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Classical and quantum scalar field
Our introduction to statistical quantum field theory will mostly deal with scalar real fields.

So, let’s start with a reminder of the classical free scalar field and its canonical quantization.

Classical description of a scalar field
• The fundamental quantity of classical and quantum field theory is the action S defined

through the Lagrangian density L(x) as

S ≡
∫
d4xL. (1)

• The Lagrangian density of noninteracting scalar field φ(x) is

L(x) = 1
2∂

µφ(x)∂µφ(x)− 1
2m

2φ2(x), (2)

where m is the mass parameter. The field is assumed to be real.

• Since the action S is dimensionless, L is of the dimension m4 and consequently the field φ
is of the dimension m.

• The principle of the minimal action leads to the Eulera-Lagrange equation

∂µ
∂L

∂(∂µφ) −
∂L
∂φ

= 0, (3)

which gives the Klein-Gordon equation

[∂µ∂µ +m2]φ(x) = 0 (4)

for the Lagrangian density (2).

• There is no conserved charge carried by the real field.

• One asks how φ(x) transforms under the Lorentz transformation?

• To answer this question one postulates that the field φ(x) satisfies the Klein-Gordon equation
in any reference frame.

• If φ(x)→ φ′(x′), then
[∂′µ∂′µ +m2]φ′(x′) = 0, (5)

where m is assumed to be Lorentz invariant.

• Since ∂′µ∂′µ = ∂µ∂
µ, we find

φ(x)→ φ′(x′) = φ(Λ−1x′), (6)

where Λ is the transformation matrix of four-vectors that is x′µ = Λµ
νx

ν .

• The field which transforms according to the rule (6) is called scalar.

• One arrives to the same transformation rule (6) postulating that the Lagrangian density
(2) is a Lorentz invariant or Lorentz scalar.
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• To perform the canonical quantization we need to formulate the Hamiltonian or canonical
formalism. For this reason we define the canonical momentum π(x) conjugate to φ(x) as

π(x) ≡ ∂L(x)
∂φ̇(x)

= φ̇(x), (7)

where the dot denotes the time derivative.

• The equal-time Poisson bracket of quantities A(x) and B(x) is

{A(t,x), B(t,x′)}PB ≡
∫
d3x′′

(
δA(t,x)
δφ(t,x′′)

δB(t,x′)
δπ(t,x′′) −

δA(t,x)
δπ(t,x′′)

δB(t,x′)
δφ(t,x′′)

)
, (8)

where the functional differentiation is done according to standard rules of differentiation
supplemented by the rule

δf(t,x)
δf(t,x′) = δ(3)(x− x′). (9)

The time t is not treated as a variable of differentiated function but as a parameter.

• One easily checks that the Poisson bracket of the pair of canonical variables φ(x) and π(x)
is

{φ(t,x), π(t,x′)}PB = δ(3)(x− x′), (10)
and

{φ(t,x), φ(t,x′)}PB = {π(t,x), π(t,x′)}PB = 0. (11)

• The Hamiltonian density H is defined by means of the Legendre transformation

H(x) ≡ π(x) φ̇(x)− L(x) (12)

and the Hamiltonian equals
H =

∫
d3xH(x). (13)

• Using the Lagrangian density (2), one finds

H(x) = 1
2π

2(x) + 1
2(∇φ(x))2 + 1

2m
2φ2(x). (14)

• The canonical equations of motion are

φ̇(x) = δH

δπ(x) = π(x), (15)

π̇(x) = − δH

δφ(x) =
(
∇2 −m2

)
φ(t,x). (16)

The first equation determines the relation between the canonical momentum π(x) and the
position φ(x) while the first one combined with the second one gives the Klein-Gordon
equation (4).

• The canonical equations of motion can be written by means of the Poisson brackets as

φ̇(t,x) = {φ(t,x), H}PB = π(t,x), (17)

π̇(t,x) = {π(t,x), H}PB =
(
∇2 −m2

)
φ(t,x). (18)
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• The plane-wave solution of the Klein-Gordon equation is written as

φ(x) =
∫ d3k

(2π)3√2ωk

[
e−ikxa(k) + eikxa∗(k)

]
, (19)

where kµ = (ωk,k) with ωk ≡
√
m2 + k2, and a(k) is unknown complex valued function of

the dimension m−3/2.
• One checks that the field (19) is real that is φ∗(x) = φ(x).
• The solution (19) has been written in the form which guarantees that the Hamiltonian (13)

obtained from the Hamiltonian density (14) is

H =
∫ d3k

(2π)3 ωk a(k) a∗(k). (20)

• The Hamiltonian (20) is obviously nonnegative. Consequently, the total system’s energy is
nonnegative even so there seem to be the negative energy components in the solution (19).

Exercise: Derive the formula (20).

Quantization of scalar field
• The classical field φ(x) and its conjugate momentum π(x) are replaced by the operators
φ̂(x) and π̂(x) that is

φ(x) −→ φ̂(x),
π(x) −→ π̂(x).

The operators act in the space of states also called the Fock space.
• We postulate the equal-time commutation relations

[φ̂(t,x), π̂(t,x′)] = i~δ(3)(x− x′), (21)

[φ̂(t,x), φ̂(t,x′)] = 0, (22)

[π̂(t,x), π̂(t,x′)] = 0, (23)

which are obtained by replacing the Poisson brackets (10, 11) by the commutators multiplied
by − i

~ that is

{. . . , . . . }PB −→ −
i

~
[. . . , . . . ].

• Further on we use the natural units where ~ = 1.
• The field operator φ̂(x), which obeys the Klein-Gordon equation

[∂µ∂µ +m2] φ̂(x) = 0, (24)

is written analogously to its classical counterpart (19) as

φ̂(x) =
∫ d3k

(2π)3√2ωk

[
e−ikxâ(k) + eikxâ†(k)

]
, (25)

where â(k) and â†(k) are the annihilation and creation operators and † denotes the Hermi-
tian conjugation.
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• The commutation relations (21, 22, 23) lead to the commutation relations of â(k) and â†(k)

[â(k), â†(k′)] = (2π)3δ(3)(k− k′), (26)

[â(k), â(k′)] = 0, (27)

[â†(k), â†(k′)] = 0. (28)

• Eqs. (21, 22, 23) almost immediately follow from Eqs. (26, 27, 28). The proof of the inverse
theorem is more difficult.

Exercise: Derive Eqs. (21, 22, 23) from Eqs. (26, 27, 28).

Exercise: Derive Eqs. (26, 27, 28) from Eqs. (21, 22, 23).

• Since the operators â(k) and â†(k) do not commute with each other, the quantum analogue
of the classical Hamiltonian (20) is

Ĥ =
∫ d3k

(2π)3
ωk

2
(
â(k) â†(k) + â†(k) â(k)

)
. (29)

• The construction of a space of states, which is discussed later on, is much simplified if
the continuous momentum k is replaced by a set of discrete values {k1,k2,k3, . . . }. So, we
assume that the field is periodic with the period L in every direction that is

φ̂(t,x) = φ̂(t,x + ekL), k = 1, 2, 3, (30)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

• The field (25) satisfies the condition (30) if e±ik·ekL = 1. Consequently, k takes the discrete
values

kn1,n2,n3 = 2π
L

(n1, n2, n3), nk = 0, ±1, ±2, . . . (31)

• When the discrete values of k are used, the integrals over k are changed into the sums and
the Dirac deltas into the Kronecker deltas∫ d3k

(2π)3 · · · →
1
L3

∑
i

. . . , (2π)3δ(3)(k− k′)→ L3δij, (32)

where the triple index (n1, n2, n3) is replaced by the index i.

• We introduce the dimensionless creation and annihilation operators as

âi ≡
1√
L3

â(ki), â†i ≡
1√
L3

â†(ki), (33)

which obey the relations

[âi, â†j] = δij, (34)
[âi, âj] = 0, (35)

[â†i , â
†
j] = 0, (36)

obtained from Eqs. (26, 27, 28).
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• The Hamiltonian (29) becomes

Ĥ =
∑
i

ωi
2
(
âi â

†
i + â†i âi

)
=
∑
i

ωi

(
â†i âi + 1

2

)
, (37)

where ωi ≡
√

k2
i +m2.

• The formula (37) shows that the system’s energy is a sum of energies of independent har-
monic oscillators.

Construction of space of states
• We postulate an existence of an energy state |E〉 and using the annihilation operators we

produce states of lower energies.

• Since the Hamiltonian (37) is positive definite there exists a state of the lowest energy |0〉
– the ground state which is called the vacuum state in the quantum field theory.

• An operator Â is positive definite if

〈α|Â|α〉  0 (38)

for any |α〉.

• Since there is no state of the energy lower than that of |0〉, any annihilation operator âi
annihilates the state that is

âi|0〉 = 0, (39)
where the zero in the right-hand-side is the number zero.

• The Hermitian conjugate of Eq. (39) is

〈0|â†i = 0. (40)

• The vacuum energy is

〈0|Ĥ|0〉 = 〈0|
∑
i

ωi

(
â†i âi + 1

2

)
|0〉 = 1

2
∑
i

ωi, (41)

which, as the infinite sum of zero point energies ωi/2, is infinite.

• To eliminate the zero point infinite energy we introduce the normal ordering of operators
which requires that annihilation operators are on the right hand side of creation operators.

• The normally ordered Hamiltonian (37) is

Ĥ =
∑
i

ωiâ
†
i âi, (42)

and 〈0|Ĥ|0〉 = 0.
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• The Fock space is spanned by the states of orthonormal basis |n1, n2, n3, . . . 〉 which are the
energy and particle number eigenstates of the eigenvalues ∑i ωini and ∑

i ni, respectively.
It means

Ĥ|n1, n2, n3, . . . 〉 =
(∑

i

ωini
)
|n1, n2, n3, . . . 〉, (43)

N̂ |n1, n2, n3, . . . 〉 =
(∑

i

ni
)
|n1, n2, n3, . . . 〉, (44)

where N̂ = ∑
i â
†
i âi.

• The annihilation and creation operators act as

âi|n1, n2, . . . ni, . . . 〉 = √
ni |n1, n2, . . . ni − 1, . . . 〉, (45)

â†i |n1, n2, . . . ni, . . . 〉 =
√
ni + 1 |n1, n2, . . . ni + 1, . . . 〉. (46)

• The states |n1, n2, n3, . . . 〉 can be all obtained from the vacuum state as

|n1, n2, n3, . . . 〉 = 1√
n1!n2!n3!

(â†1)n1(â†2)n2(â†3)n3 . . . |0〉. (47)

• There can be an unlimited number of particles of a given momentum ki in the state
|n1, n2, n3, . . . 〉. Therefore, the real scalar field quantized by means of the commutation
relations describes a system of bosons – particles which obey the Bose-Einstein statistics.


