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Feynman rules
It is not difficult to guess that the tedious method of calculating amplitudes and cross sections presented in

Lecture IX can be changed into an algorithmic procedure with a set of mnemonic rules. Indeed, in 1948 Richard
Feynman developed such useful rules, the key element of which are diagrams illustrating interaction processes.
The easy-to-grasp intuitive meaning of diagrams, combined with their precise mathematical content, made them
extremely popular. Physicists commonly think about collision processes by imagining Feynman diagrams, which
have also become a symbol of the entire quantum field theory. It is hard to imagine any course of the theory
where the Feynman diagrams are not included. So, simplified Feynman rules are presented and discussed in this
lecture.

Cross section

• The cross section of a collisional process 1 + 2→ 1′ + 2′ + 3′ + . . . n′ is written as

dσ = (2π)4δ(4)(p1 + p2 − p′1 − p′2 . . .− p′n)
|v1 − v2|

1
2E1

1
2E2
|A|2 d3p′1

(2π)32E′1
d3p′2

(2π)32E′2
. . .

d3p′n
(2π)32E′n

S, (1)

where A is the Lorentz invariant amplitude to be calculated according to the Feynman rules given below.

• v1 and v2 are the velocities of colliding initial-state particles and the velocities are assumed to be parallel
to each other v1 ‖ v2.

• S is the combinatorial factor which depends on the number of identical particles in the final state. If there
are k types of particles in the final state and there are ni identical particles of i-th type with i = 1, 2, . . . k,
the factor equals

S =
k∏
i=1

1
ni!

.

• All particles both in the final and initial states are assumed to be bosons in the formula (1). If a given
particle is a fermion the factor 1/2Ei or 1/2E′j is replaced by m/Ei or m/E′j , respectively. The different
treatment of fermions and bosons is related to the different dimensionality of bosonic φ(x), Aµ(x) and
fermionic ψ(x) fields.

• In collisional processes initial-state particles, which have spin, are usually not polarized and spin of final-
state particles is not measured. Then, the cross section (1) should summed over spin states of initial-state
particles and averaged over spin states of final-state particles.

• The summation over spin states of electrons, positrons and photons is performed using the formulas∑
±s

uα(p, s) ūβ(p, s) =
(γ · p+m

2m

)
αβ
, (2)

∑
±s

vα(p, s) v̄β(p, s) =
(γ · p−m

2m

)
αβ
, (3)

2∑
λ=1

εµ(k, λ) εν(k, λ) = −gµν . (4)

Amplitudes and diagrams

• One starts a computation of the amplitude A with drawing all possible diagrams of a given process.

• There are two types of lines in Feynman graphs: external lines which represent particles of initial or final
states and internal lines which correspond to virtual particles being carriers of interaction.

• Assuming that the time flows from the left side of a diagram to its right side, the external lines in the
left side of the diagram represent the initial-state particles and the external lines in the right side of the
diagram the final-state particles.
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Table 1: Feynman rules
graphic element mathematical counterpart

incoming boson line 1

outgoing boson line 1

boson propagator i∆(q) = i
q2−m2+i0+

incoming photon line εµ(k, λ)

outgoing photon line εµ(k, λ)

photon propagator iDµν(q) = −i gµν

q2+i0+

incoming electron line u(p, s)

outgoing electron line ū(p, s)

incoming positron line v̄(p, s)

outgoing positron line v(p, s)

electron propagator iS(q) = i
γµq

µ+m
q2−m2+i0+

scalar-boson self-interaction i λ4!

electromagnetic interaction −ieγµ

• The lines of charge particles have arrows. If the arrow’s orientation agrees with the direction of time flow,
the line represents a particle and if the arrow’s orientation is opposite to the time flow, the line represents
an antiparticle.

• The lines of truly neutral particles have no arrows as particles cannot be distinguished from antiparticles.

• Three, four or even higher number of lines can be joined in a vertex which represent an interaction. The
structure of vertices depends on dynamical theory under consideration.

• A set of Feynman rules, which is presented here, is limited to two theories: the self-interacting real scalar
bosons and the quantum electrodynamics (QED).

• Real scalar bosons are represented by dashed lines with no arrows.

• Photons are represented by wavy lines with no arrows.

• Electrons are represented by solid lines with arrows oriented with the time flow.

• Positrons are represented by solid lines with arrows oriented against the time flow.

• A complete amplitude is a sum of partial amplitudes represented by a set of diagrams.
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Figure 1: The lowest order diagrams of Bhabha scattering e−e+ → e−e+

• A partial amplitude corresponding to a given diagram is computed combining mathematical expressions
assigned to graphical elements as shown in Table 1.

• The spinor factors u, ū, v, v̄ and matrices γµ are ordered along the continuous fermion lines formed by
external and internal lines starting from the end indicated by the arrow. In other words, the spinor factors
are ordered in the direction opposite to the arrow of fermion line.

• A diagram which is obtained from a given one by exchange of two identical fermions in the final or initial
state gets an extra factor −1.

• A diagram which is obtained from a given one interchanging a fermion from the final (initial) state with a
antifermion in the initial (final) state gets an extra factor −1.

• Since every vertex includes a coupling constant, the number of vertices determines a power of the coupling
constant λ or e of the amplitude. Consequently, the diagrams of N vertices correspond to the N−th term
of the operator Ŝ expansion.

• As the coupling constants are small, the diagrams of the smallest number of vertices provide the leading
contribution to the amplitude a given collisional process. Such diagrams typically do not contain closed
lines and are called tree diagrams.

• The diagrams with higher number of vertices, which include the closed lines – loops, provide corrections.

• The loop diagrams are a serious problem of quantum field theory as they correspond to infinite mathematical
expressions and require the regularization and renormalization procedure.

• The Feynman rules given here are applicable only to tree diagrams.

Example – Bhabha scattering

• The Bhabha scattering is the elastic process e−e+ → e−e+. Its cross section was first derived by Homi
Bhabha in 1935.

• The two lowest order diagrams of the Bhabha scattering are shown in Fig. 1. The time flows from left
to right and consequently the initial state particles are in the left side of the diagrams and the final state
particles in the right side.

• The initial-state electron and positron have four-momenta p, p̄ and spins s, s̄, respectively. The four-
momenta and spins of final-state electron and positron are p′, p̄′ and s′, s̄′.

• The two amplitude corresponding to the two diagrams from Fig. 1 are

A1 =
[
ū(p′, s′)(−ie)γµu(p, s)

]
iDµν(p− p′)

[
v̄(p̄, s̄)(−ie)γνv(p̄′, s̄′)

]
, (5)

A2 = −
[
ū(p′, s′)(−ie)γµv(p̄′, s̄′)

]
iDµν(p+ p̄)

[
v̄(p̄, s̄)(−ie)γνu(p, s)

]
. (6)

• Using the explicit form of the photon propagator the sum of the amplitudes equals

A = ie2
[ ū(p′, s′)γµu(p, s) v̄(p̄, s̄)γµv(p̄′, s̄′)

(p− p′)2 − ū(p′, s′)γνv(p̄′, s̄′) v̄(p̄, s̄)γνu(p, s)
(p+ p̄)2

]
. (7)
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• The amplitude (7) substituted into Eq. (1) gives the cross section

dσ = (2π)4δ(4)(p+ p̄− p′ − p̄′)
|v− v̄|

m4

EĒE′Ē′
|A|2 d

3p′

(2π)3
d3p̄′

(2π)3 . (8)

• The cross section (8) should be summed over initial spin states and averaged over final state spins according
to the formula

dσ̄ = 1
22

∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

dσ. (9)

• The quantity, which is summed over spins, is |W |2 equal to

|W |2 = ū(p′, s′)γµu(p, s) v̄(p̄, s̄)γµv(p̄′, s̄′)
(p− p′)2

ū(p, s)γνu(p′, s′) v̄(p̄′, s̄′)γνv(p̄, s̄)
(p− p′)2 (10)

− ū(p′, s′)γµu(p, s) v̄(p̄, s̄)γµv(p̄′, s̄′)
(p− p′)2

v̄(p̄′, s̄′)γνu(p′, s′) ū(p, s)γνv(p̄, s̄)
(p+ p̄)2

− ū(p′, s′)γµv(p̄′, s̄′) v̄(p̄, s̄)γµu(p, s)
(p+ p̄)2

ū(p, s)γνu(p′, s′) v̄(p̄′, s̄′)γνv(p̄, s̄)
(p− p′)2

+ ū(p′, s′)γµv(p̄′, s̄′) v̄(p̄, s̄)γµu(p, s)
(p+ p̄)2

v̄(p̄′, s̄′)γνu(p′, s′) ū(p, s)γνv(p̄, s̄)
(p+ p̄)2 .

• There are four terms which contribute to the cross section

S1 ≡
∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

ū(p′, s′)γµu(p, s) v̄(p̄, s̄)γµv(p̄′, s̄′) ū(p, s)γνu(p′, s′) v̄(p̄′, s̄′)γνv(p̄, s̄), (11)

S2 ≡
∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

ū(p′, s′)γµu(p, s) v̄(p̄, s̄)γµv(p̄′, s̄′) v̄(p̄′, s̄′)γνu(p′, s′) ū(p, s)γνv(p̄, s̄), (12)

S3 ≡
∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

ū(p′, s′)γµv(p̄′, s̄′) v̄(p̄, s̄)γµu(p, s) ū(p, s)γνu(p′, s′) v̄(p̄′, s̄′)γνv(p̄, s̄), (13)

S4 ≡
∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

ū(p′, s′)γµv(p̄′, s̄′) v̄(p̄, s̄)γµu(p, s) v̄(p̄′, s̄′)γνu(p′, s′) ū(p, s)γνv(p̄, s̄), (14)

such that ∑
±s

∑
±s̄

∑
±s′

∑
±s̄′

|W |2 = S1

((p− p′)2)2 −
S2 + S3

(p− p′)2(p+ p̄)2 + S4

((p+ p̄)2)2 . (15)

• Using the relations (2, 3), one finds

16m4S1 = Tr[γµ(γ · p+m)γν(γ · p′ +m)] Tr[γµ(γ · p̄′ −m)γν(γ · p̄−m)], (16)

16m4S2 = Tr[γµ(γ · p+m)γν(γ · p̄−m)γµ(γ · p̄′ −m)γν(γ · p′ +m)], (17)

16m4S3 = Tr[γµ(γ · p̄′ −m)γν(γ · p̄−m)γµ(γ · p+m)γν(γ · p′ +m)], (18)

16m4S4 = Tr[γµ(γ · p̄′ −m)γν(γ · p′ +m)] Tr[γµ(γ · p+m)γν(γ · p̄−m)]. (19)

• Computation of traces S1, S2, S3, S4 is not difficult but very tedious. One needs the following identities

Tr[γµγν ] = 4gµν , (20)

Tr[γµγνγργσ] = 4gµσ gνρ − 4gµρ gνσ + 4gµν gρσ, (21)

γµγ
νγµ = −2γν , (22)

γµγ
νγργµ = 4gνρ. (23)
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• The results are

m4S1 = 2(p · p̄)(p′ · p̄′) + 2(p · p̄′)(p′ · p̄)− 2m2(p · p′)− 2m2(p̄′ · p̄) + 4m4, (24)

m4S2 = m4S3 = −2(p′ · p̄)(p · p̄′)−m2(p′ · p̄′)−m2(p′ · p̄) +m2(p̄ · p̄′) (25)

+ m2(p · p′)−m2(p · p̄′)−m2(p · p̄)− 2m4,

m4S4 = 2(p · p̄′)(p̄ · p′) + 2(p̄ · p̄′)(p · p′) + 2m2(p′ · p̄′) + 2m2(p · p̄) + 4m4. (26)

Exercise: Compute the traces (16, 17, 18, 19) which give the formulas (24, 25, 26).

• Using the Mandelstam variables

s ≡ (p+ p̄)2 = (p′ + p̄′)2 = 2(p · p̄) + 2m2 = 2(p′ · p̄′) + 2m2, (27)

t ≡ (p− p′)2 = (p̄′ − p̄)2 = −2(p · p′) + 2m2 = −2(p̄′ · p̄) + 2m2, (28)

u ≡ (p− p̄′)2 = (p′ − p̄)2 = −2(p · p̄′) + 2m2 = −2(p′ · p̄) + 2m2, (29)

which obey the condition
s+ t+ u = 4m2, (30)

the formulas (24, 25, 26) can be written as

m4S1 = s2 + u2

2 + 4m2(t−m2), (31)

m4S2 = m4S3 = −u
2

2 + 4m2u− 6m4, (32)

m4S4 = t2 + u2

2 + 4m2(s−m2). (33)

Exercise: Derive the formulas (31, 32, 33) starting with (24, 25, 26).

• The spin averaged Bhabha cross section (9) is

dσ̄

dt
= − e4

16π
m4

(p · p̄)2 −m4

[ S1

((p− p′)2)2 −
S2 + S3

(p− p′)2(p+ p̄)2 + S4

((p+ p̄)2)2

]
, (34)

which using the results (31, 32, 33) gives the final formula

dσ̄

dt
= − 2πα2

s(s− 4m2)

[s2 + u2 + 8m2(t−m2)
t2

+ 2u
2 − 8m2u+ 12m4

st
+ t2 + u2 + 8m2(s−m2)

s2

]
, (35)

where α ≡ e2

4π .

• The first and third terms of the formula (35) correspond the squares of the amplitudes (5, 6) while the
second term is the interference term.

• Due to the first term the Bhabha cross section has a strong maximum (is actually divergent) as t → 0,
similarly to the Mott and Rutherford cross sections.

• In the ultrarelativistic approximation when m = 0, the cross section (35) simplifies to

dσ̄

dt
= −2πα2

s2

[s2 + u2

t2
+ 2u2

st
+ t2 + u2

s2

]
. (36)

• In nonrelativistic approximation the cross section (35) becomes the Rutherford cross section. It happens
because the amplitude (5) dominates while the amplitude (6) and the interference term are suppressed.
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Figure 2: The lowest order diagrams of Compton scattering γe− → γe−

Exercise: Prove that the Bhabha cross section (35) becomes the Rutherford cross section in nonrelativistic
approximation. Take into account that in the center-of-mass frame the invariants s, t, u can be expressed as

s = 4m2 + 4p2, t = −4p2 sin2 θ

2 , u = −4p2 cos2 θ

2 . (37)

Example – Compton scattering

• The Compton scattering γe− → γe− was historically very important as it revealed a corpuscular nature of
photons.

• If the photon wavelength is much bigger that the inverse electron mass, we deal with the classical Thomson
scattering where photon wavelength remains unchanged.

• In 1923 Arthur Compton observed that the wavelength of photons of energy 20 keV scattered on electrons
becomes significantly longer. Specifically, in the electron rest frame the wavelength change is

∆λ = 2π
( 1
ω
− 1
ω′

)
= 2π
m

(1− cos θ), (38)

where ω and ω′ are initial and final photon energies and cos θ is the photon scattering angle.

• The wavelength shift is independent of the initial wavelength. For this reason it is visible for photons of a
sufficiently short wavelength, such that ∆λ is comparable to λ.

• In 1928 Oskar Klein and Yoshio Nishina gave a theoretical description of the phenomenon deriving the
scattering cross section known as the Klein-Nishina formula.

Exercise: Derive the formula (38).

• The energy, momentum and spin of initial- and final-state electron are E, p, s and E′, p′ and s′. The
same quantities which characterize the photons are ω, k, λ and ω′, k′, λ′.

• The two amplitudes corresponding to the two lowest order diagrams shown in Fig. 2 are

A1 = εµ(k′, λ′)
[
ū(p′, s′)(−ie)γµiS(q+)(−ie)γνu(p, s)

]
εν(k, λ), (39)

A2 = εµ(k′, λ′)
[
ū(p′, s′)(−ie)γνiS(q−)(−ie)γµu(p, s)

]
εν(k, λ), (40)

where q+ ≡ p+ k and q− ≡ p− k′.

• The sum of the amplitudes A1 and A2 is

A = −ie2εµ(k′, λ′)ū(p′, s′)
(
γµS(q+)γν + γνS(q−)γµ

)
u(p, s)εν(k, λ). (41)

• The cross section (1) equals

dσ = (2π)4δ(4)(k + p− k′ − p′)√
(k · p)2

m2

4ω′E′ |A|
2 d

3k′

(2π)3
d3p′

(2π)3 , (42)
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where we have taken into account that there is one boson and one fermion both in the initial and final
states. We have also taken into account that when vp||vk

Eω|vp − vk| =
√

(p · k)2. (43)

• The cross section (42) can be written as

dσ

dt
= − m2

4π(s−m2)2 |A|
2. (44)

• The amplitude square summed over the initial and final spin states is∑
s,s′,λ,λ′

|A|2 = e4
∑

s,s′,λ,λ′

εµ(k′, λ′)ū(p′, s′)
(
γµS(q+)γν + γνS(q−)γµ

)
u(p, s)εν(k, λ) (45)

× ερ(k, λ)ū(p, s)
(
γρS(q+)γσ + γσS(q−)γρ

)
u(p′, s′)εσ(k′, λ′).

• Using the relations (2, 4) and the explicit form of the electron propagator one finds∑
s,s′,λ,λ′

|A|2 = e4

4m2

{ 1
(q2

+ −m2)2 Tr
[
(γ · p′ +m)γµ(γ · q+ +m)γν(γ · p+m)γν(γ · q+ +m)γµ

]
(46)

+ 1
(q2

+ −m2)(q2
− −m2)Tr

[
(γ · p′ +m)γµ(γ · q+ +m)γν(γ · p+m)γµ(γ · q− +m)γν

]
+ 1

(q2
− −m2)(q2

+ −m2)Tr
[
(γ · p′ +m)γν(γ · q− +m)γµ(γ · p+m)γν(γ · q+ +m)γµ

]
+ 1

(q2
− −m2)2 Tr

[
(γ · p′ +m)γν(γ · q− +m)γµ(γ · p+m)γµ(γ · q− +m)γν

]}
.

• After long and tedious calculations one obtains∑
s,s′,λ,λ′

|A|2 = 2e4

m2

[−su+ 3sm2 + um2 +m4

(s−m2)2 + 2(s+ u)m2 + 4m4

(s−m2)(u−m2) + −su+ 3um2 + sm2 +m4

(u−m2)2

]
, (47)

where

s ≡ (p+ k)2 = (p′ + k′)2, (48)
t ≡ (p− p′)2 = (k′ − k)2, (49)
u ≡ (p− k′)2 = (p′ − k)2. (50)

• Substituting the result (47) into the cross section formula (44) we obtain the famous Klein-Nishina cross
section

dσ̄

dt
= − 2πα2

(s−m2)2

[−su+ 3sm2 + um2 +m4

(s−m2)2 + 2(s+ u)m2 + 4m4

(s−m2)(u−m2) + −su+ 3um2 + sm2 +m4

(u−m2)2

]
, (51)

where the factor 1/4 takes into account four initial spin states.

• In the limit of massless electrons the formula simplifies to

dσ̄

dt
= 2πα2

s2

[u
s

+ s

u

]
. (52)

• In contrast to the Rutherford, Mott and Bhabha scattering the total cross section of Compton scattering
is finite and it equals

σ̄ = 8π
3
α2

m2 . (53)
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Crossed processes
• Except the Bhabha and Compton scattering there are three other electromagnetic binary processes with

the cross sections of the order α2 which are: the Møller scattering e∓e∓ → e∓e∓, the two-photon anni-
hilation of electron and positron e−e+ → γγ and the creation of electron-positron pair γγ → e−e+. The
amplitude of theses processes can be obtained from the Bhabha or Compton scattering by means of the
crossing symmetry.

• Let us consider the reaction
1 + 2 + . . . n→ 1′ + 2′ + . . . n′ (54)

of the amplitude A(p1, p2, . . . pn|p1′ , p2′ , . . . pn′). The example of the crossed process is

1 + 2̄′ + . . . n→ 1′ + 2̄ + . . . n′, (55)

where the bar over 2 denotes the antiparticle, and its amplitude is Across(p1, p2′ , . . . pn|p1′ , p2, . . . pn′).

• According to the principle of crossing symmetry

Across(p1, p2′ , . . . pn|p1′ , p2, . . . pn′) = A(p1,−p2′ , . . . pn|p1′ ,−p2, . . . pn′). (56)

• Due to the sign change of four-momenta of interchanged particles, the amplitudes (56) should be understood
as analytically continued to negative energies. The continuation causes some difficulties. However, we are
going to apply the crossing symmetry to the amplitudes squares where the difficulties are absent.

Electron-positron annihilation

• The process e+e− → γγ is described by two diagrams shown in Fig. 2 if the time flows from the bottom to
the top.

• The electron and positron four-momenta are p = (E,p) and p̄ = (Ē, p̄) and those of photons are k1 =
(ω1,k1) and k2 = (ω2,k2).

• To convert the amplitude square of the Compton scattering into that of the e+e− annihilation we rearrange
the four-momenta as

k → −k1, k′ → k2, p→ p, p′ → −p̄,

which leads to the following changes of the Mandelstam invariants

s = (p+ k)2 → (p− k1)2 = t,

t = (p− p′)2 → (p+ p̄)2 = s,

u = (p− k′)2 → (p− k2)2 = u.

• The amplitude square summed over spins, which is obtained from Eq. (47), is∑
s,s′, λ,λ′

|A|2 = 2e4

m2

[−tu+ 3tm2 + um2 +m4

(t−m2)2 + 2(t+ u)m2 + 4m4

(t−m2)(u−m2) + −tu+ 3um2 + tm2 +m4

(u−m2)2

]
. (57)

• Using the formula

EĒ|v− v̄| =
√

(p · p̄)2 −m2 =
√
s− 4m2

2 , (58)

the annihilation cross section equals

dσ̄

dt
= − πα2

(s− 4m2)2

[−tu+ 3tm2 + um2 +m4

(t−m2)2 + 2(t+ u)m2 + 4m4

(t−m2)(u−m2) + −tu+ 3um2 + tm2 +m4

(u−m2)2

]
. (59)

where we have included the combinatorial factor 1/2 due to the two identical photons in the final state.

• When E, Ē � m the formula simplifies to

dσ̄

dt
= πα2

s2

[u
t

+ t

u

]
. (60)
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Figure 3: The lowest order diagrams of Møller scattering e−e− → e−e−.

Creation of electron-positron pair

• The cross section of the process γγ → e−e+ can be also easily found from the Compton cross section.

• We denote the photon four-momenta as k1 = (ω1,k1) i k2 = (ω2,k2), and those of electron and positron as
p = (E,p) and p̄ = (Ē, p̄).

• To go from the Compton scattering to the e+e− pair creation we change the four-momenta as

k → k1, k′ → −k2, p→ −p, p′ → p̄,

which leads to

s = (p+ k)2 → (p− k1)2 = t,

t = (p− p′)2 → (p+ p̄)2 = s,

u = (p− k′)2 → (p− k2)2 = u.

• Modifying the flux factor because of the vanishing photon masses, the cross section is

dσ̄

dt
= −2πα2

s

[−tu+ 3tm2 + um2 +m4

(t−m2)2 + 2(t+ u)m2 + 4m4

(t−m2)(u−m2) + −tu+ 3um2 + tm2 +m4

(u−m2)2

]
. (61)

Møller scattering

• The elastic process e−e− → e−e− or e+e+ → e+e+ is called the Møller scattering as it was theoretically
studied by Christian Møller.

• The two lowest order diagrams of the Møller scattering are shown in Fig. 3.

• The cross section of the Møller scattering can be obtained from that of Bhabha scattering (35), changing
the sign of positron four-momenta in the initial and final states. It leads to the replacement s ↔ u.
Consequently, the cross section equals

dσ̄

dt
= − πα2

s(s− 4m2)

[s2 + u2 + 8m2(t−m2)
t2

+ t2 + s2 + 8m2(u−m2)
u2 + 2s

2 − 8m2s+ 12m4

tu

]
, (62)

where the combinatorial factor 1/2 is included.

• In contrast to the Bhabha cross section, the Mott cross section is invariant under the replacement t ↔ u.
For this reason the Mott cross section has two maxima at t = 0 and u = 0 which correspond to the
scattering angles θ = 0 and θ = π. Since the cross section is infinite at t = 0 and u = 0, the total cross
section is ill defined.

• In the unltrarelativistic limit the cross section (62) simplifies to

dσ̄

dt
= −πα

2

s2

[s2 + u2

t2
+ t2 + s2

u2 + 2s2

tu

]
. (63)

The End


