Classical and quantum scalar field

Our introduction to statistical quantum field theory will mostly deal with scalar real fields. So, let's start with a reminder of the classical free scalar field and its canonical quantization.

Classical description of a scalar field

- The fundamental quantity of classical and quantum field theory is the action S defined through the Lagrangian density $\mathcal{L}(x)$ as

$$
\begin{equation*}
S \equiv \int d^{4} x \mathcal{L} \tag{1}
\end{equation*}
$$

- The Lagrangian density of noninteracting scalar field $\phi(x)$ is

$$
\begin{equation*}
\mathcal{L}(x)=\frac{1}{2} \partial^{\mu} \phi(x) \partial_{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x) \tag{2}
\end{equation*}
$$

where m is the mass parameter. The field is assumed to be real.

- Since the action S is dimensionless, \mathcal{L} is of the dimension m^{4} and consequently the field ϕ is of the dimension m.
- The principle of the minimal action leads to the Eulera-Lagrange equation

$$
\begin{equation*}
\partial^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)}-\frac{\partial \mathcal{L}}{\partial \phi}=0 \tag{3}
\end{equation*}
$$

which gives the Klein-Gordon equation

$$
\begin{equation*}
\left[\partial_{\mu} \partial^{\mu}+m^{2}\right] \phi(x)=0 \tag{4}
\end{equation*}
$$

for the Lagrangian density (2).

- There is no conserved charge carried by the real field.
- One asks how $\phi(x)$ transforms under the Lorentz transformation?
- To answer this question one postulates that the field $\phi(x)$ satisfies the Klein-Gordon equation in any reference frame.
- If $\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)$, then

$$
\begin{equation*}
\left[\partial_{\mu}^{\prime} \partial^{\prime \mu}+m^{2}\right] \phi^{\prime}\left(x^{\prime}\right)=0 \tag{5}
\end{equation*}
$$

where m is assumed to be Lorentz invariant.

- Since $\partial_{\mu}^{\prime} \partial^{\prime \mu}=\partial_{\mu} \partial^{\mu}$, we find

$$
\begin{equation*}
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi\left(\Lambda^{-1} x^{\prime}\right) \tag{6}
\end{equation*}
$$

where Λ is the transformation matrix of four-vectors that is $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$.

- The field which transforms according to the rule (6) is called scalar.
- One arrives to the same transformation rule (6) postulating that the Lagrangian density (2) is a Lorentz invariant or Lorentz scalar.
- To perform the canonical quantization we need to formulate the Hamiltonian or canonical formalism. For this reason we define the canonical momentum $\pi(x)$ conjugate to $\phi(x)$ as

$$
\begin{equation*}
\pi(x) \equiv \frac{\partial \mathcal{L}(x)}{\partial \dot{\phi}(x)}=\dot{\phi}(x) \tag{7}
\end{equation*}
$$

where the dot denotes the time derivative.

- The equal-time Poisson bracket of quantities $A(x)$ and $B(x)$ is

$$
\begin{equation*}
\left\{A(t, \mathbf{x}), B\left(t, \mathbf{x}^{\prime}\right)\right\}_{\mathrm{PB}} \equiv \int d^{3} x^{\prime \prime}\left(\frac{\delta A(t, \mathbf{x})}{\delta \phi\left(t, \mathbf{x}^{\prime \prime}\right)} \frac{\delta B\left(t, \mathbf{x}^{\prime}\right)}{\delta \pi\left(t, \mathbf{x}^{\prime \prime}\right)}-\frac{\delta A(t, \mathbf{x})}{\delta \pi\left(t, \mathbf{x}^{\prime \prime}\right)} \frac{\delta B\left(t, \mathbf{x}^{\prime}\right)}{\delta \phi\left(t, \mathbf{x}^{\prime \prime}\right)}\right) \tag{8}
\end{equation*}
$$

where the functional differentiation is done according to standard rules of differentiation supplemented by the rule

$$
\begin{equation*}
\frac{\delta f(t, \mathbf{x})}{\delta f\left(t, \mathbf{x}^{\prime}\right)}=\delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{9}
\end{equation*}
$$

The time t is not treated as a variable of differentiated function but as a parameter.

- One easily checks that the Poisson bracket of the pair of canonical variables $\phi(x)$ and $\pi(x)$ is

$$
\begin{equation*}
\left\{\phi(t, \mathbf{x}), \pi\left(t, \mathbf{x}^{\prime}\right)\right\}_{\mathrm{PB}}=\delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\phi(t, \mathbf{x}), \phi\left(t, \mathbf{x}^{\prime}\right)\right\}_{\mathrm{PB}}=\left\{\pi(t, \mathbf{x}), \pi\left(t, \mathbf{x}^{\prime}\right)\right\}_{\mathrm{PB}}=0 \tag{11}
\end{equation*}
$$

- The Hamiltonian density \mathcal{H} is defined by means of the Legendre transformation

$$
\begin{equation*}
\mathcal{H}(x) \equiv \pi(x) \dot{\phi}(x)-\mathcal{L}(x) \tag{12}
\end{equation*}
$$

and the Hamiltonian equals

$$
\begin{equation*}
H=\int d^{3} x \mathcal{H}(x) \tag{13}
\end{equation*}
$$

- Using the Lagrangian density (2), one finds

$$
\begin{equation*}
\mathcal{H}(x)=\frac{1}{2} \pi^{2}(x)+\frac{1}{2}(\nabla \phi(x))^{2}+\frac{1}{2} m^{2} \phi^{2}(x) . \tag{14}
\end{equation*}
$$

- The canonical equations of motion are

$$
\begin{align*}
\dot{\phi}(x) & =\frac{\delta H}{\delta \pi(x)}=\pi(x) \tag{15}\\
\dot{\pi}(x) & =-\frac{\delta H}{\delta \phi(x)}=\left(\nabla^{2}-m^{2}\right) \phi(t, \mathbf{x}) \tag{16}
\end{align*}
$$

The first equation determines the relation between the canonical momentum $\pi(x)$ and the position $\phi(x)$ while the first one combined with the second one gives the Klein-Gordon equation (4).

- The canonical equations of motion can be written by means of the Poisson brackets as

$$
\begin{align*}
& \dot{\phi}(t, \mathbf{x})=\{\phi(t, \mathbf{x}), H\}_{\mathrm{PB}}=\pi(t, \mathbf{x}) \tag{17}\\
& \dot{\pi}(t, \mathbf{x})=\{\pi(t, \mathbf{x}), H\}_{\mathrm{PB}}=\left(\nabla^{2}-m^{2}\right) \phi(t, \mathbf{x}) \tag{18}
\end{align*}
$$

- The plane-wave solution of the Klein-Gordon equation is written as

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 \omega_{\mathbf{k}}}}\left[e^{-i k x} a(\mathbf{k})+e^{i k x} a^{*}(\mathbf{k})\right] \tag{19}
\end{equation*}
$$

where $k^{\mu}=\left(\omega_{\mathbf{k}}, \mathbf{k}\right)$ with $\omega_{\mathbf{k}} \equiv \sqrt{m^{2}+\mathbf{k}^{2}}$, and $a(\mathbf{k})$ is unknown complex valued function of the dimension $m^{-3 / 2}$.

- One checks that the field (19) is real that is $\phi^{*}(x)=\phi(x)$.
- The solution (19) has been written in the form which guarantees that the Hamiltonian (13) obtained from the Hamiltonian density (14) is

$$
\begin{equation*}
H=\int \frac{d^{3} k}{(2 \pi)^{3}} \omega_{\mathbf{k}} a(\mathbf{k}) a^{*}(\mathbf{k}) \tag{20}
\end{equation*}
$$

- The Hamiltonian (20) is obviously nonnegative. Consequently, the total system's energy is nonnegative even so there seem to be the negative energy components in the solution (19).

Exercise: Derive the formula (20).

Quantization of scalar field

- The classical field $\phi(x)$ and its conjugate momentum $\pi(x)$ are replaced by the operators $\hat{\phi}(x)$ and $\hat{\pi}(x)$ that is

$$
\begin{aligned}
& \phi(x) \longrightarrow \hat{\phi}(x) \\
& \pi(x) \longrightarrow \hat{\pi}(x)
\end{aligned}
$$

The operators act in the space of states also called the Fock space.

- We postulate the equal-time commutation relations

$$
\begin{align*}
{\left[\hat{\phi}(t, \mathbf{x}), \hat{\pi}\left(t, \mathbf{x}^{\prime}\right)\right] } & =i \hbar \delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{21}\\
{\left[\hat{\phi}(t, \mathbf{x}), \hat{\phi}\left(t, \mathbf{x}^{\prime}\right)\right] } & =0 \tag{22}\\
{\left[\hat{\pi}(t, \mathbf{x}), \hat{\pi}\left(t, \mathbf{x}^{\prime}\right)\right] } & =0 \tag{23}
\end{align*}
$$

which are obtained by replacing the Poisson brackets $(10,11)$ by the commutators multiplied by $-\frac{i}{\hbar}$ that is

$$
\{\ldots, \ldots\}_{\mathrm{PB}} \longrightarrow-\frac{i}{\hbar}[\ldots, \ldots]
$$

- Further on we use the natural units where $\hbar=1$.
- The field operator $\hat{\phi}(x)$, which obeys the Klein-Gordon equation

$$
\begin{equation*}
\left[\partial_{\mu} \partial^{\mu}+m^{2}\right] \hat{\phi}(x)=0 \tag{24}
\end{equation*}
$$

is written analogously to its classical counterpart (19) as

$$
\begin{equation*}
\hat{\phi}(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 \omega_{\mathbf{k}}}}\left[e^{-i k x} \hat{a}(\mathbf{k})+e^{i k x} \hat{a}^{\dagger}(\mathbf{k})\right] \tag{25}
\end{equation*}
$$

where $\hat{a}(\mathbf{k})$ and $\hat{a}^{\dagger}(\mathbf{k})$ are the annihilation and creation operators and \dagger denotes the Hermitian conjugation.

- The commutation relations $(21,22,23)$ lead to the commutation relations of $\hat{a}(\mathbf{k})$ and $\hat{a}^{\dagger}(\mathbf{k})$

$$
\begin{align*}
{\left[\hat{a}(\mathbf{k}), \hat{a}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right] } & =(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{26}\\
{\left[\hat{a}(\mathbf{k}), \hat{a}\left(\mathbf{k}^{\prime}\right)\right] } & =0 \tag{27}\\
{\left[\hat{a}^{\dagger}(\mathbf{k}), \hat{a}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right] } & =0 \tag{28}
\end{align*}
$$

- Eqs. $(21,22,23)$ almost immediately follow from Eqs. $(26,27,28)$. The proof of the inverse theorem is more difficult.

Exercise: Derive Eqs. (21, 22, 23) from Eqs. (26, 27, 28).
Exercise: Derive Eqs. $(26,27,28)$ from Eqs. $(21,22,23)$.

- Since the operators $\hat{a}(\mathbf{k})$ and $\hat{a}^{\dagger}(\mathbf{k})$ do not commute with each other, the quantum analogue of the classical Hamiltonian (20) is

$$
\begin{equation*}
\hat{H}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\omega_{\mathbf{k}}}{2}\left(\hat{a}(\mathbf{k}) \hat{a}^{\dagger}(\mathbf{k})+\hat{a}^{\dagger}(\mathbf{k}) \hat{a}(\mathbf{k})\right) . \tag{29}
\end{equation*}
$$

- The construction of a space of states, which is discussed later on, is much simplified if the continuous momentum \mathbf{k} is replaced by a set of discrete values $\left\{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \ldots\right\}$. So, we assume that the field is periodic with the period L in every direction that is

$$
\begin{equation*}
\hat{\phi}(t, \mathbf{x})=\hat{\phi}\left(t, \mathbf{x}+\mathbf{e}_{k} L\right), \quad k=1,2,3, \tag{30}
\end{equation*}
$$

where $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$.

- The field (25) satisfies the condition (30) if $e^{ \pm i \mathbf{k} \cdot \mathbf{e}_{k} L}=1$. Consequently, \mathbf{k} takes the discrete values

$$
\begin{equation*}
\mathbf{k}_{n_{1}, n_{2}, n_{3}}=\frac{2 \pi}{L}\left(n_{1}, n_{2}, n_{3}\right), \quad n_{k}=0, \pm 1, \pm 2, \ldots \tag{31}
\end{equation*}
$$

- When the discrete values of \mathbf{k} are used, the integrals over \mathbf{k} are changed into the sums and the Dirac deltas into the Kronecker deltas

$$
\begin{equation*}
\int \frac{d^{3} k}{(2 \pi)^{3}} \cdots \rightarrow \frac{1}{L^{3}} \sum_{i} \cdots, \quad(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \rightarrow L^{3} \delta^{i j} \tag{32}
\end{equation*}
$$

where the triple index $\left(n_{1}, n_{2}, n_{3}\right)$ is replaced by the index i.

- We introduce the dimensionless creation and annihilation operators as

$$
\begin{equation*}
\hat{a}_{i} \equiv \frac{1}{\sqrt{L^{3}}} \hat{a}\left(\mathbf{k}_{i}\right), \quad \hat{a}_{i}^{\dagger} \equiv \frac{1}{\sqrt{L^{3}}} \hat{a}^{\dagger}\left(\mathbf{k}_{i}\right) \tag{33}
\end{equation*}
$$

which obey the relations

$$
\begin{align*}
{\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right] } & =\delta^{i j} \tag{34}\\
{\left[\hat{a}_{i}, \hat{a}_{j}\right] } & =0 \tag{35}\\
{\left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right] } & =0, \tag{36}
\end{align*}
$$

obtained from Eqs. (26, 27, 28).

- The Hamiltonian (29) becomes

$$
\begin{equation*}
\hat{H}=\sum_{i} \frac{\omega_{i}}{2}\left(\hat{a}_{i} \hat{a}_{i}^{\dagger}+\hat{a}_{i}^{\dagger} \hat{a}_{i}\right)=\sum_{i} \omega_{i}\left(\hat{a}_{i}^{\dagger} \hat{a}_{i}+\frac{1}{2}\right) \tag{37}
\end{equation*}
$$

where $\omega_{i} \equiv \sqrt{\mathbf{k}_{i}^{2}+m^{2}}$.

- The formula (37) shows that the system's energy is a sum of energies of independent harmonic oscillators.

Construction of space of states

- We postulate an existence of an energy state $|E\rangle$ and using the annihilation operators we produce states of lower energies.
- Since the Hamiltonian (37) is positive definite there exists a state of the lowest energy $|0\rangle$ - the ground state which is called the vacuum state in the quantum field theory.
- An operator \hat{A} is positive definite if

$$
\begin{equation*}
\langle\alpha| \hat{A}|\alpha\rangle \geqslant 0 \tag{38}
\end{equation*}
$$

for any $|\alpha\rangle$.

- Since there is no state of the energy lower than that of $|0\rangle$, any annihilation operator \hat{a}_{i} annihilates the state that is

$$
\begin{equation*}
\hat{a}_{i}|0\rangle=0, \tag{39}
\end{equation*}
$$

where the zero in the right-hand-side is the number zero.

- The Hermitian conjugate of Eq. (39) is

$$
\begin{equation*}
\langle 0| \hat{a}_{i}^{\dagger}=0 \tag{40}
\end{equation*}
$$

- The vacuum energy is

$$
\begin{equation*}
\langle 0| \hat{H}|0\rangle=\langle 0| \sum_{i} \omega_{i}\left(\hat{a}_{i}^{\dagger} \hat{a}_{i}+\frac{1}{2}\right)|0\rangle=\frac{1}{2} \sum_{i} \omega_{i}, \tag{41}
\end{equation*}
$$

which, as the infinite sum of zero point energies $\omega_{i} / 2$, is infinite.

- To eliminate the zero point infinite energy we introduce the normal ordering of operators which requires that annihilation operators are on the right hand side of creation operators.
- The normally ordered Hamiltonian (37) is

$$
\begin{equation*}
\hat{H}=\sum_{i} \omega_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} \tag{42}
\end{equation*}
$$

and $\langle 0| \hat{H}|0\rangle=0$.

- The Fock space is spanned by the states of orthonormal basis $\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle$ which are the energy and particle number eigenstates of the eigenvalues $\sum_{i} \omega_{i} n_{i}$ and $\sum_{i} n_{i}$, respectively. It means

$$
\begin{align*}
\hat{H}\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle & =\left(\sum_{i} \omega_{i} n_{i}\right)\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle \tag{43}\\
\hat{N}\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle & =\left(\sum_{i} n_{i}\right)\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle \tag{44}
\end{align*}
$$

where $\hat{N}=\sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i}$.

- The annihilation and creation operators act as

$$
\begin{align*}
\hat{a}_{i}\left|n_{1}, n_{2}, \ldots n_{i}, \ldots\right\rangle & =\sqrt{n_{i}}\left|n_{1}, n_{2}, \ldots n_{i}-1, \ldots\right\rangle \tag{45}\\
\hat{a}_{i}^{\dagger}\left|n_{1}, n_{2}, \ldots n_{i}, \ldots\right\rangle & =\sqrt{n_{i}+1}\left|n_{1}, n_{2}, \ldots n_{i}+1, \ldots\right\rangle \tag{46}
\end{align*}
$$

- The states $\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle$ can be all obtained from the vacuum state as

$$
\begin{equation*}
\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle=\frac{1}{\sqrt{n_{1}!n_{2}!n_{3}!}}\left(\hat{a}_{1}^{\dagger}\right)^{n_{1}}\left(\hat{a}_{2}^{\dagger}\right)^{n_{2}}\left(\hat{a}_{3}^{\dagger}\right)^{n_{3}} \ldots|0\rangle . \tag{47}
\end{equation*}
$$

- There can be an unlimited number of particles of a given momentum \mathbf{k}_{i} in the state $\left|n_{1}, n_{2}, n_{3}, \ldots\right\rangle$. Therefore, the real scalar field quantized by means of the commutation relations describes a system of bosons - particles which obey the Bose-Einstein statistics.

