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Spin and statistics
The scalar and electromagnetic fields have been quantized postulating commutation relations

of field operators and the spinor field has been quantized by means of the anticommutation
relations. One asks whether the scalar and electromagnetic fields can be quantized using the
anticommutation relations and the spinor field with the commutation relations. The answer,
which is given by the fundamental spin-statistics theorem, is negative. We are not going to
present a general formulation of the theorem, neither its formal proof. Instead we will discuss
two simplified arguments.

Hamiltonian
• As discussed in Lecture III, the Hamiltonian of the discretized scalar field is

Ĥ =
∑
i

ωi
2
(
âi â

†
i + â†i âi

)
. (1)

• Using the commutation relation [âi, â†j] = δij, one finds

Ĥ =
∑
i

ωi

(
â†i âi + 1

2

)
. (2)

• Using the anticommutation relation {âi, â†j} = δij, we get the result

Ĥ = 1
2
∑
i

ωi (3)

is infinite and makes no sense. So, we cannot quantize the scalar field with the anticommu-
tation relations.

• As discussed in Lecture IV, the Hamiltonian of the discretized spinor field is

Ĥ =
∑
±s

∑
i

Ei
[
â†i (s) âi(s)− b̂i(s) b̂

†
i (s)

]
. (4)

• Using the anticommutation relation {b̂i(s), b̂†j(s′)} = δss
′
δij, one finds

Ĥ =
∑
±s

∑
i

Ei
[
â†i (s) âi(s) + b̂†i (s) b̂i(s)

]
, (5)

which is positive definite and allows one to define the vacuum state.

• Using the commutation relation [b̂i(s), b̂†j(s′)] = δss
′
δij, one finds

Ĥ =
∑
±s

∑
i

Ei
[
â†i (s) âi(s)− b̂

†
i (s) b̂i(s)

]
, (6)

which is not positive definite and the vacuum state cannot be defined.

• We conclude that a structure of Hamiltonians strongly suggests that the scalar and elec-
tromagnetic fields must be quantized with the commutators while the spinor field with the
anticommutators. Consequently, as already discussed, the scalar and electromagnetic fields
describe bosons while the spinor field fermions.
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Microcausality
• Let Ô(x) be a position-dependent observable e.g. the operator of charge density. Then,

the measurements of Ô(x) and Ô(x′) must be independent from each other if the space-
time points x and x′ are causally disconnected that when the vector x − x′ is space-like.
Consequently, we expect that

[Ô(x), Ô(x′)] = 0, if (x− x′)2 < 0, (7)

where [. . . , . . . ] denotes a commutator. Eq. (7) is known as the condition of microcausality.

• Observables are usually quadratic functions of fields. So, we assume that

Ô(x) ≡ ϕ̂r(x) ϕ̂s(x), (8)

where ϕ̂r(x), ϕ̂s(x) are linear functions of field operators.

• One shows that the microcausality condition (7) is satisfied by the observable (8) when either
the fields ϕ̂r(x) and ϕ̂s(x′) commute with each other or anticummute for (x− x′)2 < 0 that
is when ϕ̂r(x) and ϕ̂s(x′) satisfy the relation

[ϕ̂r(x), ϕ̂s(x′)]± = 0, if (x− x′)2 < 0, (9)

where [. . . , . . . ]+ denotes the anticommutator and [. . . , . . . ]− the commutator.

Exercise: Prove that the condition (7) holds for both signs in Eq. (9).

• It appears that the spinor field satisfies the condition (9) only with the anticommutator
and the scalar field only with the commutator.

• A general analysis of the microcausality condition (7) is rather advanced. We will limit our
discussion to noninteracting fields when the problem is much simplified.

• We are going to show that for the scalar fields ϕ̂r(x) and ϕ̂s(x) the condition (7) is satisfied
when the fields ϕ̂r(x) and ϕ̂s(x) obey the commutation relations but not the anticommu-
tation ones.

• Actually, we are going to consider not the commutator or anticommutator of the fields φ̂(x)
and φ̂(x′) but the vacuum expectation value

∆±(x− x′) ≡ 〈0|[φ̂(x), φ̂(x′)]±|0〉. (10)

• Using the field φ̂(x) decomposed into the plane waves as

φ̂(x) =
∫ d3k

(2π)3√2ωk

[
e−ikxâ(k) + eikxâ†(k)

]
, (11)

and assuming that the operators â(k) and â†(k) obey the commutation or anticommutation
relations

[â(k), â†(k′)]± = (2π)3δ(3)(k− k′), (12)
[â(k), â(k′)]± = 0 = [â†(k), â†(k′)]±, (13)

the expression (10) equals

∆±(x− x′) =
∫ d3k

(2π)32ωk

[
e−ik(x−x′) ± eik(x−x′)

]
. (14)
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Exercise: Derive the formula (14).

• Since the expression is the Lorentz scalar we can without a loss of generality to consider
the equal-time points xµ = (t,x) i x′µ = (t,x′) as then the four-vector xµ−x′µ = (0,x−x′)
is evidently space-like that is (x− x′)2 = −(x− x′)2 < 0. Then,

∆±(x− x′) =
∫ d3k

(2π)32ωk

[
eik(x−x′) ± e−ik(x−x′)

]
. (15)

• The integrand of the integral (15) is even function of k for the sign plus and odd for the
sign minus. Consequently,

∆−(x− x′) = 0, for (x− x′)2 < 0, (16)

and
∆+(x− x′) 6= 0, for (x− x′)2 < 0, (17)

• We see that the scalar field must be quantized with the commutation not anticommutation
relations as otherwise the microcausality condition (7) is violated.

• We can repeat analogous analysis for the spinor filed finding that it must be quantized with
the commutation not anticommutation relations to satisfy the microcausality condition (7).

• The presented arguments can be extended to interacting fields with the same result.

• The fact that we have considered only the observable which is quadratic in the field does
not diminish a value of the result as the microcausality condition must be satisfied for any
observables.

Interacting fields
Till now we have considered noninteracting fields and now we take into account interactions

which are responsible for the extraordinary wealth of phenomena. We are going to discuss the
self-interacting scalar real field and the electromagnetic interaction. In both cases we assume that
the interaction is sufficiently weak. Then, one expects that the interacting fields are qualitatively
similar to the free ones and we can use some results of non-interacting fields.

Self-interacting scalar field
• As we remember, the Lagrangian density of the scalar real field is

L(x) = 1
2∂

µφ(x)∂µφ(x)− 1
2m

2φ2(x). (18)

• To go beyond the free field the Lagrangian density must include a term which is at least
cubic in the field. Then, the equation of motion is no longer linear in the field.

• If the term proportional to φ3 is included in (18), we get the theory which is sometimes
discussed but it is fundamentally flawed. The Hamiltonian which contains the term φ3 is
not positive definite.
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• So, the Lagrangian density (18) is supplemented by

LI(x) = − λ4!φ
4(x), (19)

where the dimensionless parameter λ  0 is called the coupling constant. The combinatorial
factor 4!, which is merely a matter of convention, simplifies some formulas. As we will see,
the negative sign in Eq. (19) guarantees that the Hamiltonian is positive definite.

• The equation of motion which takes into the interaction term (19) is

[∂µ∂µ +m2]φ(x) = − λ3!φ
3(x). (20)

• Because of its nonlinear character a general solution of Eq. (20) is not known. However, one
can solve the equation by means of perturbative methods provided λ� 1.

• Since the time derivative does not enter the interaction term (19), the canonical momentum
conjugate to φ is as in the free theory and it equals π = φ̇. Consequently, to get the
Hamiltonian density of the interacting theory one has to add the term

HI(x) = −LI(x) = λ

4!φ
4(x) (21)

to the free Hamiltonian.

• Quantization of the interacting scalar fields is performed in a way fully analogous to that
of the free fields assuming that the interaction is sufficiently weak.

Quantum electrodynamics
• As discussed in Lectures I and IV, there is a conserved current of the spinor field which

satisfies the Dirac equation. So, we identify the current multiplied by the elementary charge
e that is jµ ≡ eψγµψ with the electromagnetic current. Then, the Lagrangian density of
the spinor field interacting with the electromagnetic field is

L(x) = 1
4F

µν(x)Fνµ(x) + ψ(x)
(
i∂µγµ −m

)
ψ(x)− eψ(x)γµψ(x)Aµ(x), (22)

where the Lagrangians of free spinor and electromagnetic fields are included.

• The equations of motion become[
iγµ
(
∂µ + ieAµ(x)

)
−m

]
ψ(x) = 0, (23)

∂µF
µν(x) = eψ(x)γνψ(x). (24)

• Using the equation of the Dirac conjugate spinor

ψ(x)
[
iγµ
( ←
∂µ −ieAµ(x)

)
+m

]
= 0, (25)

one easily checks that the current jµ = eψγµψ satisfies the continuity equation ∂µj
µ = 0.

Exercise: Prove that the current jµ = eψγµψ satisfies the continuity equation.
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• The Lagrangian (22) is invariant under the gauge transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x), ψ(x)→ e−ieΛ(x)ψ(x). (26)

• It is easier to prove the invariance when the Lagrangian is written as

L(x) = 1
4F

µν(x)Fνµ(x) + ψ(x)
(
i
(
∂µ + ieAµ(x)

)
γµ −m

)
ψ(x). (27)

Exercise: Prove that the Lagrangian (27) is invariant under the gauge transformation (26).

• One observes that the Lagrangian of free spinor field is not invariant under the gauge
transformation. The interaction term makes the Lagrangian invariant. Therefore, the gauge
invariance dictates a structure of the interaction term.

• Since the field derivatives do not enter the interaction term of the Lagrangian, the conjugate
momenta remain as in the free theory.

• In the Hamiltonian density appears the extra term

HI(x) = −LI(x) = eψ(x)γµψ(x)Aµ(x). (28)

• Quantization of the interacting fields is performed in a way fully analogous to that of the
free fields assuming that the interaction is sufficiently weak. The electromagnetic interaction
is indeed weak, the fine structure constant α ≡ e2

4π = 1
137 .

Temporal evolution
We discuss here a temporal evolution of quantum fields.

Evolution operator

• The evolution operator Û(tf , ti) is the operator which transforms a state |ψ(ti)〉 known at
the moment of time ti to the state |ψ(tf )〉 at the time tf that is

|ψ(tf )〉 = Û(tf , ti)|ψ(ti)〉. (29)

• In the Schrödinger picture
i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉, (30)

and
|ψ(t)〉 = e−iĤ(t−t0)|ψ(t0)〉, (31)

if the Hamiltonian Ĥ is time independent. Then,

Û(tf , ti) = e−iĤ(tf−ti). (32)
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• The problem becomes more complicated if the Hamiltonian is time dependent as it happens
in field theory. One is tempted to write down the solution (31) as

|ψ(t)〉 ?= e
−i
∫ t

t0
dt′Ĥ(t′)|ψ(t0)〉 (33)

and
U(tf , ti) ?= e

−i
∫ tf

ti
dtĤ(t)

. (34)

• The formulas (33, 34) would be correct if the Hamiltonian were an ordinary function of
time, not the operator. The point is that, in general, Ĥ(t) does not commute with Ĥ(t′).

• To understand the problem let us consider the equation

Û(tf , ti) = Û(tf , tm) Û(tm, ti), (35)

with ti ¬ tm ¬ tf which must be obeyed by the evolution operator.

• We note that the exponential function of any operator Â is defined as

eÂ ≡
∞∑
n=0

1
n! Â

n. (36)

Consequently, the well-known formula

eÂeB̂ = eÂ+B̂, (37)

holds if the operators Â and B̂ commute with each other that is [Â, B̂] = 0. Then, we can
interchange the operators Â and B̂ to prove the formula.

• The operator (34) satisfies the relation (35) if [Ĥ(t1), Ĥ(t2)] = 0 but not in general.

• We modify the expression (34), considering small intervals of time. Then,

|ψ(t+ ∆t)〉 =
(
1− iĤ(t)∆t

)
|ψ(t)〉, (38)

and
Û(t+ ∆t, t) ≈ 1− iĤ(t)∆t ≈ e−iĤ(t)∆t. (39)

• To satisfy the relation (35), the evolution operator Û(tf , ti) can be written as

Û(tf , ti) ≈ Û(tf , tf −∆t) . . . Û(ti + 2∆t, ti + ∆t) Û(ti + ∆t, ti), (40)

where the time interval tf − ti > 0 is split into N small pieces ∆t = (tf − ti)/N .

• Substituting the approximate formula (39) into Eq. (40), we get

Û(tf , ti) ≈ e−iĤ(tf−∆t)∆t . . . e−iĤ(ti+∆t)∆t e−iĤ(ti)∆t. (41)

We observe that the operator of the latest time is on the left side, those of the earlier times
are more on the right and finally at the end there is the operator of the earliest time. In
other words, the operators are ordered chronologically.
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• The evolution operator is properly defined by means of the chronological exponent

Û(tf , ti) ≡ Te
−i
∫ tf

ti
dt Ĥ(t) ≡ 1−i

∫ tf

ti
dt Ĥ(t)+(−i)2

2!

∫ tf

ti
dt1

∫ tf

ti
dt2 TĤ(t1) Ĥ(t2)+. . . , (42)

where T denotes the operation of chronological ordering that is

TÂ(t1) B̂(t2) = Θ(t1 − t2) Â(t1) B̂(t2)±Θ(t2 − t1) B̂(t2) Â(t1). (43)

The sign plus is chosen when the operators Â and B̂ are bosonic and sign minus for the
fermionic operators. If the operators commute the chronologization is simply not needed as
the operators can be interchanged.

• The evolution operator (42) satisfies the relation (35).

• In the interaction picture the temporal evolution is driven by the interaction term of the
Hamiltonian and then

Ûint(tf , ti) = Te
−i
∫ tf

ti
dt ĤI

int(t) (44)

= 1− i
∫ tf

ti
dt ĤI

int(t) + (−i)2

2!

∫ tf

ti
dt1

∫ tf

ti
dt2 TĤ

I
int(t1) ĤI

int(t2) + . . .

Interaction picture
In Lecture II we have already discussed the Schrödinger and Heisenberg pictures of quantum

theory. To formulate a perturbative expansion of interacting fields the interaction picture appears
to be very useful.

• in the Schrödinger picture a state obeys the equation

i
∂

∂t
|ψ(t)〉S = Ĥ|ψ(t)〉S, (45)

which is solved by
|ψ(t)〉S = e−iĤt|ψ(0)〉S, (46)

provided the Hamiltonian is time independent. The matrix element of a time-independent
observable Ω̂S is

S〈φ(t)|Ω̂S|ψ(t)〉S = S〈φ(0)|eiĤtΩ̂Se
−iĤt|ψ(0)〉S. (47)

• The Heisenberg picture is obtained from the Schrödinger one by means of the unitary
transformation Û(t) ≡ e−iĤt. (Since Ĥ† we have Û−1(t) = Û †(t).) The states and observables
are defined as

|ψ〉H ≡ |ψ(0)〉S = eiĤt|ψ(t)〉S (48)

Ω̂H(t) ≡ eiĤtΩ̂S e
−iĤt. (49)

• The equation of motion of an observable Ω̂H is
d

dt
Ω̂H(t) = i[Ĥ, Ω̂H(t)], (50)

where [Â, B̂] ≡ ÂB̂ − B̂Â.
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• In the interaction picture the states and observables are defined as

|ψ(t)〉int ≡ eiĤ
0
St|ψ(t)〉S, (51)

Ω̂int(t) ≡ eiĤ
0
StΩ̂S e

−iĤ0
St, (52)

where Ĥ0
S is the free Hamiltonian in the Schrödinger picture that is the Hamiltonian is split

as ĤS = Ĥ0
S + ĤI

S with Ĥ0
S and ĤI

S being, respectively, the free and interaction part of the
Hamiltonian. We note that Ĥ0

S = Ĥ0
int.

• The equation of motion of Ω̂int(t) is

d

dt
Ω̂int(t) = i[Ĥ0

int, Ω̂int(t)]. (53)

• In the interaction picture the temporal evolution of states is driven by ĤI
int(t) that is the

states obey the equation
i
∂

∂t
|ψ(t)〉int = ĤI

int(t)|ψ(t)〉int. (54)

Exercise: Derive Eq. (53).


