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Higgs Mechanism
A gauge symmetry requires a masslessness of gauge bosons which in turn leads to the infinite range of the

gauge forces. A Higgs mechanism explains how to combine a gauge symmetry with a finite mass of force carriers.

Spontaneous Symmetry Breakdown
• Let us start with the following Lagrangian density of a complex scalar field Φ(x)

L(x) = ∂µΦ∗(x)∂µΦ(x)− µ2Φ∗(x) Φ(x)− λ
(
Φ∗(x) Φ(x)

)2
, (1)

where the parameters λ ∈ R and λ > 0 while µ2 ∈ R but µ2 > 0 or µ2 < 0.

• The Lagrangian (1) is invariant under the global symmetry transformation

Φ(x)→ eiαΦ(x) Φ∗(x)→ e−iαΦ∗(x), (2)

where α ∈ R.

• Let us define the potential V ≡ µ2Φ∗(x) Φ(x) +λ
(
Φ∗(x) Φ(x)

)2 which is shown in the Fig. 1 for µ2 > 0 and
µ2 < 0.

Figure 1: Effective potential for µ2 > 0 and µ2 < 0

• Further on we assume that µ2 < 0.

• If ImΦ = 0, the potential, which is shown in Fig. 2, has the minimum at ReΦ = ±
√
−µ2

2λ .

• In general, the minimum of the potential V is determined by the equation:

(ReΦ)2 + (ImΦ)2 = −µ
2

2λ. (3)

• The Lagrangian density obeys the symmetry (2) and the minimum of the potential V given by Eq. (3) is
also symmetric. However, if we choose one specific point like

ImΦ = 0 & ReΦ =
√
−µ

2

2λ, (4)

the symmetry is broken, see Fig. 2.
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Figure 2: Effective potential for µ2 < 0 and ImΦ = 0

• We define the new scalar real fields

φ(x) ≡
√

2
(

ReΦ(x)−
√
−µ

2

2λ

)
, χ(x) ≡

√
2 ImΦ(x). (5)

The fields represent fluctuations around the chosen minimum (4) and χ(x) is called the Goldstone field.
The coefficient is

√
2 is introduced to get the standard factor 1

2 in front the kinetic term of the real field φ
in the Lagrangian (7).

• The field Φ(x) expressed through φ(x) and χ(x) reads

Φ(x) = 1√
2
(
φ(x) + v + iχ(x)

)
, (6)

where v ≡
√
−µ2

λ

• Substituting the field Φ given by Eq. (6) into the Lagrangian (1), one finds the Lagrangian rewritten in
terms of the fields φ and χ as

L(x) = 1
2∂

µφ∂µφ−
1
2m

2φ2 + 1
2∂

µχ∂µχ− gφ(φ2 + χ2)− λ

4 (φ2 + χ2)2, (7)

where m2 ≡ 2λv2 = −2µ2 and g ≡ λv. As one observes, the field φ(x) is massive but the Goldstone field
χ(x) is massless.

Exercise: Derive the Lagrangian (7).

• We have found a special case of the Goldstone theorem which states that a massless (Goldstone) boson
shows up when a continuous global symmetry is spontaneously broken.

Abelian Higgs Mechanism

• We extend the Lagrangian density (1) including the electromagnetic field. Thus, we get

L(x) = 1
4F

µν(x)Fνµ(x) +
(
DµΦ(x)

)∗
DµΦ(x)− µ2Φ∗(x) Φ(x)− λ

(
Φ∗(x) Φ(x)

)2
, (8)

where Dµ ≡ ∂µ + ieAµ(x).
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• The Lagrangian (8) is invariant under the local gauge symmetry transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x), Φ(x)→ e−ieΛ(x)Φ(x). (9)

• Since we assume that µ2 < 0, the symmetry is spontaneously broken.

• We define new fields: real scalar H(x) and real vector Bµ(x) through the relations

Φ(x) = 1√
2
(
H(x)− v

)
eiΛ(x)/v, Aµ(x) = Bµ(x)− 1

ev
∂µΛ(x). (10)

• Substituting the fields Φ and Aµ expressed through H and Bµ into the Lagrangian (8), one finds

L(x) = 1
4 W

µν(x)Wνµ(x) + 1
2 m

2
BB

µBµ

+ 1
2 (∂µH)(∂µH)− 1

2 m
2
HH

2

+ e2

2 BµB
µ(H2 + 2vH)− λvH3 − λ

4 H
4, (11)

where Wµν(x) = ∂µBν − ∂νBµ, m2
B ≡ e2v2 and m2

H ≡ 2λv2 = −2µ2. We note that the constant terms
and linear in H are ignored in Eq. (11).

Exercise: Derive the Lagrangian (11).

• The Lagrangian (11) shows that the vector field becomes massive due to the spontaneous symmetry break-
down.

• The first line of Eq. (11) represents the Lagrangian density of the free massive vector field Bµ, the second
line is the Lagrangian density of the free massive scalar real Higgs field H and the third line represents the
self interaction of the Higgs field and the interaction of Bµ and H fields.

• There is no massless field (no Goldstone boson) in the Lagrangian (11).

• We note that the field Λ(x) is entirely absent in Eq. (11) as the corresponding terms cancel each other. We
see that the ground state of the theory is not gauge invariant but the procedure leading to the Lagrangian
(11) is gauge independent. It means that we could get the Lagrangian (11) defining the fields H(x) and
Bµ(x) as

Φ(x) = 1√
2
(
H(x)− v

)
, Aµ(x) = Bµ(x). (12)

• Let us count the numbers of degrees of freedom before and after the spontaneous symmetry breakdown. In
the Lagrangian (8) we have massless vector field of 2 degrees of freedom (two spin states) and the complex
scalar field also of 2 degrees of freedom (particles and antiparticles). In the Lagrangian (11) we have massive
vector field of 3 degrees of freedom (three spin states) and the real scalar field of 1 degree of freedom (truly
neutral particles). The numbers of degrees of freedom are the same.

• Including in the Lagrangian (8) the spinor-field term

ψ
(
i(∂µ + ieAµ)γµ −m

)
ψ, (13)

and applying the gauge transformation ψ → e−iΛ/vψ together with the redefinitions (10), one finds the
following extra term in the Lagrangian (11)

ψ
(
i(∂µ + ieBµ)γµ −m

)
ψ. (14)

Before the spontaneous symmetry breakdown the spinor field interacts with the massless field Aµ but after
the spontaneous symmetry breakdown the field interacts with the massive field Bµ.
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NonAbelian Higgs Mechanism

• The extension of the Higgs mechanism to the non-Abelian theories is straightforward. Further on we discuss
the SU(2) case which is relevant for the Standard Model.

• The SU(2) analog of the Lagrangian (8) reads

L = 1
2tr[FµνFνµ] +

(
DµΦ

)†
DµΦ− µ2Φ†Φ− λ(Φ†Φ)2, (15)

where Dµ ≡ ∂µ + igAµ and Φ is the two-component complex scalar field

Φ =
(

Φ1

Φ2

)
, Φ† = (Φ∗1,Φ∗2). (16)

• We note that Aµ = Aµaτ
a and the generators of the SU(2) group τa are τa = 1

2σ
a where σa with a = 1, 2, 3

are the Pauli matrices.

• The Lagrangian (15) is invariant under the SU(2) gauge transformation

Aµ → UAµU† − i

g
(∂µU)U†, (17)

Φ → UΦ. (18)

• We choose the field which minimizes the potential as

Φ0 = 1√
2

(
0
v

)
, v ≡

√
−µ

2

λ
. (19)

• We introduce new fields: real scalar H(x) and real vector Bµ(x) through the relations analogous of (10)

Aµ = UBµU† − i

g
(∂µU)U†, Φ = 1√

2
U

(
0

H − v

)
. (20)

• Substituting the fields (20) into the Lagrangian (15), one finds

1
2tr[FµνFνµ] = 1

2tr[WµνWνµ], (21)

µ2Φ†Φ = µ2

2 (H − v)2, (22)

λ(Φ†Φ)2 = λ

4 (H − v)4. (23)

• The only term, which is difficult to compute, is
(
DµΦ

)†
DµΦ. Using the fact that the covariant derivative

transforms under the gauge transformations as

Dµ → UDµU†, (24)

one finds(
DµΦ

)†
DµΦ = 1

2(0, H − v)
( ←
∂µ +igBµ

)(
∂µ − igBµ

)( 0
H − v

)
(25)

= 1
2 (∂µH)(∂µH)− ig

2 (0, ∂µH)Bµ
(

0
H − v

)
+ ig

2 (0, H − v)Bµ
(

0
∂µH

)

+ g2

2 (0, H − v)BµBµ
(

0
H − v

)
.
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Writing down the field Bµ as Bµ = 1
2B

µ
aσ

a, where σa is a Pauli matrix, one finds that the second and third
terms in Eq. (25) cancel each other because

(0, ∂µH)Bµ
(

0
H − v

)
= 1

2(∂µH)(H − v)Bµa (0, 1)σa
(

0
1

)
= (0, H − v)Bµ

(
0

∂µH

)
. (26)

The last term in Eq. (25) is computed as

g2

2 (0, H − v)BµBµ
(

0
H − v

)
= g2

8 (H − v)2BaµB
µ
b (0, 1)σaσb

(
0
1

)
. (27)

Using the explicit form of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (28)

one finds that
g2

2 (0, H − v)BµBµ
(

0
H − v

)
= g2

8 (H − v)2BaµB
µ
a . (29)

So, the final result of the term
(
DµΦ

)†
DµΦ is

(
DµΦ

)†
DµΦ = 1

2 (∂µH)(∂µH) + g2

8 (H − v)2BaµB
µ
a . (30)

• Combining the results (21, 22, 23) and (30), the new Lagrangian becomes

L = 1
2tr[WµνWνµ] + 1

2 (∂µH)(∂µH) + g2

8 (H − v)2BaµB
µ
a −

µ2

2 (H − v)2 − λ

4 (H − v)4, (31)

which is rewritten as

L = 1
2tr[WµνWνµ] +m2

B tr[BµBµ] (32)

+ 1
2 (∂µH)(∂µH)− 1

2m
2
HH

2

+ g2(H2 − 2vH)2 tr[BµBµ]− λvH3 − λ

4H
4,

where m2
B = g2v2/4 and m2

H = −2µ2. We note that the constant terms and those linear in H are ignored
in Eq. (32).

• As in the Abelian case, the three lines of the Lagrangian (32) represent: the massive vector field, the
massive scalar field and the interaction of the vector and scalar fields.

• In the Lagrangian (15) we have three massless vector fields of 2 degrees of freedom each (two spin states)
and two complex scalar fields also of 2 degrees of freedom each (particles and antiparticles). So, we have ten
degrees of freedom. In the Lagrangian (32) we have three massive vector fields of 3 degrees of freedom each
(three spin states) and the real scalar field of 1 degree of freedom (truly neutral particles). The number of
degrees of freedom is ten and it is the same as before the spontaneous symmetry breakdown.

• We note that analogously to the Abelian case, the procedure leading to the Lagrangian (15) is independent
of the gauge transformation matrix U . Therefore, one obtains the Lagrangian (15) defining the fields H(x)
and Bµ(x) as

Aµ = Bµ, Φ = 1√
2

(
0

H − v

)
. (33)

• The Higgs mechanism plays a key role in the Standard Model as will be evident in subsequent lectures.


