Attempts to 'Relativize' Quantum Mechanics

Why Schrödinger equation is non-relativistic?

- The Schrödinger equation is

$$
\begin{equation*}
i \frac{\partial \psi(t, \mathbf{x})}{\partial t}=\hat{H} \psi(t, \mathbf{x}) \tag{1}
\end{equation*}
$$

where $\psi(t, \mathbf{x})$ is the single-particle wave function which depends on time t and position $\mathbf{x} \in \mathbb{R}^{3}$ and \hat{H} is the Hamilton operator given as

$$
\begin{equation*}
\hat{H} \equiv \frac{\hat{\mathbf{p}}^{2}}{2 m}+V(t, \mathbf{x}) \tag{2}
\end{equation*}
$$

m is the particle's mass, $\hat{\mathbf{p}}$ is the momentum operator and $V(t, \mathbf{x})$ is the particle's potential energy.

- The hats denote the operators which act in the space of states and there are used the natural units with $\hbar=c=1$.
- The kinetic energy operator is expressed through the momentum operator in the same way as the classical non-relativistic kinetic energy is expressed through the momentum. This is the first kinematic reason why the Schrödinger equation is non-relativistic.
- The second reason is that the potential energy, which enters the Hamiltonian, assumes an instantaneous interaction.

Klein-Gordon equation

- Keeping in mind that in quantum mechanics the classical energy and momentum are replaced by the operators

$$
\begin{equation*}
\mathbf{p} \rightarrow-i \nabla, \quad E \rightarrow i \frac{\partial}{\partial t} \tag{3}
\end{equation*}
$$

the free Schrödinger equation can be 'relativized' referring to the relativistic dispersion relation

$$
\begin{equation*}
E^{2}=\mathbf{p}^{2}+m^{2} \rightarrow-\frac{\partial^{2}}{\partial t^{2}}=-\nabla^{2}+m^{2} \tag{4}
\end{equation*}
$$

Then, we get the Klein-Gordon equation

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial t^{2}} \phi(x)=\left(-\nabla^{2}+m^{2}\right) \phi(x) \tag{5}
\end{equation*}
$$

which is usually written as

$$
\begin{equation*}
\left(\square+m^{2}\right) \phi(x)=0 \tag{6}
\end{equation*}
$$

where x is the position four-vector $x^{\mu} \equiv(t, \mathbf{x})$ with $\mu=0,1,2,3, \square \equiv \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$ and $\phi(x)$ is supposed to be the relativistic wave function.

- Let us repeat the reasoning using the four-vectors

$$
\begin{equation*}
p^{\mu}=\left(E, p_{x}, p_{y}, p_{z}\right) \rightarrow \hat{p}^{\mu}=i \partial^{\mu}=i\left(\frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right) \tag{7}
\end{equation*}
$$

One should remember that

$$
\begin{equation*}
p_{\mu}=\left(E,-p_{x},-p_{y},-p_{z}\right) \rightarrow \hat{p}_{\mu}=i \partial_{\mu}=i\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \tag{8}
\end{equation*}
$$

We write down the relation (4) as

$$
\begin{equation*}
p_{\mu} p^{\mu}=m^{2} \rightarrow-\partial_{\mu} \partial^{\mu}=m^{2} \tag{9}
\end{equation*}
$$

and obviously we again get the Klein-Gordon equation (6) as $\partial_{\mu} \partial^{\mu}=\square$.

- In relativistic classical mechanics the interaction of a particle of charge e with electromagnetic field is included replacing four-momentum p^{μ} by $p^{\mu}-e A^{\mu}(x)$ with $A^{\mu}(x)$ being the electromagnetic four-potential. Proceeding analogously, the Klein-Gordon becomes

$$
\begin{equation*}
\left(\left(\partial^{\mu}+i e A^{\mu}(x)\right)\left(\partial_{\mu}+i e A_{\mu}(x)\right)+m^{2}\right) \phi(x)=0 \tag{10}
\end{equation*}
$$

Conserved current

- The norm of wave function, which obeys the Schrödinger equation (1), is time independent that is

$$
\begin{equation*}
\frac{d}{d t} \int d^{3} x|\psi(t, \mathbf{x})|^{2}=0 \tag{11}
\end{equation*}
$$

provided the Hamiltonian (2) is hermitian which requires $V(t, \mathbf{x}) \in \mathbb{R}$.

- The differential form of the condition (11) is

$$
\begin{equation*}
\frac{\partial}{\partial t} P(t, \mathbf{x})+\nabla \cdot \mathbf{S}(t, \mathbf{x})=0 \tag{12}
\end{equation*}
$$

where $P(t, \mathbf{x})$ and $\mathbf{S}(t, \mathbf{x})$ are the probability density and current

$$
\begin{align*}
P(t, \mathbf{x}) & \equiv|\psi(t, \mathbf{x})|^{2} \tag{13}\\
\mathbf{S}(t, \mathbf{x}) & \equiv \frac{i}{2 m}\left(\psi(t, \mathbf{x}) \nabla \psi^{*}(t, \mathbf{x})-(\nabla \psi(t, \mathbf{x})) \psi^{*}(t, \mathbf{x})\right) \tag{14}
\end{align*}
$$

- One finds the equation (12) in the following way. We write down the pair of Schrödinger equations

$$
\begin{aligned}
i \frac{\partial \psi(t, \mathbf{x})}{\partial t} & =\left[-\frac{\nabla^{2}}{2 m}+V(t, \mathbf{x})\right] \psi(t, \mathbf{x}) \\
-i \frac{\partial \psi^{*}(t, \mathbf{x})}{\partial t} & =\left[-\frac{\nabla^{2}}{2 m}+V(t, \mathbf{x})\right] \psi^{*}(t, \mathbf{x})
\end{aligned}
$$

where $V(t, \mathbf{x}) \in \mathbb{R}$. Multiplying the first equation by $-i \psi^{*}(t, \mathbf{x})$, the second one by $i \psi(t, \mathbf{x})$ and summing up the equations, we get

$$
\begin{equation*}
\psi^{*}(t, \mathbf{x}) \frac{\partial \psi(t, \mathbf{x})}{\partial t}+\psi(t, \mathbf{x}) \frac{\partial \psi^{*}(t, \mathbf{x})}{\partial t}=i \psi^{*}(t, \mathbf{x}) \frac{\nabla^{2}}{2 m} \psi(t, \mathbf{x})-i \psi(t, \mathbf{x}) \frac{\nabla^{2}}{2 m} \psi^{*}(t, \mathbf{x}) \tag{15}
\end{equation*}
$$

which is manipulated to

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\psi^{*}(t, \mathbf{x}) \psi(t, \mathbf{x})\right)-\nabla\left(i \psi^{*}(t, \mathbf{x}) \frac{\nabla}{2 m} \psi(t, \mathbf{x})-i \psi(t, \mathbf{x}) \frac{\nabla}{2 m} \psi^{*}(t, \mathbf{x})\right)=0 \tag{16}
\end{equation*}
$$

and finally gives Eq. (12).

- Let us proceed analogously with the Klein-Gordon equation.

$$
\begin{align*}
\left(\left(\partial^{\mu}+i e A^{\mu}(x)\right)\left(\partial_{\mu}+i e A_{\mu}(x)\right)+m^{2}\right) \phi(x) & =0 \tag{17}\\
\left(\left(\partial^{\mu}-i e A^{\mu}(x)\right)\left(\partial_{\mu}-i e A_{\mu}(x)\right)+m^{2}\right) \phi^{*}(x) & =0 \tag{18}
\end{align*}
$$

where $A^{\mu}(x) \in \mathbb{R}$ and $m \in \mathbb{R}$. Multiplying the first equation by $\phi^{*}(x)$, the second one by $-\phi(x)$ and summing up the equations, we get
$\phi^{*}(x)\left(\partial^{\mu}+i e A^{\mu}(x)\right)\left(\partial_{\mu}+i e A_{\mu}(x)\right) \phi(x)-\phi(x)\left(\partial^{\mu}-i e A^{\mu}(x)\right)\left(\partial_{\mu}-i e A_{\mu}(x)\right) \phi^{*}(x)=0$, which gives

$$
\partial_{\mu}\left[\phi^{*}(x)\left(\partial^{\mu}+i e A^{\mu}(x)\right) \phi(x)-\left(\left(\partial^{\mu}-i e A^{\mu}(x)\right) \phi^{*}(x)\right) \phi(x)\right]=0
$$

The four-current thus reads

$$
\begin{equation*}
j^{\mu}(x) \equiv i \phi^{*}(x)\left(\partial^{\mu}+i e A^{\mu}(x)\right) \phi(x)-i\left(\left(\partial^{\mu}-i e A^{\mu}(x)\right) \phi^{*}(x)\right) \phi(x) \tag{19}
\end{equation*}
$$

Because of the extra i the current $j^{\mu}=\left(j^{0}, \mathbf{j}\right)$ is real. The current obeys the continuity equation

$$
\begin{equation*}
\partial_{\mu} j^{\mu}(x)=0 \tag{20}
\end{equation*}
$$

but j^{0} can be both positive and negative. So, j^{0} cannot be interpreted as a probability density.

- j^{μ} can be interpreted as an electric four-current.

Solutions of Klein-Gordon equation

- We are going to solve the Klein-Gordon equation using the Fourier transformation

$$
\begin{equation*}
\phi(p)=\int d^{4} x e^{i p x} \phi(x) \tag{21}
\end{equation*}
$$

and its inverse

$$
\begin{equation*}
\phi(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p x} \phi(p) . \tag{22}
\end{equation*}
$$

- Substituting the field $\phi(x)$ in the form (22) to Eq. (6), one obtains

$$
\begin{equation*}
\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p x}\left[-p^{2}+m^{2}\right] \phi(p)=0 \tag{23}
\end{equation*}
$$

Since the equality holds for any x, we get the equation

$$
\begin{equation*}
\left[-p^{2}+m^{2}\right] \phi(p)=0 \tag{24}
\end{equation*}
$$

which is solved by

$$
\begin{equation*}
\phi(p)=\delta\left(p^{2}-m^{2}\right) f(p) \tag{25}
\end{equation*}
$$

where $f(p)$ is an arbitrary function of p.

- Using the identity

$$
\begin{equation*}
\delta\left(p^{2}-m^{2}\right)=\frac{1}{2 \omega_{\mathbf{p}}}\left[\delta\left(p_{0}-\omega_{\mathbf{p}}\right)+\delta\left(p_{0}+\omega_{\mathbf{p}}\right)\right] \tag{26}
\end{equation*}
$$

where $\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}}$, the solution (25) can be written as

$$
\begin{equation*}
\phi(p)=\frac{1}{2 \omega_{\mathbf{p}}}\left[\delta\left(p_{0}-\omega_{\mathbf{p}}\right) f_{+}(\mathbf{p})+\delta\left(p_{0}+\omega_{\mathbf{p}}\right) f_{-}(-\mathbf{p})\right] \tag{27}
\end{equation*}
$$

where $f_{ \pm}(\pm \mathbf{p}) \equiv f\left(\pm \omega_{\mathbf{p}}, \mathbf{p}\right)$.
Exercise: Prove the formula (26).

- Computing the inverse Fourier transform of the solution (27), we get the desired solution

$$
\begin{align*}
\phi(x) & =\int \frac{d^{3} p}{(2 \pi)^{4} 2 \omega_{\mathbf{p}}}\left[e^{-i\left(\omega_{\mathbf{p}} t-\mathbf{p} \cdot \mathbf{x}\right)} f_{+}(\mathbf{p})+e^{-i\left(-\omega_{\mathbf{p}} t-\mathbf{p} \cdot \mathbf{x}\right)} f_{-}(-\mathbf{p})\right] \\
& =\int \frac{d^{3} p}{(2 \pi)^{4} 2 \omega_{\mathbf{p}}}\left[e^{-i p x} f_{+}(\mathbf{p})+e^{i p x} f_{-}(\mathbf{p})\right] \tag{28}
\end{align*}
$$

where the trivial integration over p_{0} has been taken and \mathbf{p} has been replaced by $-\mathbf{p}$ in the second term.

- We note that the four-momentum $p^{\mu}=\left(\omega_{\mathbf{p}}, \mathbf{p}\right)$, which enters Eq. (28), obeys the mass-shell constraint $p^{2}=m^{2}$.
- The analogous solution of the Schrödinger equation is

$$
\begin{equation*}
\psi(t, \mathbf{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{-i\left(E_{\mathbf{p}} t-\mathbf{p} \cdot \mathbf{x}\right)} f(\mathbf{p}) \tag{29}
\end{equation*}
$$

where $E_{\mathbf{p}}=\frac{\mathbf{p}^{2}}{2 m}$.

- Comparing the solutions (28) and (29), we see that there are negative energy solutions of the Klein-Gordon equation. Consequently, the energy spectrum is not bounded below.
- The negative energy solutions correspond to antiparticles.

Dirac equation

- One suspects that the negative energy solutions of the Klein-Gordon equation occur because the Hamiltonian is squared in the equation. The Dirac equation is an attempt to resolve the problem constructing the equation linear in \hat{H}, as the Schrödinger equation

$$
\begin{equation*}
i \frac{\partial \psi(x)}{\partial t}=\hat{H} \psi(x) \tag{30}
\end{equation*}
$$

with the Hamiltonian \hat{H} given as

$$
\begin{equation*}
\hat{H}=\boldsymbol{\alpha} \cdot \hat{\mathbf{p}}+\beta m=\alpha^{i} \hat{p}^{i}+\beta m \tag{31}
\end{equation*}
$$

where the indices $i, j=1,2,3$ label components of three-vectors and $\alpha^{1}, \alpha^{2}, \alpha^{3}$ and β are matrices which are hermitian to guarantee that \hat{H} is hermitian.

- Since α^{i} and β are matrices, $\psi(x)$ is a multi-component function.
- To satisfy the relativistic dispersion relation we demand that

$$
\begin{equation*}
\hat{H}^{2}=(\boldsymbol{\alpha} \cdot \hat{\mathbf{p}}+\beta m)^{2}=\hat{\mathbf{p}}^{2}+m^{2} \tag{32}
\end{equation*}
$$

which gives

$$
\begin{align*}
\alpha^{i} \alpha^{j}+\alpha^{j} \alpha^{i} & =2 \delta^{i j} \tag{33}\\
\alpha^{i} \beta+\beta \alpha^{i} & =0 \tag{34}\\
\beta^{2} & =1 \tag{35}
\end{align*}
$$

- According to the first equation α^{i} and β satisfy $\left(\alpha^{i}\right)^{2}=\mathbb{1}$. Consequently the eigenvalues of the matrices α^{i} and β are ± 1. Further on, due to the conditions (33, 34, 35), the matrices α^{i} and β are traceless.

Exercise: Prove that $\operatorname{Tr} \beta=0=\operatorname{Tr} \alpha^{i}$ using Eqs. (33, 34, 35).

- Knowing that the matrices α^{i} and β are hermitian, traceless and their eigenvalues are ± 1, we see that the matrix dimension is even number with ± 1 on the diagonal.
- The matrices α^{i} and β cannot be 2×2 as there are only three such matrices which are hermitian, traceless and their eigenvalues are ± 1.
- The minimal dimension of α^{i} and β is 4×4 and they can be chosen in e.g. the so-called Pauli-Dirac representation as

$$
\alpha^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \tag{36}\\
\sigma^{i} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

where σ^{i} the 2×2 Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \tag{37}\\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Since the matrices α^{i} i β are 4×4, the function $\psi(x)$ is the four-component object known as the bispinor or Dirac spinor

$$
\psi(x)=\left(\begin{array}{c}
\psi_{1}(x) \tag{38}\\
\psi_{2}(x) \\
\psi_{3}(x) \\
\psi_{4}(x)
\end{array}\right)
$$

Conserved current

- The Dirac equations of $\psi(x)$ and $\psi^{\dagger}(x)$ are

$$
\begin{align*}
i \frac{\partial \psi(x)}{\partial t} & =(-i \boldsymbol{\alpha} \cdot \nabla+\beta m) \psi(x) \tag{39}\\
-i \frac{\partial \psi^{\dagger}(x)}{\partial t} & =\psi^{\dagger}(x)(i \boldsymbol{\alpha} \cdot \overleftarrow{\nabla}+\beta m) \tag{40}
\end{align*}
$$

- Multiplying the first equation by $-i \psi^{\dagger}(x)$ from the left, the second one by $i \psi(x)$ from the right and summing up the equations we get the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\psi^{\dagger}(x) \psi(x)\right)+\nabla\left(\psi^{\dagger}(x) \boldsymbol{\alpha} \psi(x)\right)=0 \tag{41}
\end{equation*}
$$

- The quantity $\psi^{\dagger}(x) \psi(x)=\psi_{\alpha}^{*}(x) \psi_{\alpha}(x)$ with $\alpha=1,2,3,4$ being the spinor index is nonnegative. So, it seems the probabilistic interpretation is possible. However, it is not the case.

Solutions of Dirac equation

- For simplicity we consider the Dirac equation of vanishing momentum which is

$$
\begin{equation*}
\left[i \frac{\partial}{\partial t}-\beta m\right] \psi(x)=0 \tag{42}
\end{equation*}
$$

In the Pauli-Dirac representation (36) the equation (42) is

$$
\begin{align*}
& {\left[i \frac{\partial}{\partial t}-m\right] \psi_{\alpha}(x)=0 \quad \text { for } \quad \alpha=1,2} \tag{43}\\
& {\left[i \frac{\partial}{\partial t}+m\right] \psi_{\alpha}(x)=0 \quad \text { for } \quad \alpha=3,4} \tag{44}
\end{align*}
$$

- The solutions are

$$
\begin{equation*}
\psi_{\alpha}(x)=e^{\mp i m t} w_{\alpha} \tag{45}
\end{equation*}
$$

where the sign minus is for $\alpha=1,2$ and plus for $\alpha=3,4 ; w_{\alpha}$ is any bispinor independent of x.

- The solutions with $\alpha=1,2$ are of positive energy and those with $\alpha=3,4$ of negative energy. Therefore, the Dirac equation which is linear in the Hamiltonian still has negative energy solutions.
- Four linearly independent solutions of Eq. (42) can be written as

$$
\begin{array}{cc}
\psi^{1}(x)=e^{-i m t}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), & \psi^{2}(x)=e^{-i m t}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\psi^{3}(x)=e^{i m t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), & \psi^{4}(x)=e^{i m t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \tag{47}
\end{array}
$$

- The Diraca spinor $\psi(x)$ describes particles and antiparticles of spin $1 / 2$. The solutions $\psi^{1}(x), \psi^{2}(x)$ correspond to particles with two spin orientations and the solutions $\psi^{3}(x)$, $\psi^{4}(x)$ to antiparticles.
- Difficulties with probabilistic interpretation reflect that fact that in relativistic theory the particle number is not conserved as the particle-antiparticle pairs can be generated from vacuum.
- A relativistic quantum theory needs to be formulated differently then the non-relativistic quantum mechanics.

