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Quantum Chromodynamics
The quantum chromodynamics (QCD), which is a theory with the nonAbelian SU(3) gauge symmetry, de-

scribes interactions of quarks and gluons.

Formulation of QCD
• There are gluons described by a vector field Aµ(x) and quarks of 6 flavors u, d, s, c, b, t represented by a set

of quark fields ψf (x).

• The gluon field Aµ(x) is the 3× 3 matrix in the fundamental representation of the SU(3) group which can
be expressed as Aµ(x) = Aµa(x) τa where τa with a = 1, 2, . . . 8 are generators of the SU(3) group.

• The generators obey the commutation relations

[τa, τ b] = ifabcτ c, (1)

where fabc are totally antisymmetric structure constants of SU(3) group. The generators are hermitian
traceless matrices normalized in the canonical way as

Tr[τaτ b] = 1
2δ

ab. (2)

• The quark fields are the Dirac spinors ψf where the index f numerates quark flavors u, d, s, c, b, t. The
quark field carries the spinor index α = 1, 2, 3, 4 and the color index i = 1, 2, 3.

• The QCD Lagrangian density is

L = 1
2Tr[FµνFνµ] +

∑
f

ψf
(
iDµγµ −mf

)
ψf . (3)

where the strength tensor is

Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ] = DµAν −DνAµ = i

g
[Dµ, Dν ], (4)

with Dµ ≡ ∂µ1− igAµ being the covariant derivative.

• The first term of the Lagrangian density (3) can be written as

1
2Tr[FµνFνµ] = 1

4F
µν
a Fa νµ. (5)

• The Lagrangian density (3) is invariant under the gauge transformation

ψf (x) → U(x)ψf (x), (6)

Aµ(x) → U(x)Aµ(x)U†(x)− i

g

(
∂µU(x)

)
U†(x), (7)

where U(x) is a local SU(3) matrix
U(x) = eiω

a(x) τa

, (8)

with the x-dependent parameters ωa(x).

• The equations of motion are [
iγµD

µ −m
]
ψf (x) = 0, (9)

[Dµ, F
µν(x)] = jν(x), (10)

where jµ = jµa τa with jµa ≡ g
∑
f ψfγ

ντaψf .
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Figure 1: Quark-gluon (left), three-gluon (middle) and four-gluon (right) couplings

• The equations (10), which are called the Yang-Mills equations, can be rewritten as

Dabµ F
µν
b = jνa , (11)

where
Dµab = ∂µδab − gfabcAµc , (12)

and
Fµνa = ∂µAνa − ∂νAµa + gfabcAµbA

ν
c . (13)

• From the equation (10), one immediately finds that

[Dµ, j
µ] = 0, (14)

that is the quark current is not conserved but covariantly conserved.

Perturbative QCD

• If the coupling αs = g2

4π is much smaller than unity we deal with the perturabtive QCD.

• Scattering process of quarks and gluons can be described in terms of of Feynman diagrams.

• There three types of couplings shown in Fig. 1 where the solid line denotes a quark and the wavy line a
gluon.

• As an example, the three diagrams representing an amplitude of the gluon-quark scattering – analogue of
the Compton scattering – are shown in Fig. 2. The first two diagrams are as in QED but the third one is
specific for QCD.

Figure 2: Gluon-quark scattering

Running coupling constant in QED
• One computes a first order correction to the free photon propagator computing the one-loop photon self-

energy Πµν(k) shown in Fig. 3.

• Since Πµν(k) is ultraviolet divergent it requires a regularization.
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Figure 3: Photon self-energy

• Because of the gauge invariance kµΠµν(k) = kνΠµν(k) = 0. Consequently, the Lorentz structure of Πµν(k)
is

Πµν(k) = (k2gµν − kµkν)P (k2). (15)

• The resumed photon propagator in the Feynman gauge, which is shown in Fig. 4, is

Dµν(k) = gµν

k2
(
1− P (k2)

) . (16)

• The renormalized propagator Dµν(k, µ) is obtained as

Dµν(k, µ) = 1
Z3(µ)D

µν(k), (17)

where Z3(µ) is the renormalization constant and µ is the renormalization scale. When k2 → −µ2 the
renormalized propagator coincides with the free one which is the renormalization condition.

• One finds that Z3(µ) = 1 + P (−µ2) and consequently

P (k2, µ2) = P (k2)− P (−µ2), Dµν(k, µ) = gµν

k2
(
1− P (k2, µ2)

) . (18)

• Since physical results must be independent of µ, the coupling constant needs to be renormalized.

• Due to the gauge invariance of QED, the coupling constant is renormalized with the same constant Z3(µ)
as the photon propagator that is

α(µ) = Z3(µ)α. (19)

• Since the bare coupling α is independent of µ, the renormalized α(µ) satisfies the equation

µ
dα(µ)
dµ

= β(µ), (20)

where β(µ) is the beta function defined as

β(µ) = µ
dZ3(µ)
dµ

α(µ)
Z3(µ) . (21)

• Knowing the explicit expression of P (µ2), one finds that

β(µ) = 2
3π α

2(µ). (22)

Figure 4: Resumed photon propagator
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• One easily checks that the solution of Eq. (20) is

α(µ) = α(µ0)
1− α(µ0)

3π ln
(
µ2

µ2
0

) . (23)

• Let us define the energy scale Λ such that

1− α(µ0)
3π ln

(Λ2

µ2
0

)
= 0. (24)

When µ = Λ the coupling constant α(Λ) =∞. The is so-called Landau pole.

• Solving Eq. (24) with respect of α(µ0), one finds

α(µ) = 3π
ln
(Λ2

µ2

) , (25)

where µ0 is replaced by µ and it is assumed that µ < Λ.

• The equation (25) expresses the dimensionless coupling constant α(µ) through the dimensionfull parameter
Λ. This is the phenomenon of dimensional transmutation.

• Using the scale µ0 = me and α(µ0) = 1/137, one finds that Λ ≈ 10281me ≈ 10287 eV.

Asymptotic freedom
• In QCD the one-loop beta function is

β(µ) = −(33− 2Nf )αs(µ)
12π , (26)

where Nf is the number of light flavors of masses much smaller than µ. For Nf < 17 the beta functions is
negative.

• The running coupling constant evolves from µ0 to µ according to the formula

αs(µ) = αs(µ0)
1 + (33− 2Nf )αs(µ0)

12π ln
(
µ2

µ2
0

) . (27)

• The QCD scale parameter ΛQCD is defined through the equation

1 + (33− 2Nf )αs(µ0)
12π ln

(µ2

µ2
0

)
= 0. (28)

At µ = ΛQCD the coupling αs(µ) becomes infinite.

• Solving Eq. (28) with respect of αs(µ0), one finds

αs(µ) = 12π
(33− 2Nf ) ln

(
µ2

Λ2
QCD

) , (29)

where µ0 is replaced by µ and it is assumed that µ < ΛQCD.

• If µ→∞, the coupling constant αs(µ) tends to zero which is known as the asymptotic freedom.

• Experiment shows that ΛQCD ≈ 200 MeV.

• The renormalization scale is usually identified with a characteristic momentum transfer Q of a process of
interest.

• When Q2 � Λ2
QCD a process is hard and can be descried in terms of perturbative QCD.

• A summary of measurements of the QCD running constant is shown in Fig. 5.
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threshold matching at the heavy quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Results from
data in ranges of energies are only given for Q = MZ0 . Where available, the table also contains the
contributions of experimental and theoretical uncertainties to the total errors in αs(MZ0).

Finally, in the last two columns of table 1, the underlying theoretical calculation for each mea-
surement and a reference to this result are given, where NLO stands for next-to-leading order, NNLO
for next-next-to-leading-order of perturbation theory, “resum” stands for resummend NLO calculations
which include NLO plus resummation of all leading und next-to-leading logarithms to all orders (see
[39] and [32]), and “LGT” indicates lattice gauge theory.

Figure 17: . Summary of measurements of αs(Q) as a function of the respective energy scale Q, from
table 1. Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in
the respective analysis. The curves are the QCD predictions for the combined world average value of
αs(MZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV.

In figure 17, all results of αs(Q) given in table 1 are graphically displayed, as a function of the
energy scale Q. Those results obtained in ranges of Q and given, in table 1, as αs(MZ0) only, are not
included in this figure - with one exception: the results from jet production in deep inelastic scattering
are represented in table 1 by one line, averaging over a range in Q from 6 to 100 GeV, while in figure 17
combined results for fixed values of Q as presented in [67] are displayed.
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Figure 5: Running coupling constant of QCD from S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007)

Confinement
• Soft chromodynamic interactions, which occur at the momentum transfer that is not much greater than

ΛQCD, are strong and cannot be described in terms of perturbation theory. Processes driven by such
interactions are called non-perturbative.

• There are no universally applicable methods to describe non-perturbative phenomena.

• Confinement does not allow quarks and gluons to exist as free separate objects.

• More generally, the confinement does not allow for an existence of objects of non-vanishing color charge.

• Confinement is a non-perturbative phenomenon which has not been derived yet from QCD. It belongs to
the Millennium Prize Problems. A correct solution will be awarded one million US dollars by the Clay
Mathematics Institute.


