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Propagators
When a vacuum expectation value of a product of field operators is computed, there appear objects like

〈0|T φ̂(x) φ̂(y)|0〉 called propagators which actually play a very important role in quantum field theory. Our aim
is to introduce the propagators and discuss their properties. However, our discussion is limited to free fields.

Propagator of scalar real field
Field-theory definition

• The Feynman propagator is defined as

i∆(x, y) ≡ 〈0|T φ̂(x) φ̂(y)|0〉, (1)

where T denotes the chronological ordering which in case of bosonic operators act as

T φ̂(x) φ̂(y) ≡ θ(x0 − y0) φ̂(x) φ̂(y) + θ(y0 − x0) φ̂(y) φ̂(x). (2)

• The free field propagator (1) can be computed directly from the definition. Using the field decomposition
into plane waves

φ̂(x) =
∫

d3k

(2π)3√2ωk

[
e−ikxâ(k) + eikxâ†(k)

]
, (3)

the commutation relations

[â(k), â†(k′)] = (2π)3δ(3)(k− k′), (4)

[â(k), â(k′)] = [â†(k), â†(k′)] = 0, (5)

and the normalization condition 〈0|0〉 = 1, one immediately finds

i∆(x, y) =
∫

d3k

(2π)32ωk

[
e−ik(x−y)θ(x0 − y0) + eik(x−y)θ(y0 − x0)

]
, (6)

where ωk ≡
√
m2 + k2 and kµ = (ωk,k).

• The formula (6) shows that the Feynman propagator is a sum of two types of plane waves. The waves with
positive energy propagate forward in time and those with negative energy backward in time.

• There is a following physical picture behind the formula (6). At the moment of time y0, which is earlier
than x0, that is y0 < x0, there is generated from vacuum the particle at y and it travels to x where it is
annihilated at x0. If x0 < y0, an antiparticle is generated at y, it travels backward in time to x and it is
annihilated at x0.

• The formula (6) shows that the propagator does not depend on x and y but only on x− y. It reflects the
translational invariance of vacuum. Consequently, the propagator can be written as

i∆(x) =
∫

d3k

(2π)32ωk

[
e−ikxθ(x0) + eikxθ(−x0)

]
. (7)

• The propagator (7) can be expressed in an elegant form as

∆(x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 + i0+ , (8)

where kµ = (k0,k).
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• The infinitesimal element i0+ determines how the poles of the integrant k0 = ±ωk should be circum-
vented. Either the integral is taken along the green line from Fig. 1 or equivalently, one solves the equation
k2 −m2 + i0+ = 0 taking into account the infinitesimal imaginary part. Then, k0 = ±ωk ∓ i0+ and the
poles are shifted from the axis of real k0.

• We note that in the formula (7) the four-momentum k is on mass-shell k2 = m2 which means k0 = ±ωk.
In the formula (8) the components of the four-momentum k are all independent from each other.

Exercise: Prove the equivalence of the formulas (7) and (8), performing the integration over k0 in the integral
(8) by means of the Cauchy formula. Distinguish the case x0 > 0 from x0 < 0.

Exercise: Prove that the propagator (1) satisfies the equation

[∂µ∂µ +m2]∆(x) = −δ(4)(x).

Use the field commutation relations and take into account that d
dtθ(t) = δ(t).

Green’s function of Klein-Gordon equation

• One often uses the so-called Green’s function to solve inhomogeneous differential equations. Let us consider
the Klein-Gordon equation with a source

[∂µ∂µ +m2]φ(x) = j(x), (9)

which describes the classical scalar field φ(x) coupled to the source j(x). The source is external that is the
field φ does not change it.

• The general solution of the inhomogeneous equation (9) can be written as

φ(x) = φ0(x)−
∫
d4x′G(x− x′) j(x′), (10)

where φ0(x) is the general solution of the homogeneous equation

[∂µ∂µ +m2]φ0(x) = 0, (11)

which is a superposition of plane waves, and G(x) is the Green’s function which obeys the equation

[∂µ∂µ +m2]G(x) = −δ(4)(x). (12)

One easily checks that the formula (10) indeed solves Eq. (9).

• To get an explicit form of the solution (10) we need an explicit form of the Green’s function. One solves
Eq. (12) by means of the Fourier transform

G(x) =
∫

d4k

(2π)4 e
−ikxG(k), (13)

which substituted in Eq. (12) provides the algebraic equation

[k2 −m2]G(k) = 1, (14)

immediately solved by
G(k) = 1

k2 −m2 . (15)

• The Green’s function thus equals

G(x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 , (16)

but the expression (16) is not well defined as the integrand is singular – the denominator vanishes at
k2 = m2.
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Figure 1: Four possible ways to circumvent the poles of the integrand (16) which correspond to four Green’s
functions: ‘retarded’ (red line), ‘advanced’ (blue line), ‘Feynman’ (green line) and ‘antiFeynman’ (orange line)

• To resolve the ambiguity we write down the formula (16) as

G(x) =
∫

d3k

(2π)3

∫
dk0

2π
e−ik0x0+ik·x

k2
0 − ω2

k
=
∫

d3k

(2π)3

∫
dk0

2π
e−ik0x0+ik·x

(k0 − ωk)(k0 + ωk) . (17)

As seen the integrand has two poles at k0 = ωk and k0 = −ωk. When one takes the integral over k0 from
−∞ to ∞ there are four ways to circumvent the poles which are shown in Fig. 1. The integral is taken by
means of the Cauchy formula and it should be realized that the contour can be closed with the big upper
semicircle for x0 > 0 and with the big lower semicircle for x0 < 0. Then, the integrand vanishes along the
big semicircle.

• Each way to circumvent the poles of the integrand (16) corresponds to a different Green’s function.

– If the contour runs above both poles (red line), we get the ‘retarded’ Green’s GR(x) which vanishes
for x0 < 0.

– If the contour runs below both poles (blue line), we get the ‘advanced’ Green’s GA(x) which vanishes
for x0 > 0.

– If the contour runs below the pole k0 = −ωk and above the pole k0 = ωk (green line), we get the
‘Feynman’ Green’s GF (x) where the positive k0 contribute for x0 > 0 and negative k0 for x0 < 0.

– If the contour runs above the pole k0 = −ωk and below the pole k0 = ωk (orange line), we get the
‘antiFeynman’ Green’s GF̄ (x) where the positive k0 contribute for x0 < 0 and negative k0 for x0 > 0.

• The functions can be written as

GR(x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 + i sgn(k0)0+ , (18)

GA(x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 − i sgn(k0)0+ , (19)

GF (x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 + i0+ , (20)

GF̄ (x) =
∫

d4k

(2π)4
e−ikx

k2 −m2 − i0+ , (21)

where sgn(k0) the sign function such that

sgn(k0) ≡
{
−1 for k0 < 0,
+1 for k0 > 0.

(22)

• We see that the propagator (1) is just the Feynman Green’s function of the Klein-Gordon equation.
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Propagator of spinor field
• The propagator of the spinor field is defined as

iSαβ(x, y) ≡ 〈0|T ψ̂α(x) ˆ̄ψβ(y)|0〉, (23)

where the operator of chronological ordering T acts on fermionic field operators as

T ψ̂(x) ˆ̄ψ(y) ≡ θ(x0 − y0) ψ̂(x) ˆ̄ψ(y)− θ(y0 − x0) ˆ̄ψ(y) ψ̂(x). (24)

The sign minus occurs due to the anticommuting character of the spinor field.

• The propagator S can be computed directly from the definition (23), as in case of scalar field. However,
we can first derive the equation satisfied by the propagator. Keeping in mind that the fields ψ̂, ˆ̄ψ obey the
the Dirac equations

[iγµ∂µ −m]ψ̂(x) = 0, ψ̂(x)[iγµ
←
∂µ +m] = 0, (25)

and using the anticummutation relations

{ψ̂α(t,x), π̂β(t,x′)} = iδαβ δ
(3)(x− x′), (26)

where π̂(x) = iψ̂†(x), one finds

[iγµ∂µx −m]S(x, y) = δ(4)(x− y), S(x, y)[iγµ
←
∂µy +m] = δ(4)(x− y). (27)

Exercise: Derive the equations (27) starting with the definition (23).

• Eqs. (27) clearly show that the propagator S(x, y), as the scalar-field propagator, depends on x and y only
through the difference x−y which reflects the translational invariance of vacuum. So, we can write S(x−y)
or S(x).

• We solve Eqs. (27) using the Fourier transform

S(x) =
∫

d4k

(2π)4 e
−ipxS(p), (28)

which changes the equation (27) into
[γµpµ −m]S(p) = 1. (29)

• Keeping in mind that (γµpµ −m)(γνpν +m) = p2 −m2, one easily finds

S(p) = γµp
µ +m

p2 −m2 . (30)

• The Feynman propagator of spinor field finally equals

S(x) =
∫

d4p

(2π)4 e
−ipx γµp

µ +m

p2 −m2 + i0+ . (31)

• We note that the spinor-field propagator is related to that of scalar field as

S(x) = [iγµ∂µ +m]∆(x). (32)



Lecture IX Introduction to Quantum Field Theory 5

Propagator of electromagnetic field
• We are interested in the propagator

iDµν(x, y) ≡ 〈0|TÂµ(x)Âν(y)|0〉. (33)

Since the field Âµ is bosonic the operator of chronological ordering T acts as in case of scalar field (2).

• The form of the propagator of electromagnetic field strongly depends on a gauge condition which is chosen.
Since we have used the radiation gauge Â0(x) = 0, ∇ · Â(x) = 0, we see that Dµν(x, y) = 0 if µ = 0 or
ν = 0.

• Let us compute Dij directly from the definition (33). Using the free field decomposed into plane waves
that is

Â(x) =
2∑

λ=1

∫
d3k

(2π)3√2ωk
ε(k, λ)

[
e−ikx â(k, λ) + eikx â†(k, λ)

]
, (34)

and the commutation relations

[â(k, λ), â†(k′, λ′)] = (2π)3δλλ
′
δ(3)(k− k′), (35)

[â(k, λ), â(k′, λ′)] = [â†(k, λ), â†(k′, λ′)], (36)

one obtains

iDij(x, y) =
∫

d3k

(2π)32ωk

2∑
λ=1

εi(k, λ) εj(k, λ)
[
e−ik(x−y)θ(x0 − y0) + eik(x−y)θ(y0 − x0)

]
, (37)

where ωk ≡ |k| and kµ = (ωk,k). As previously the propagator depends on x and y only through x − y.
So, setting y = 0 we write Dij(x).

Exercise: Derive the formula (37) from the definition (33).

• Using the relation
2∑

λ=1
εi(k, λ)εj(k, λ) = δij − kikj

k2 , (38)

the propagator (37) can be expressed as

iDij(x) =
∫

d3k

(2π)32ωk

(
δij − kikj

k2

)[
e−ikxθ(x0) + eikxθ(−x0)

]
. (39)

• As in case of scalar and spinor fields, the photon propagator is finally written as

Dij(x) =
∫

d4k

(2π)4

(
δij − kikj

k2

) e−ikx

k2 + i0+ . (40)

And again, the components of kµ are all independent from each other in Eq. (40).

• The propagator in momentum space is

Dij(k) =
(
δij − kikj

k2

) 1
k2 + i0+ . (41)

• The expression (40) or (41) is not very useful. Since it is not covariant, it holds only in the reference frame
where the gauge condition is imposed.

• There is also a more serious problem. In the absence of charges one can put A0(x) = 0 but in general
it is not possible. Therefore, the expression (40) does not carry complete information about the photon
propagator.
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• To get the complete photon propagator in a covariant form we refer to a heuristic reasoning. However, our
result can be also derived in a rigorous way.

• We assume that Dµν(k) depends only on kµ. As a Lorentz tensor of the second rank it can be written as

Dµν(k) = gµνf + kµkνfL, (42)

where f and fL are unknown functions which are Lorentz scalars.

• We require that the spatial part of (42) agrees with that of (41) which gives

−δijf + kikjfL =
(
δij − kikj

k2

) 1
k2 , (43)

where temporarily the infinitesimal imaginary element i0+ has been ignored for simplicity.

• Taking the trace of Eq. (43) and multiplying it by kikj we get two equations

−3f + k2fL = 2
k2 , −f + k2fL = 0, (44)

which give
f = − 1

k2 , fL = − 1
k2k2 . (45)

• We are going to show that the longitudinal part of the propagator fL is not physical and can be arbitrary
chosen.

• Since the electromagnetic interaction is Aµ(x) jµ(x), the photon propagator enters scattering amplitudes
in the combination jµ(k)Dµν(k) jν(k). Because of charge conservation ∂µjµ(x) = 0 and kµjµ(k) = 0, one
finds

jµ(k)Dµν(k) jν(k) = jµ(k) jµ(k) f. (46)

So, the longitudinal contribution fL has disappeared.

• In quantum theory a gauge freedom is a freedom to choose the longitudinal part of photon propagator.

• The most common is the Feynman gauge with fL = 0. Then, the photon propagator is

Dµν(k) = − gµν

k2 + i0+ . (47)

• We note that the Fourier transform of (47) satisfies the equation

�Dµν(x) = gµνδ(4)(x). (48)

So, it is the Green’s function of the classical potential equation in the Lorentz gauge ∂µAµ(x) = 0.

• The propagator, which has properties similar to that of classical potential in the Lorentz gauge, is the
Landau propagator

Dµν(k) = −
gµν − kµkν

k2

k2 + i0+ , (49)

where fL = (k2)−2. The propagator is purely transverse, that is kµDµν(k) = kνD
µν(k) = 0, as the classical

potential in the Lorentz gauge kµAµ(k) = 0. Sometimes it greatly simplifies calculations.


