantum field theory is the action S defined
through the Lagrangian density £(x) as

S = /d4:1:£. (1)

o The Lagrangian density of noninteracting scalar field ¢(x) is

£(r) = 50°0(2)0,0(x) — gm*¢*(x), )

where m is the mass parameter. The field is assumed to be real.

o Since the action S is dimensionless, £ is of the dimension m* and consequently the field ¢
is of the dimension m.

e The principle of the minimal action leads to the FEulera-Lagrange equation

oL oL
o) o9 3)

m

which gives the Klein-Gordon equation
[0,0" +m? ¢(z) = 0 (4)
for the Lagrangian density (2).
o There is no conserved charge carried by the real field.
e One asks how ¢(z) transforms under the Lorentz transformation?

 To answer this question one postulates that the field ¢(z) satisfies the Klein-Gordon equation
in any reference frame.

o If ¢p(x) — ¢'(2), then

0,0 +m?] ¢/ (') = 0, (5)
where m is assumed to be Lorentz invariant.

« Since 9,0 = 0,0", we find
¢(z) — ¢'(2") = (A~ '2"), (6)

where A is the transformation matrix of four-vectors that is 2/ = A* a”.
 The field which transforms according to the rule (6) is called scalar.

o One arrives to the same transformation rule (6) postulating that the Lagrangian density
(2) is a Lorentz invariant or Lorentz scalar.
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e To perform the canonical quantization we need to formulate the Hamiltonian or canonical
formalism. For this reason we define the canonical momentum 7(z) conjugate to ¢(x) as

0L (x)
09(x)

where the dot denotes the time derivative.

() = (), (7)

o The equal-time Poisson bracket of quantities A(x) and B(x) is

JA(t,x) dB(t,x')  JA(t,x) dB(t,x’)
5p(t,x") om(t,x")  om(t,x") 6p(t,x") )’

{A(t,x), B(t,X')}p = / d3x"< (8)

where the functional differentiation is done according to standard rules of differentiation
supplemented by the rule
5/(t,)
=68 (x — ). 9
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The time ¢ is not treated as a variable of differentiated function but as a parameter.

 One easily checks that the Poisson bracket of the pair of canonical variables ¢(z) and 7(x)
is

{¢(t> X)? W(tv X/)}PB = 5(3) (X - X,)a (10)
and
{o(t,x), o(t,x") }pp = {7(t,x), 7 (t,x) }pp = 0. (11)
o The Hamiltonian density H is defined by means of the Legendre transformation
H(w) = n(2) o(x) — L(w) (12)
and the Hamiltonian equals
H = /d3x H(x). (13)
 Using the Lagrangian density (2), one finds
1 1 1
H(r) = 57°(@) + 5 (Vo)) + 5m(x). (14)
e The canonical equations of motion are
. 0H
0H
(r) = ——— = (V2—m?) é(t,x). 16
@) = 5 = (V- m) ol (16)

The first equation determines the relation between the canonical momentum 7(z) and the
position ¢(z) while the first one combined with the second one gives the Klein-Gordon
equation (4).

e The canonical equations of motion can be written by means of the Poisson brackets as

o(t,x) = {o(t,x), H}tpp = m(t,x), (17)
w(t,x) = {r(t,x),H}pp = (V> = m?) 6(t,%). (18)
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e The plane-wave solution of the Klein-Gordon equation is written as
3k
#(z) = / (27)3/2on

where k* = (wy, k) with wy = vm? + k?, and a(k) is unknown complex valued function of
the dimension m~=3/2,

» One checks that the field (19) is real that is ¢*(z) = ¢(z).

{e‘ikwa(k) + ei’”a*(k)} , (19)

« The solution (19) has been written in the form which guarantees that the Hamiltonian (13)
obtained from the Hamiltonian density (14) is

H= / é:)g wic a(k) a* (k). (20)

o The Hamiltonian (20) is obviously nonnegative. Consequently, the total system’s energy is
nonnegative even so there seem to be the negative energy components in the solution (19).

Exercise: Derive the formula (20).

Quantization of scalar field

o The classical field ¢(z) and its conjugate momentum 7(z) are replaced by the operators
¢(r) and 7 (x) that is
(),

The operators act in the space of states also called the Fock space.

—
o

o We postulate the equal-time commutation relations

[0(t,x), #(t,x")] = ihé®(x —x), (21)
[é(tax>7(£(t>xl)] = 0, (22)
[#(t,x), 7 (t,x")] = 0, (23)

which are obtained by replacing the Poisson brackets (10, 11) by the commutators multiplied
by —; that is

o Further on we use the natural units where h = 1.
o The field operator qg(:c), which obeys the Klein-Gordon equation
0,0" +m? ¢(z) = 0, (24)

is written analogously to its classical counterpart (19) as

d(z) = / (%;ﬁ)\’;ﬂ e *a(k) + e*7af (k)| (25)

where a(k) and af(k) are the annihilation and creation operators and 1 denotes the Hermi-
tian conjugation.
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The commutation relations (21, 22, 23) lead to the commutation relations of a(k) and &T(k)
[ak),a’ (k)] = (2m)%P (k - K, (26)

la(k),a(k’)] = 0, (27)

[a'(k),a’ (k)] = o. (28)

Egs. (21, 22, 23) almost immediately follow from Eqs. (26, 27, 28). The proof of the inverse
theorem is more difficult.

Exercise: Derive Eqs. (21, 22, 23) from Eqgs. (26, 27, 28).

Exercise: Derive Eqs. (26, 27, 28) from Eqgs. (21, 22, 23).

Since the operators a(k) and a'(k) do not commute with each other, the quantum analogue
of the classical Hamiltonian (20) is

f?Z/kiifg(ﬂm&WH+ﬁUm&¢D~ (29)

The construction of a space of states, which is discussed later on, is much simplified if
the continuous momentum k is replaced by a set of discrete values {kj, ko, ks, ... }. So, we
assume that the field is periodic with the period L in every direction that is

A A

o(t,x) = d(t.x +exl), k=123 (30)
where e; = (1,0,0), e; = (0,1,0), e3 = (0,0, 1).

The field (25) satisfies the condition (30) if e**e+L = 1. Consequently, k takes the discrete

values .
Ko, oy = %(nl,nQ,ng), ng =0, 41, +2. ... (31)

When the discrete values of k are used, the integrals over k are changed into the sums and
the Dirac deltas into the Kronecker deltas

&k 1 ) )
. T (3) . 3 5ij
/(%)3 %p;w (27)%6®) (k — k') — L35, (32)

where the triple index (nq,n,n3) is replaced by the index i.

We introduce the dimensionless creation and annihilation operators as

1

3

Qi

which obey the relations

(a;,al] = oY, (34)
la;,a;] = 0, (35)
af,af) = o, (36)

obtained from Egs. (26, 27, 28).



Lecture I Statistical Quantum Field Theory 5

o The Hamiltonian (29) becomes
Er:z‘;"(aiahajai):Zwi@aﬁz), (37)

where w; = \/k? +m?2.

o The formula (37) shows that the system’s energy is a sum of energies of independent har-
monic oscillators.

Construction of space of states

« We postulate an existence of an energy state |E) and using the annihilation operators we
produce states of lower energies.

« Since the Hamiltonian (37) is positive definite there exists a state of the lowest energy |0)
— the ground state which is called the vacuum state in the quantum field theory.

e An operator Ais positive definite if
(a]Ala) >0 (38)
for any |a).

 Since there is no state of the energy lower than that of |0), any annihilation operator @;
annihilates the state that is
a;|0) =0, (39)

where the zero in the right-hand-side is the number zero.
o The Hermitian conjugate of Eq. (39) is
(0lal = 0. (40)

e The vacuum energy is
(0| H|0) = 0|Zw,(a a; + > sz, (41)

which, as the infinite sum of zero point energies w;/2, is infinite.

e To eliminate the zero point infinite energy we introduce the normal ordering of operators
which requires that annihilation operators are on the right hand side of creation operators.

o The normally ordered Hamiltonian (37) is

0= wala, (42)

and (0|H|0) = 0.
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o The Fock space is spanned by the states of orthonormal basis |ny, 12,13, ...) which are the
energy and particle number eigenstates of the eigenvalues Y, w;n; and Y, n;, respectively.
It means

F]’n1,n2>n3,~-> = (Zwini)|n1,n2,n3;--->> (43)
N’nlan27n37"'> - (Zni>|n17n27n37"'>7 (44)

A
where N = 3, 4! 4.

e The annihilation and creation operators act as

di|n1,n2,...ni,...> = \/n_ifnl,n%...ni—l,...), (45)
&I|n1,n2,...ni,...> = vm—i—l|n1,n2,...ni+1,...>. (46)
o The states |ny,ng,ns,...) can be all obtained from the vacuum state as
1 AT\n1(AT\n2 (AT \n3
N1, ng,ng, ... ) = W(Gl) (a3)"(a3)"™ ... |0). (47)

e There can be an unlimited number of particles of a given momentum k; in the state
|n1,ng,ns, ... ). Therefore, the real scalar field quantized by means of the commutation
relations describes a system of bosons — particles which obey the Bose-Einstein statistics.



