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Kinetic theory of gases I

The Gibbs statistical mechanics is applicable to systems in thermodynamical equilibrium. In
the subsequent lectures I will presented the second pillar of statistical mechanics – kinetic theory
which can be applied to both equilibrium and non-equilibrium systems. The kinetic theory also
aspires to explain unidirectional temporal evolution towards thermodynamical equilibrium.

The kinetic theory initiated by James Clerk Maxwell (1831-1879) and further developed
by Ludwig Boltzmann (1844-1906) is a rich theory of various applications. My presentation,
however, will be limited to dilute gases where atomic sizes are much smaller than inter-particle
distances. Consequently gas particles are mostly non-interacting and there are interactions
(collisions) of no more than two particles.

Distribution function

• The main object of kinetic theory is the distribution function f(t, r,p) where r and p is
the particle position and momentum and t denotes the time. The quantity

f(t, r,p)
d3r d3p

(2π)3
(1)

tell us how many particles there are in the phase-space volume d3r d3p
(2π)3

around (r,p) at time t.

The volume is infinitesimally small from a macroscopic point of view but it is microscopically

so big that there are many gas particles in the volume. We note that there are 1019 atoms

in cm3 of the air in normal conditions.

• The integral ∫
d3r d3p

(2π)3
f(t, r,p) = N (2)

gives the total number of gas particles.

• The time-dependent particle density and flux are∫
d3p

(2π)3
f(t, r,p) = ρ(t, r), (3)∫

d3p

(2π)3
p

m
f(t, r,p) = j(t, r), (4)

where m and v ≡ p
m

are the particle mass and velocity, respectively.

• Since the gas is assumed to be dilute the energy of gas particles is mostly kinetic εp = p2

2m
and the gas energy density equals∫

d3p

(2π)3
εpf(t, r,p) = ε(t, r). (5)

• If the gas is in the external field of potential forces, e.g. gravitational, and the particle
potential energy is v(r), the gas energy density is∫

d3p

(2π)3
( p2

2m
+ v(r)

)
f(t, r,p) = ε(t, r). (6)
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Figure 1: The pressure exerted on the surface A results from the particle collisions with the surface.

Gas in thermal equilibrium

Predictions of kinetic theory obviously agree with those of Gibbs mechanics in case of ther-
modynamical equilibrium. Nevertheless I will derive two simple already known formulas to show
how the kinetic theory works.

• Keeping in mind the partition function of ideal gas, one guess that the equilibrium distri-

bution function is proportional to e
− εp
kBT . Choosing the normalization constant to satisfy

Eq. (2), we get

f eq(p) =
( 2π

mkBT

)3/2N
V
e
− p2

2mkBT , (7)

which is known as the Maxwell-Boltzmann distribution. Further on we will derive the
distribution function (7) within the kinetic theory with no reference to the Gibbs statistical
mechanics.

• Substituting the function (7) into Eq. (5), one finds the gas energy density as

ε =
3

2
kBT

N

V
. (8)

• Let us now compute the pressure exerted on the wall of the surface A of the gas container.
The pressure results from the collisions of gas particles which are assumed to be elastic. If
the particle’s momentum before the collision is p = (px, py, pz) and the surface A is in the
yz−plane, the momentum after the collision is p′ = (−px, py, pz). Therefore, the particle’s
momentum transferred to the wall is 2px.

• One observes that particles with the velocity vx, which hit the wall in the time interval dt,
are, as shown in Fig. 1, in the volume dV = Avxdt. Keeping in mind that the pressure p is
a force perpendicular to the surface per unit area and that a force is a momentum transfer
in unit time, one finds

p =

∫ ∞
0

dpx
2π

∫ ∞
−∞

dpy
2π

∫ ∞
−∞

dpz
2π

Avxdt︸ ︷︷ ︸
dV

2px
Adt

f eq(p) (9)

= 2
( 2π

mkBT

)3/2N
V

∫ ∞
0

dpx
2π

p2x
m
e
− p2x

2mkBT

(∫ ∞
−∞

dpy
2π

e
− p22

2mkBT

)2
= kBT

N

V
,

where we have used the integral ∫ ∞
0

dx x2e−x
2

=

√
π

4
. (10)

The integration over px in the expression (9) is only over positive momenta as we take into
account only those particles which are approaching the wall.
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Collisionless kinetic equation

We are going to derive the equation obeyed by the distribution function which is known
as kinetic equation, transport equation or Boltzmann equation. Here we will ignore the inter-
particle collisions but an external potential force will be taken into account.

• At the moment of time t the distribution function is f(t, r,p). After a short interval of time
dt the function becomes f(t+ dt, r + dr,p + dp), which is expanded in the Taylor series as

f(t+dt, r+dr,p+dp) = f(t, r,p)+
∂f(t, r,p)

∂t
dt+∇f(t, r,p) ·dr+∇pf(t, r,p) ·dp, (11)

where ∇p is the momentum gradient.

• Since the inter-particle collisions are ignored but the external potential force F is taken into
account we have

dr = vdt =
p

m
dt, dp = Fdt, (12)

which substituted into Eq. (11) give

f(t+ dt, r + dr,p + dp) = f(t, r,p) +
( ∂
∂t

+ v · ∇+ F(r) · ∇p

)
f(t, r,p) dt. (13)

• As the particles, which at t have been at (r,p), have moved to (r+ dr,p+ dp) after dt, the
phase space density remains unchanged that is

f(t, r,p) = f(t+ dt, r + dr,p + dp). (14)

• Using Eq. (11) provides the collisionless kinetic equation or Vlasov equation( ∂
∂t

+ v · ∇+ F(r) · ∇p

)
f(t, r,p) = 0. (15)

• If the external force F absent, a general solution of the collisionless kinetic equation is

f(t, r,p) = h(r− vt,p), (16)

where h(r,p) is an arbitrary function.

• To check that the function (16) solves Eq. (15) one introduce the variable s ≡ r − vt and
computes( ∂

∂t
+ v · ∇

)
f(t, r,p) =

(∂si
∂t

+ vj
∂si

∂rj

)∂h(s,p)

∂si
=
(
− vi + vi

)∂h(s,p)

∂si
= 0. (17)

Gas expansion into vacuum

Let us consider a gas in the thermal equilibrium kept in a container. At a moment of time t0
the walls of the container are removed and the gas expands into vacuum. How does the process
proceed?

• To simplify the problem instead of the container there is a Gaussian distribution of gas
density. The initial distribution function is

f(t = 0, r,p) =
N

(
√

2πL0)3

( 2π

mkBT

)3/2
e
− r2

2L2
0 e
− p2

2mkBT =
N

(mkBTL2
0)

3/2
e
− r2

2L2
0 e
− p2

2mkBT , (18)

where L0 is the container size.
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• Knowing the general solution (16), the distribution function for t ≥ 0 is written as

f(t, r,p) =
N

(mkBTL2
0)

3/2
e
− (r−vt)2

2L2
0 e

− p2

2mkBT . (19)

• Taking the position integral of the function (19) we find the momentum distribution∫
d3r f(t, r,p) =

( 2π

mkBT

)3/2
e
− p2

2mkBT , (20)

which, as expected, does not change in time.

• Taking the integral over momentum we find the density distribution

ρ(t, r) =
( m

2π(mL2
0 + kBT t2)

)3/2
N exp

(
− m r2

2(mL2
0 + kBT t2)

)
, (21)

which evolves with time.

• One checks that the density (21) integrated over r gives N , as it should.

• Using the formula (21) one shows how the gas expands. The dispersion of the region, where
the gas particles are present, is

L(t) ≡
√
〈r2〉 − 〈r〉2 =

√
L2
0 +

kBT

m
t2 =

√
L2
0 +

1

3
v2T t

2, (22)

where we have introduced the quantity vT =
√

3kBT
m

which is the average velocity or thermal

velocity defined through the equality

1

2
mv2T =

3

2
kBT. (23)

As seen, the higher gas temperature the faster expansion.


