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Simplest collisional processes
The lecture is devoted to a discussion of two simplest collisional processes: the binary interaction of real

bosons and electron scattering on a Coulomb field.

Binary collisions of scalar bosons
We are going to compute the cross section of binary collision of self-interacting scalar bosons.

Perturbative expansion

• As we remember the Ŝ operator in the interaction picture is

ŜI = 1− i
∫ ∞
−∞

dt ĤI
int(t) + (−i)2

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 TĤ
I
int(t1) ĤI

int(t2) + . . . (1)

and the interaction Hamiltonian of self-interacting real scalar field is

Ĥint = λ

4! φ̂
4(x). (2)

• Assuming that the coupling constant λ is small that is λ� 1, we approximate the operator (28) as

Ŝ ≈ 1− i λ4!

∫
d4x φ̂4(x), (3)

which gives
T̂ = −i(Ŝ − 1) ≈ − λ4!

∫
d4x φ̂4(x). (4)

• The field φ̂ is treated as the free one.

States

• A single particle state and its conjugate are

|p〉 = 1√
V
â†(p)|0〉, 〈p| = 1√

V
〈0|â(p), (5)

where V is the normalization volume introduced to satisfy the normalization condition

〈p|p〉 = 1. (6)

• To understand the origin of V let us consider the scalar product

〈p|q〉 = 1
V
〈0|â(p)â†(q)|0〉. (7)

• Using the commutation relation

[â(k), â†(k′)] = (2π)3δ(3)(k− k′), (8)

and the property â(q)|0〉 = 0, one finds

〈p|q〉 = 1
V

(2π)3δ(3)(p− q), (9)

which for p = q equals (2π)3δ(3)(p = 0)/V . As already explained, (2π)3δ(3)(p = 0) = V .

• The two-particle state is
|p1,p2〉 = 1

V
â†(p1) â†(p2)|0〉, (10)

We assume here that p1 6= p2.
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• One finds that

〈p1,p2|q1,q2〉 = 1
V 2 〈0|â(p1) â(p2) â†(q1) â†(q2)|0〉 (11)

= (2π)6

V 2

(
δ(3)(p1 − q1) δ(3)(p2 − q2) + δ(3)(p1 − q2) δ(3)(p2 − q1)

)
,

which equals unity if p1 = q1 and p2 = q2 or p1 = q2 and p2 = q1. So, the two-particle state is properly
normalized.

Amplitude
• The transition amplitude of the binary process p1,p2 → p′1,p′2 is

Tfi ≡ 〈p′1,p′2|T̂ |p1,p2〉 = − λ4!

∫
d4x 〈p′1,p′2|φ̂4(x)|p1,p2〉, (12)

where the operator T̂ is given by Eq. (4). All momenta p1,p2,p′1,p′2 are assumed to be different from each
other.

• Substituting the field decomposed into plane waves

φ̂(x) =
∫

d3k

(2π)3√2ωk

[
e−ikxâ(k) + eikxâ†(k)

]
, (13)

into Eq. (12) and using the two-particles states (10), the amplitude (12) equals

Tfi = − λ4!
1
V 2

∫
d4x

∫
d3k1

(2π)3√2ωk1

d3k2

(2π)3√2ωk2

d3k3

(2π)3√2ωk3

d3k4

(2π)3√2ωk4

(14)

× 〈0|â(p′1) â(p′2)
[
e−ik1xâ(k1) + eik1xâ†(k1)

][
e−ik2xâ(k2) + eik2xâ†(k2)

]
×

[
e−ik3xâ(k3) + eik3xâ†(k3)

][
e−ik4xâ(k4) + eik4xâ†(k4)

]
â†(p1) â†(p2)|0〉.

• The computation of the amplitude (14) using solely the commutation relations satisfied by the creation and
annihilation operators and the fact that â(p)|0〉 = 0 is elementary but very tedious. A few observations
greatly simplify the the problem.

• There are 24 = 16 terms of the amplitude (14) but only those of equal number of creation and annihilation
operators contribute. So, we take into account only 6 terms with 4 creation and 4 annihilation operators.

• We call the operators, which depend on p1,p2,p′1,p′2, as external and those which depend on k1,k2,k3,k4
as internal. The vacuum expectation value is nonzero if each external creation (annihilation) operator is
paired with the internal annihilation (creation) operator.

• Since the creation and annihilation operators of different momenta commute with each other and can be
interchanged there are 6 identical terms which contribute to the amplitude (14). The terms give

Tfi = −6 λ4!
1
V 2

∫
d4x

∫
d3k1

(2π)3√2ωk1

d3k2

(2π)3√2ωk2

d3k3

(2π)3√2ωk3

d3k4

(2π)3√2ωk4

(15)

× ei(k1+k2−k3−k4)x〈0|â(p′1) â(p′2) â†(k1) â†(k2) â(k3) â(k4) â†(p1) â†(p2)|0〉.

• Since the operators of different momenta act independently from each other on the vacuum state the vacuum
expectation value can be written as

〈0|â(p′1) â(p′2) â†(k1) â†(k2) â(k3) â(k4) â†(p1) â†(p2)|0〉 (16)

= 〈0|â(p′1) â†(k1)|0〉〈0|â(p′2) â†(k2)|0〉〈0|â(k3) â†(p1)|0〉〈0|â(k4) â†(p2)|0〉

+ 〈0|â(p′1) â†(k2)|0〉〈0|â(p′2) â†(k1)|0〉〈0|â(k3) â†(p1)|0〉〈0|â(k4) â†(p2)|0〉

+ 〈0|â(p′1) â†(k1)|0〉〈0|â(p′2) â†(k2)|0〉〈0|â(k4) â†(p1)|0〉〈0|â(k3) â†(p2)|0〉

+ 〈0|â(p′1) â†(k2)|0〉〈0|â(p′2) â†(k1)|0〉〈0|â(k4) â†(p1)|0〉〈0|â(k3) â†(p2)|0〉,

where the 4 terms correspond 4 possible pairings of the external and internal operators.
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• Since∫
d3k eikx

(2π)3√2ωk
〈0|â(p) â†(k)|0〉 =

∫
d3k

(2π)3√2ωk
eikx〈0|â†(k)â(p) + (2π)3δ(3)(p− k)|0〉 = eipx√

2ωp

and all terms in the right-hand-side of Eq. (16) give the same contribution, the amplitude (15) equals

Tfi = − λ

22
1
V 2

∫
d4x

ei(p
′
1+p′

2−p1−p2)x√
E1E2E′1E

′
2

= − λ

22V 2
(2π)4δ(4)(p1 + p2 − p′1 − p′2)√

E1E2E′1E
′
2

, (17)

where E1 ≡
√
m2 + p2

1 and E2, E
′
1, E

′
2 are analogously defined. The energy-momentum conservation has

appeared automatically.

• The amplitude Mfi, which is defined as

Tfi = (2π)4δ(4)(Pi − Pf ) Mfi√
V n+2E1E2E′1E

′
2 . . . E

′
n

, (18)

equals
Mfi = − λ

22 . (19)

• The combinatorial factor which comes from Eqs. (15) and (16) is 6 ·4 = 4!. It explains why λ is traditionally
divided by 4! in the Lagrangian.

Cross section

• Substituting the amplitude (19) into the cross-section formula

dσ = (2π)4δ(4)(Pf − Pi)√
(p1 · p2)2 − (m1m2)2

|Mfi|2
d3p′1

(2π)3E′1

d3p′2
(2π)3E′2

, (20)

we get

dσ = (2π)4δ(4)(p1 + p2 − p′1 − p′2)√
(p1 · p2)2 −m4

λ2

24
d3p′1

(2π)3E′1

d3p′2
(2π)3E′2

, (21)

which is, as expected, the Lorentz scalar.

• In the center-of-mass frame, where all particles from the initial and final states have the same energy E,
the cross section equals

dσ

dΩ = λ2

28π2E2 , (22)

dΩ is the element of the solid scattering angle but actually there is no angular dependence – the scattering
is isotropic.

Exercise: Derive the formula (22) from Eq. (21).

• Due to no angular dependence of the differential cross section (22) the total cross section is found performing
trivial angular integration. However, due to indistinguishability of final state bosons the final result must
be divided by 2. Effectively we find the total cross section multiplying the differential cross section (22) by
2π. Thus, we get

σ = λ2

27πE2 . (23)

• The cross section (22) expressed through the Mandelstam invariant is

dσ

dt
= − λ2

24π s(s− 4m2) . (24)



Lecture VIII Introduction to Quantum Field Theory 4

• The total cross section is
σ = 1

2

∫ tmax

tmin

dt
dσ

dt
= λ2

25π s
, (25)

where the tmin = 0 and it occurs when p′ = p = (E,p) and tmax = −p2 = −s + 4m2 when in the
center-of-mass frame p′ = (E,−p). The cross sections (23) and (25) are obviously equal to each other.

Mott scattering
Mott scattering is a scattering of electron in the Coulomb field generated by atomic nucleus of charge −Ze.

The nucleus is assumed to be infinitely heavy.

• Assuming that the nucleus is at x = 0, the Coulomb potential is

A0(x) = − Ze

4π |x| . (26)

• The Hamiltonian density equals

ĤI(x) = eψ̂(x)γµψ̂(x)Aµ(x) = − Ze2

4π |x| ψ̂(x)γ0ψ̂(x). (27)

• Since the fine structure constant α ≡ e2

4π = 1
137 is small, the series

Ŝint = 1− i
∫ ∞
−∞

dt ĤI
int(t) + (−i)2

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 TĤ
I
int(t1) ĤI

int(t2) + . . . (28)

can be approximated as
Ŝint ≈ 1− i

∫ ∞
−∞

dt ĤI
int(t) (29)

and the reaction operator equals

T̂ = −i(Ŝ − 1) ≈ Ze2

4π

∫
d4x

|x| ψ̂(x)γ0ψ̂(x). (30)

• We write the single electron state of momentum p and spin s as

|p, s〉 = 1√
V
â†(p, s)|0〉, (31)

where V is the normalization volume.

• The states |p, s〉, |p′, s′〉 are orthonormal that is

〈s,p|p′, s′〉 = 1
V

(2π)3δss
′
δ(3)(p− p′). (32)

• The transition amplitude of the process |p, s〉 → |p′, s′〉 is

Tfi ≡ 〈s′,p′|T̂ |p, s〉 = Ze2

4π

∫
d4x

|x| 〈s
′,p′|ψ̂(x)γ0ψ̂(x)|p, s〉. (33)

• Substituting the fields ψ̂(x) and ψ̂(x) decomposed into plane waves as

ψ̂(x) =
∑
±s

∫
d3p

(2π)3

√
m

Ep

[
e−ipxâ(p, s)u(p, s) + eipxb̂†(p, s) v(p, s)

]
, (34)

ˆ̄ψ(x) =
∑
±s

∫
d3p

(2π)3

√
m

Ep

[
e−ipxb̂(p, s) v̄(p, s) + eipxâ†(p, s) ū(p, s)

]
(35)
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into Eq. (33), one finds

Tfi = Ze2

4π
1
V

∫
d4x

|x|
∑
±s1

∑
±s2

∫
d3p1

(2π)3
d3p2

(2π)3

√
m

E1

√
m

E2
ei(p1−p2)x (36)

× ū(p1, s1) γ0u(p2, s2) 〈0|â(p′, s′) â†(p1, s1) a(p2, s2) â†(p, s)|0〉,

where E1 ≡
√
m2 + p2

1 and E2 ≡
√
m2 + p2

2.

• A non-zero contribution to the amplitude (36) comes only from the components of fields ψ̂(x) and ψ̂(x)
which contain spinors u and ū. The components with v and v̄ do not contribute to the amplitude because
the Hamiltonian is normally ordered.

• Using the anticommutation relations of â(p, s) and â†(p, s), one finds

〈0|â(p′, s′) â†(p1, s1) a(p2, s2) â†(p, s)|0〉 = (2π)3δs
′s1δ(3)(p′ − p1) (2π)3δs2sδ(3)(p− p2). (37)

• Using the result (37), the amplitude (36) becomes

Tfi = Ze2

4π
1
V

√
m

E

√
m

E′

∫
d4x

|x| e
i(p′−p)x γ0ū(p′, s′) γ0u(p, s), (38)

where E ≡
√
m2 + p2 and E′ ≡

√
m2 + p′2 is the initial and final electron energy, respectively.

• Performing the integral ∫
dx0 e

i(E′−E)x0 = 2π δ(E − E′), (39)

we find that the electron energy is conserved.

• The integral over x gives ∫
d3x

|x| e
−iq·x = 4π

q2 , (40)

where q ≡ p′ − p is the momentum transfer.

• Substituting the results (39, 40) into Eq. (38) and using the amplitude Vfi related to Tfi

Tfi = 2π δ(Ei − Ef )Vfi, (41)

we find
Vfi = 1

V

Ze2

q2
m

E
ū(p′, s′) γ0u(p, s). (42)

• Since the cross section of scattering on infinitely heavy target is

dσ = V

|v| 2π δ(E − E
′) |Vfi|2

V d3p′

(2π)3 , (43)

where v is the projectile velocity, the amplitude (42) provides

dσ = 1
|v| 2π δ(E − E

′) Z
2e4

(q2)2
m2

E2 |ū(p′, s′) γ0u(p, s)|2 d
3p′

(2π)3 , (44)

where the normalization volume V has disappeared, as it should be.

• Writing down d3p′ as dΩ d|p′|p′2 and performing the integral over |p′|, we get rid of the Dirac delta and
the cross section equals

dσ

dΩ = 4Z2α2m2

(q2)2 |ū(p′, s′) γ0u(p, s)|2, (45)

where α ≡ e2

4π .
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• Assuming that the initial electron is not polarized and that the polarization of final-state electron is not
measured, we sum the cross section over the initial polarizations and average over final polarization . Then,

dσ̄

dΩ = 1
2
∑
ss′

4α2m2

(q2)2 |ū(p′, s′) γ0u(p, s)|2. (46)

• Now we compute∑
ss′

|ū(p′, s′) γ0u(p, s)|2 =
∑
ss′

[
ū(p′, s′) γ0u(p, s)

]†
ū(p′, s′) γ0u(p, s) (47)

=
∑
ss′

ūα(p, s) γ0
αβuβ(p′, s′) ūγ(p′, s′) γ0

γδuδ(p, s),

where we have taken into account that ū = u†γ0 and (γ0)† = γ0.

• Using the completeness relation ∑
±s

uα(p, s) ūβ(p, s) =
(γ · p+m

2m

)
αβ
, (48)

one finds∑
ss′

|ū(p′, s′) γ0u(p, s)|2 = Tr
[
γ0 γ · p′ +m

2m γ0 γ · p+m

2m

]
= 1

4m2 Tr
[
γ0(γ · p′ +m) γ0(γ · p+m)

]
, (49)

where the trace is taken over the spinor indices.

Traces of gamma matrices

Using the anticommutation relation
{γµ, γν} = 2gµν , (50)

one proves the following formulas

Tr[γµ] = 0, (51)

Tr[γµγν ] = 4gµν , (52)

Tr[γµγνγρ] = 0, (53)

Tr[γµγνγργσ] = 4gµσ gνρ − 4gµρ gνσ + 4gµν gρσ. (54)

Exercise: Derive the relations (51, 52, 53, 54).

• Using the relations (52, 53, 54), one obtains

Tr
[
γ0(γ · p′ +m) γ0(γ · p+m)

]
= 4m2 + 8EE′ − 4(p′ · p). (55)

• Substituting the result (55) in Eq. (49), Eq. (46) gives the well-known Mott cross section

dσ̄

dΩ = 2Z2α2

(q2)2

(
m2 + E2 + p′ · p

)
, (56)

where p′ · p = E2 − p′ · p.

• The formula (56) can be rewritten as

dσ̄

dΩ = 4Z2α2E2

(q2)2

(
1− q2

4E2

)
. (57)
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• Defining the scattering angle θ as the angle between p and p′ and keeping in mind that v ≡ |p|E , the Mott
cross section is written as

dσ̄

dΩ = Z2α2

4 sin4 θ
2

1
v2p2

(
1− v2 sin2 θ

2

)
. (58)

Exercise: Derive the Mott cross section given as (57) and (58), starting with the formula (56).

• In non-relativistic approximation v2 � 1, the Mott cross section changes into the famous Rutherford cross
section.

dσ̄

dΩ = Z2α2

4 sin4 θ
2

1
m2v4 . (59)

• The cross section (58), similarly to (59), has a strong maximum as θ → 0. Actually it is singular at θ = 0
and the total cross section is infinite which reflects an infinite range of electromagnetic interactions.

• In reality the Coulomb potential of a nucleus is screened by electrons beyond the atomic radius and conse-
quently the differential cross section is not singular at θ = 0 and the total cross section is finite.


