## Lecture III

# **Quantum Chromodynamics**

The quantum chromodynamics (QCD), which is a theory with the nonAbelian SU(3) gauge symmetry, describes interactions of quarks and gluons.

## Formulation of QCD

- There are gluons described by a vector field  $A^{\mu}(x)$  and quarks of 6 flavors u, d, s, c, b, t represented by a set of quark fields  $\psi_f(x)$ .
- The gluon field  $A^{\mu}(x)$  is the 3 × 3 matrix in the fundamental representation of the SU(3) group which can be expressed as  $A^{\mu}(x) = A^{\mu}_{a}(x) \tau^{a}$  where  $\tau^{a}$  with a = 1, 2, ..., 8 are generators of the SU(3) group.
- The generators obey the commutation relations

$$[\tau^a, \tau^b] = i f^{abc} \tau^c, \tag{1}$$

where  $f^{abc}$  are totally antisymmetric structure constants of SU(3) group. The generators are hermitian traceless matrices normalized in the canonical way as

$$\operatorname{Tr}[\tau^a \tau^b] = \frac{1}{2} \delta^{ab}.$$
(2)

- The quark fields are the Dirac spinors  $\psi_f$  where the index f numerates quark flavors u, d, s, c, b, t. The quark field carries the spinor index  $\alpha = 1, 2, 3, 4$  and the color index i = 1, 2, 3.
- The QCD Lagrangian density is

$$\mathcal{L} = \frac{1}{2} \operatorname{Tr}[F^{\mu\nu} F_{\nu\mu}] + \sum_{f} \overline{\psi}_{f} \left( i D^{\mu} \gamma_{\mu} - m_{f} \right) \psi_{f}.$$
(3)

where the strength tensor is

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}] = D^{\mu}A^{\nu} - D^{\nu}A^{\mu} = \frac{i}{g}[D^{\mu}, D^{\nu}], \tag{4}$$

with  $D^{\mu} \equiv \partial^{\mu} \mathbb{1} - igA^{\mu}$  being the covariant derivative.

• The first term of the Lagrangian density (3) can be written as

$$\frac{1}{2} \text{Tr}[F^{\mu\nu}F_{\nu\mu}] = \frac{1}{4} F_a^{\mu\nu}F_{a\,\nu\mu}.$$
(5)

• The Lagrangian density (3) is invariant under the gauge transformation

$$\psi_f(x) \rightarrow U(x)\psi_f(x),$$
(6)

$$A^{\mu}(x) \rightarrow U(x) A^{\mu}(x) U^{\dagger}(x) - \frac{i}{g} (\partial^{\mu} U(x)) U^{\dagger}(x), \qquad (7)$$

where U(x) is a <u>local</u> SU(3) matrix

$$U(x) = e^{i\omega^a(x)\,\tau^a},\tag{8}$$

with the x-dependent parameters  $\omega^a(x)$ .

• The equations of motion are

$$\left[i\gamma_{\mu}D^{\mu} - m\right]\psi_f(x) = 0,\tag{9}$$

$$[D_{\mu}, F^{\mu\nu}(x)] = j^{\nu}(x), \tag{10}$$

where  $j^{\mu} = j^{\mu}_{a} \tau_{a}$  with  $j^{\mu}_{a} \equiv g \sum_{f} \overline{\psi}_{f} \gamma^{\nu} \tau_{a} \psi_{f}$ .



Figure 1: Quark-gluon (left), three-gluon (middle) and four-gluon (right) couplings

• The equations (10), which are called the Yang-Mills equations, can be rewritten as

$$\mathcal{D}^{ab}_{\mu}F^{\mu\nu}_{b} = j^{\nu}_{a},\tag{11}$$

where

$$\mathcal{D}^{\mu}_{ab} = \partial^{\mu} \delta^{ab} - g f^{abc} A^{\mu}_{c}, \tag{12}$$

and

$$F_a^{\mu\nu} = \partial^{\mu}A_a^{\nu} - \partial^{\nu}A_a^{\mu} + gf^{abc}A_b^{\mu}A_c^{\nu}.$$
(13)

• From the equation (10), one immediately finds that

$$[D_{\mu}, j^{\mu}] = 0, \tag{14}$$

that is the quark current is not conserved but covariantly conserved.

# Perturbative QCD

- If the coupling  $\alpha_s = \frac{g^2}{4\pi}$  is much smaller than unity we deal with the perturbative QCD.
- Scattering process of quarks and gluons can be described in terms of of Feynman diagrams.
- There three types of couplings shown in Fig. 1 where the solid line denotes a quark and the wavy line a gluon.
- As an example, the three diagrams representing an amplitude of the gluon-quark scattering analogue of the Compton scattering are shown in Fig. 2. The first two diagrams are as in QED but the third one is specific for QCD.



Figure 2: Gluon-quark scattering

## Running coupling constant in QED

- One computes a first order correction to the free photon propagator computing the one-loop photon selfenergy  $\Pi^{\mu\nu}(k)$  shown in Fig. 3.
- Since  $\Pi^{\mu\nu}(k)$  is ultraviolet divergent it requires a regularization.



Figure 3: Photon self-energy

• Because of the gauge invariance  $k_{\mu}\Pi^{\mu\nu}(k) = k_{\nu}\Pi^{\mu\nu}(k) = 0$ . Consequently, the Lorentz structure of  $\Pi^{\mu\nu}(k)$  is

$$\Pi^{\mu\nu}(k) = (k^2 g^{\mu\nu} - k^{\mu} k^{\nu}) P(k^2).$$
(15)

• The resumed photon propagator in the Feynman gauge, which is shown in Fig. 4, is

$$D^{\mu\nu}(k) = \frac{g^{\mu\nu}}{k^2 \left(1 - P(k^2)\right)}.$$
(16)

• The <u>renormalized</u> propagator  $D^{\mu\nu}(k,\mu)$  is obtained as

$$D^{\mu\nu}(k,\mu) = \frac{1}{Z_3(\mu)} D^{\mu\nu}(k), \tag{17}$$

where  $Z_3(\mu)$  is the <u>renormalization constant</u> and  $\mu$  is the <u>renormalization scale</u>. When  $k^2 \rightarrow -\mu^2$  the renormalized propagator coincides with the free one which is the <u>renormalization condition</u>.

• One finds that  $Z_3(\mu) = 1 + P(-\mu^2)$  and consequently

$$P(k^{2},\mu^{2}) = P(k^{2}) - P(-\mu^{2}), \qquad D^{\mu\nu}(k,\mu) = \frac{g^{\mu\nu}}{k^{2} \left(1 - P(k^{2},\mu^{2})\right)}.$$
(18)

- Since physical results must be independent of  $\mu$ , the coupling constant needs to be renormalized.
- Due to the gauge invariance of QED, the coupling constant is renormalized with the same constant  $Z_3(\mu)$  as the photon propagator that is

$$\alpha(\mu) = Z_3(\mu)\alpha. \tag{19}$$

• Since the bare coupling  $\alpha$  is independent of  $\mu$ , the renormalized  $\alpha(\mu)$  satisfies the equation

$$\mu \frac{d\alpha(\mu)}{d\mu} = \beta(\mu), \tag{20}$$

where  $\beta(\mu)$  is the beta function defined as

$$\beta(\mu) = \mu \frac{dZ_3(\mu)}{d\mu} \frac{\alpha(\mu)}{Z_3(\mu)}.$$
(21)

• Knowing the explicit expression of  $P(\mu^2)$ , one finds that

$$\beta(\mu) = \frac{2}{3\pi} \alpha^2(\mu). \tag{22}$$



Figure 4: Resumed photon propagator

#### Lecture III

• One easily checks that the solution of Eq. (20) is

$$\alpha(\mu) = \frac{\alpha(\mu_0)}{1 - \frac{\alpha(\mu_0)}{3\pi} \ln\left(\frac{\mu^2}{\mu_0^2}\right)}.$$
(23)

• Let us define the energy scale  $\Lambda$  such that

$$1 - \frac{\alpha(\mu_0)}{3\pi} \ln\left(\frac{\Lambda^2}{\mu_0^2}\right) = 0.$$
<sup>(24)</sup>

When  $\mu = \Lambda$  the coupling constant  $\alpha(\Lambda) = \infty$ . The is so-called Landau pole.

• Solving Eq. (24) with respect of  $\alpha(\mu_0)$ , one finds

$$\alpha(\mu) = \frac{3\pi}{\ln\left(\frac{\Lambda^2}{\mu^2}\right)},\tag{25}$$

where  $\mu_0$  is replaced by  $\mu$  and it is assumed that  $\mu < \Lambda$ .

- The equation (25) expresses the dimensionless coupling constant  $\alpha(\mu)$  through the dimensionfull parameter  $\Lambda$ . This is the phenomenon of <u>dimensional transmutation</u>.
- Using the scale  $\mu_0 = m_e$  and  $\alpha(\mu_0) = 1/137$ , one finds that  $\Lambda \approx 10^{281} m_e \approx 10^{287}$  eV.

### Asymptotic freedom

• In QCD the one-loop beta function is

$$\beta(\mu) = -(33 - 2N_f) \frac{\alpha_s(\mu)}{12\pi},$$
(26)

where  $N_f$  is the number of light flavors of masses much smaller than  $\mu$ . For  $N_f < 17$  the beta functions is negative.

• The running coupling constant evolves from  $\mu_0$  to  $\mu$  according to the formula

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 + (33 - 2N_f)\frac{\alpha_s(\mu_0)}{12\pi} \ln\left(\frac{\mu^2}{\mu_0^2}\right)}.$$
(27)

• The QCD scale parameter  $\Lambda_{\rm QCD}$  is defined through the equation

$$1 + (33 - 2N_f) \frac{\alpha_s(\mu_0)}{12\pi} \ln\left(\frac{\mu^2}{\mu_0^2}\right) = 0.$$
<sup>(28)</sup>

At  $\mu = \Lambda_{\text{QCD}}$  the coupling  $\alpha_s(\mu)$  becomes infinite.

• Solving Eq. (28) with respect of  $\alpha_s(\mu_0)$ , one finds

$$\alpha_s(\mu) = \frac{12\pi}{(33 - 2N_f) \ln\left(\frac{\mu^2}{\Lambda_{\rm QCD}^2}\right)},\tag{29}$$

where  $\mu_0$  is replaced by  $\mu$  and it is assumed that  $\mu < \Lambda_{\text{QCD}}$ .

- If  $\mu \to \infty$ , the coupling constant  $\alpha_s(\mu)$  tends to zero which is known as the asymptotic freedom.
- Experiment shows that  $\Lambda_{\text{QCD}} \approx 200$  MeV.
- The renormalization scale is usually identified with a characteristic momentum transfer Q of a process of interest.
- When  $Q^2 \gg \Lambda_{\text{QCD}}^2$  a process is <u>hard</u> and can be described in terms of perturbative QCD.
- A summary of measurements of the QCD running constant is shown in Fig. 5.



Figure 5: Running coupling constant of QCD from S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007)

# Confinement

- Soft chromodynamic interactions, which occur at the momentum transfer that is not much greater than  $\Lambda_{\text{QCD}}$ , are strong and cannot be described in terms of perturbation theory. Processes driven by such interactions are called non-perturbative.
- There are no universally applicable methods to describe non-perturbative phenomena.
- <u>Confinement</u> does not allow quarks and gluons to exist as free separate objects.
- More generally, the confinement does not allow for an existence of objects of non-vanishing color charge.
- Confinement is a non-perturbative phenomenon which has not been derived yet from QCD. It belongs to the Millennium Prize Problems. A correct solution will be awarded one million US dollars by the Clay Mathematics Institute.