Gibbs classical statistical mechanics III

Grand canonical ensemble

- A grand canonical ensemble is relevant for systems which exchange not only energy with its environment but also particles. The ensemble is also useful for computational reasons.
- The microstate density of grand canonical ensemble is derived considering a small subsystem (labeled as 1) of the isolated system such that

$$
\begin{equation*}
N=N_{1}+N_{2}, \quad \mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{1} \ll N_{2}, \quad \mathcal{H}_{1} \ll \mathcal{H}_{2} \tag{2}
\end{equation*}
$$

One expects that

$$
\begin{equation*}
\rho\left(\mathbf{r}_{1}, \mathbf{p}_{1}, N_{1}\right) \sim \Gamma_{N-N_{1}}\left(U-U_{1}\right) \tag{3}
\end{equation*}
$$

Using

$$
\begin{equation*}
S(U, V, N) \equiv k_{B} \ln \Gamma_{N}(U, V) \tag{4}
\end{equation*}
$$

the relation (3) becomes

$$
\begin{equation*}
\rho\left(\mathbf{r}_{1}, \mathbf{p}_{1}, N_{1}\right) \sim \exp \left[\frac{1}{k_{B}} S\left(U-U_{1}, V_{2}, N-N_{1}\right)\right] \tag{5}
\end{equation*}
$$

Since $U \gg U_{1}$ and $N \gg N_{1}$, we expand $S\left(U-U_{1}, V_{2}, N-N_{1}\right)$ around U as

$$
\begin{equation*}
S\left(U-U_{1}, V_{2}, N-N_{1}\right)=S\left(U, V_{2}, N\right)-\frac{\partial S\left(U, V_{2}, N\right)}{\partial U} U_{1}-\frac{\partial S\left(U, V_{2}, N\right)}{\partial N} N_{1} \tag{6}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N} \tag{7}
\end{equation*}
$$

and the definition of the chemical potential μ

$$
\begin{equation*}
\frac{\mu}{T} \equiv-\left(\frac{\partial S}{\partial N}\right)_{U, V} \tag{8}
\end{equation*}
$$

the formula (5) is written as

$$
\begin{equation*}
\rho\left(\mathbf{r}_{1}, \mathbf{p}_{1}, N_{1}\right) \sim \exp \left[\frac{1}{k_{B}} S(U, V, N)\right] \exp \left[-\frac{U_{1}-\mu N_{1}}{k_{B} T}\right] \tag{9}
\end{equation*}
$$

The first term can be ignored and the density of microscopic states in the grand canonical ensemble is chosen as

$$
\begin{equation*}
\rho(\mathbf{r}, \mathbf{p}, N)=\exp \left[-\frac{\mathcal{H}(\mathbf{r}, \mathbf{p}, N)-\mu N}{k_{B} T}\right] \tag{10}
\end{equation*}
$$

The system 2 is treated here as a thermostat of the temperature T and a reservoir of particles.

Grand partition function

- The grand partition function is defined as

$$
\begin{equation*}
\Xi(T, V, \mu) \equiv \sum_{N=0}^{\infty} \frac{1}{N!} \int d^{3 N} r \frac{d^{3 N} p}{(2 \pi \hbar)^{3}} \exp \left[-\frac{\mathcal{H}(\mathbf{r}, \mathbf{p}, N)-\mu N}{k_{B} T}\right] \tag{11}
\end{equation*}
$$

where $d^{3 N} r \equiv d^{3} r_{1} d^{3} r_{2} \ldots d^{3} r_{N}, \frac{d^{3 N} p}{(2 \pi \hbar)^{3 N}} \equiv \frac{d^{3} p_{1}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{2}}{(2 \pi \hbar)^{3}} \ldots \frac{d^{3} p_{N}}{(2 \pi \hbar)^{3}}$.

- The equivalent definition is

$$
\begin{equation*}
\Xi(T, V, \mu)=\sum_{N=0}^{\infty} z^{N} Q_{N}(T, V) \tag{12}
\end{equation*}
$$

where $z \equiv e^{\beta \mu}$ is called the fugacity $\left(\beta \equiv \frac{1}{k_{B} T}\right)$.

Relation with thermodynamics

- The first step to establish a relation with thermodynamics is to define the internal energy as the ensemble average of the Hamilton function

$$
\begin{align*}
& U(T, V, \mu) \equiv\langle\mathcal{H}\rangle \equiv \frac{1}{\Xi(T, V, \mu)} \sum_{N=0}^{\infty} \frac{1}{N!} \int d^{3 N} r \frac{d^{3 N} p}{(2 \pi \hbar)^{3 N}} \mathcal{H}(\mathbf{r}, \mathbf{p}, N) \tag{13}\\
& \times \exp \left[-\frac{\mathcal{H}(\mathbf{r}, \mathbf{p}, N)-\mu N}{k_{B} T}\right] .
\end{align*}
$$

- One observes that

$$
\begin{equation*}
U(T, V, \mu) \equiv\langle\mathcal{H}\rangle=-\frac{\partial}{\partial \beta} \ln \Xi(T, V, \mu)+\mu\langle N\rangle, \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
\langle N\rangle=\sum_{N=0}^{\infty} N \mathcal{P}_{N} \tag{15}
\end{equation*}
$$

where \mathcal{P}_{N} is the particle number distribution

$$
\begin{equation*}
\mathcal{P}_{N}=\frac{z^{N} Q_{N}(T, V)}{\Xi(T, V, \mu)} \tag{16}
\end{equation*}
$$

Due to Eq. (12) the distribution is normalized that is $\sum_{N=0}^{\infty} \mathcal{P}_{N}=1$. One observes that

$$
\begin{equation*}
\langle N\rangle=z \frac{\partial}{\partial z} \ln \Xi(T, V, z) \tag{17}
\end{equation*}
$$

- If the grand partition function is expressed not through μ but $z \equiv e^{\beta \mu}$, the formula (14) simplifies to

$$
\begin{equation*}
U(T, V, z) \equiv\langle\mathcal{H}\rangle=-\frac{\partial}{\partial \beta} \ln \Xi(T, V, z) \tag{18}
\end{equation*}
$$

- The second step to establish the relation with thermodynamics is the definition of the grand thermodynamical potential

$$
\begin{equation*}
\Omega(T, V, \mu) \equiv-k_{B} T \ln \Xi(T, V, \mu) \tag{19}
\end{equation*}
$$

- We are going to prove that

$$
\begin{equation*}
\Omega(T, V, \mu)=-p V \tag{20}
\end{equation*}
$$

but the proof is somewhat cumbersome.

- We start with the observation

$$
\begin{equation*}
\Omega(T, V, \mu)=F(T, V,\langle N\rangle)-\mu\langle N\rangle, \tag{21}
\end{equation*}
$$

because $F=-k_{B} T \ln Q_{N}$ and the dominant contribution to the series (12) comes from $N=\langle N\rangle$.

- To check the equality (21) we derive the equation satisfied $\Omega(T, V, \mu)$. Computing the derivative of both sides of the definition (19), one gets

$$
\begin{equation*}
\left(\frac{\partial \Omega}{\partial T}\right)_{V,\langle N\rangle}=-k_{B} \ln \Xi(T, V, \mu)-k_{B} T \frac{\partial}{\partial T} \ln \Xi(T, V, \mu) \tag{22}
\end{equation*}
$$

Using the definitions (19) and (14), we get

$$
\begin{equation*}
T\left(\frac{\partial \Omega}{\partial T}\right)_{V,\langle N\rangle}=\Omega(T, V, \mu)-U(T, V, \mu)+\mu\langle N\rangle \tag{23}
\end{equation*}
$$

- Substituting the expression (21) into Eq. (23) and using the definition $F \equiv U-T S$, one finds the thermodynamic identity

$$
\begin{equation*}
\left(\frac{\partial F}{\partial T}\right)_{V,\langle N\rangle}=-S(T, V,\langle N\rangle) \tag{24}
\end{equation*}
$$

which has been already derived. So, the equality (21) is proven.

- To get the desired relation (20) we express the chemical potential (8) as

$$
\begin{equation*}
\mu \equiv-T\left(\frac{\partial S}{\partial\langle N\rangle}\right)_{U, V}=\left(\frac{\partial F}{\partial\langle N\rangle}\right)_{T, V} \tag{25}
\end{equation*}
$$

- To prove the relation (25) one computes $T d S$ in two ways. The first one is

$$
\begin{equation*}
T d S=T\left(\frac{\partial S}{\partial U}\right)_{V,\langle N\rangle} d U+T\left(\frac{\partial S}{\partial V}\right)_{U,\langle N\rangle} d V+T\left(\frac{\partial S}{\partial\langle N\rangle}\right)_{U, V} d\langle N\rangle \tag{26}
\end{equation*}
$$

Taking into account the identity (7) one gets

$$
\begin{equation*}
T d S=d U+T\left(\frac{\partial S}{\partial V}\right)_{U,\langle N\rangle} d V+T\left(\frac{\partial S}{\partial\langle N\rangle}\right)_{U, V} d\langle N\rangle \tag{27}
\end{equation*}
$$

- The second method to compute $T d S$ starts with $F \equiv U-T S$ and $d F=d U-T d S-S d T$ which gives

$$
\begin{align*}
T d S & =d U-S d T-d F \\
& =d U-S d T-\left(\frac{\partial F}{\partial T}\right)_{V,\langle N\rangle} d T+\left(\frac{\partial F}{\partial V}\right)_{T,\langle N\rangle} d V+\left(\frac{\partial F}{\partial\langle N\rangle}\right)_{T, V} d\langle N\rangle \\
& =d U+\left(\frac{\partial F}{\partial V}\right)_{T,\langle N\rangle} d V+\left(\frac{\partial F}{\partial\langle N\rangle}\right)_{T, V} d\langle N\rangle, \tag{28}
\end{align*}
$$

where the relation

$$
\begin{equation*}
S=-T\left(\frac{\partial F}{\partial T}\right)_{V} \tag{29}
\end{equation*}
$$

has been used.

- Comparing the differentials (27) and (28) one finds the equality (25) and the expression (21) becomes

$$
\begin{equation*}
\Omega(T, V, \mu)=F(T, V,\langle N\rangle)-\left(\frac{\partial F}{\partial\langle N\rangle}\right)_{T, V}\langle N\rangle . \tag{30}
\end{equation*}
$$

- Since the pressure is given as

$$
\begin{equation*}
p=-\left(\frac{\partial F}{\partial V}\right)_{T,\langle N\rangle} \tag{31}
\end{equation*}
$$

the derivative with respect to $\langle N\rangle$ has to be changed into the derivative with respect to V in Eq. (30). The result is

$$
\begin{equation*}
\left(\frac{\partial F}{\partial\langle N\rangle}\right)_{T, V}=\frac{F}{\langle N\rangle}-\frac{V}{\langle N\rangle}\left(\frac{\partial F}{\partial V}\right)_{T,\langle N\rangle} \tag{32}
\end{equation*}
$$

- One proves the equality (32) writing down the free energy

$$
\begin{equation*}
F(T, V,\langle N\rangle)=\langle N\rangle f(T, v) \tag{33}
\end{equation*}
$$

where $v \equiv \frac{V}{\langle N\rangle}$. The form is valid for any extensive quantity.

- Taking the derivative, one finds

$$
\begin{align*}
\frac{\partial F(V,\langle N\rangle)}{\partial\langle N\rangle} & =f(v)+\langle N\rangle \frac{\partial f(v)}{\partial\langle N\rangle}=f(v)+\langle N\rangle \frac{\partial v}{\partial\langle N\rangle} \frac{\partial f(v)}{\partial v} \\
& =f(v)-v \frac{\partial f(v)}{\partial v}=f(v)-v \frac{\partial V}{\partial v} \frac{\partial f\left(\frac{\langle N\rangle}{V}\right)}{\partial V}=f(v)-V \frac{\partial f\left(\frac{\langle N\rangle}{V}\right)}{\partial V} \\
& =\frac{F(V,\langle N\rangle)}{\langle N\rangle}-\frac{V}{\langle N\rangle} \frac{\partial F(V,\langle N\rangle)}{\partial V} \tag{34}
\end{align*}
$$

where the argument T has been dropped to simplify the notation.

- With the definition of pressure (31) and the equality (32), Eq. (30) changes into the desired relation (20). Uff

Relation of grand potential with thermodynamics - summary

$$
\begin{align*}
U & =-\frac{\partial}{\partial \beta} \ln \Xi(T, V, z) \tag{35}\\
\langle N\rangle & =z \frac{\partial}{\partial z} \ln \Xi(T, V, z) \tag{36}\\
p V & =k_{B} T \ln \Xi(T, V, z) \tag{37}
\end{align*}
$$

Ideal gas

- Since

$$
\begin{equation*}
Q_{N}(T, V)=\frac{V^{N}}{N!}\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N}{2}} \tag{38}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Xi(T, V, z)=\sum_{N=0}^{\infty} z^{N} Q_{N}(T, V)=\exp \left[z V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}\right], \tag{39}
\end{equation*}
$$

because

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=e^{x} . \tag{40}
\end{equation*}
$$

- The thermodynamical quantities are

$$
\begin{align*}
U & =-\frac{\partial}{\partial \beta} \ln \Xi(T, V, z)=\frac{3}{2} z V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}} k_{B} T, \tag{41}\\
\langle N\rangle & =z \frac{\partial}{\partial z} \ln \Xi(T, V, z)=z V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}, \tag{42}\\
p V & =k_{B} T \ln \Xi(T, V, z)=z V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}} k_{B} T . \tag{43}
\end{align*}
$$

- Substituting $\langle N\rangle$ given by Eq. (42) into Eqs. (41) and (43), one gets the well-known formulas

$$
\begin{align*}
U & =\frac{3}{2}\langle N\rangle k_{B} T \tag{44}\\
p V & =\langle N\rangle k_{B} T \tag{45}
\end{align*}
$$

but N is replaced by $\langle N\rangle$. It suggests that the fluctuations are small.

- The particle number distribution (16) is

$$
\begin{equation*}
\mathcal{P}_{N}=\frac{\langle N\rangle^{N}}{N!} e^{-\langle N\rangle}, \tag{46}
\end{equation*}
$$

where z is expressed by $\langle N\rangle$.

- One recognizes in (46) the Poisson distribution. The variance is

$$
\begin{equation*}
\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\langle N\rangle . \tag{47}
\end{equation*}
$$

- A typical deviation of N from $\langle N\rangle$ is

$$
\begin{equation*}
\Delta N \equiv \sqrt{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}=\sqrt{\langle N\rangle} . \tag{48}
\end{equation*}
$$

Therefore, the relative fluctuations are small

$$
\begin{equation*}
\frac{\Delta N}{\langle N\rangle}=\frac{1}{\sqrt{\langle N\rangle}} \ll 1 . \tag{49}
\end{equation*}
$$

Particle fluctuations in grand canonical ensemble

We are going to generalize the result obtained for the ideal gas.

- The particle number distribution (16) can be written as

$$
\begin{equation*}
\mathcal{P}_{N} \sim z^{N} Q_{N}(V, T)=z^{N} e^{-\beta F(T, V, N)} \tag{50}
\end{equation*}
$$

- We expand $F(T, V, N)$ around $\langle N\rangle$ as

$$
\begin{equation*}
F(T, V, N)=F(T, V,\langle N\rangle)+\frac{\partial F(T, V,\langle N\rangle)}{\partial\langle N\rangle}(N-\langle N\rangle)+\frac{1}{2} \frac{\partial^{2} F(T, V,\langle N\rangle)}{\partial\langle N\rangle^{2}}(N-\langle N\rangle)^{2} . \tag{51}
\end{equation*}
$$

- Using the chemical potential (25), the expansion is rewritten as

$$
\begin{equation*}
F(T, V, N)=F(T, V,\langle N\rangle)+\mu(N-\langle N\rangle)+\frac{1}{2} \frac{\partial^{2} F(T, V,\langle N\rangle)}{\partial\langle N\rangle^{2}}(N-\langle N\rangle)^{2} \tag{52}
\end{equation*}
$$

and the particle number distribution (50) becomes

$$
\begin{equation*}
\mathcal{P}_{N} \sim \exp \left[-\frac{\beta}{2} \frac{\partial^{2} F(T, V,\langle N\rangle)}{\partial\langle N\rangle^{2}}(N-\langle N\rangle)^{2}\right] . \tag{53}
\end{equation*}
$$

One should remember that $z \equiv e^{\beta \mu}$. The missing constant can be found from the normalization condition.

- Since $N \gg 1$ it can be treated as a continuous variable and the distribution (53) can be written as the Gauss distribution

$$
\begin{equation*}
\mathcal{P}_{N} \sim e^{-\frac{(N-\langle N\rangle)^{2}}{2 \sigma^{2}}} \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma^{2} \equiv\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=k_{B} T\left(\frac{\partial^{2} F(T, V,\langle N\rangle)}{\partial\langle N\rangle^{2}}\right)^{-1} \tag{55}
\end{equation*}
$$

What is the meaning of the thermodynamical quantity (55)?

- Let us replace the derivative with respect of $\langle N\rangle$ into the derivative with respect of V. Writing again F as in Eq. (33) one finds

$$
\begin{equation*}
\frac{\partial^{2} F(T, V,\langle N\rangle)}{\partial\langle N\rangle^{2}}=\frac{v^{2}}{\langle N\rangle} \frac{\partial^{2} f(T, v)}{\partial v^{2}} . \tag{56}
\end{equation*}
$$

Since

$$
\begin{equation*}
p=-\left(\frac{\partial F}{\partial V}\right)_{T,\langle N\rangle}=-\frac{\partial f(T, v)}{\partial v} \tag{57}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial\langle N\rangle^{2}}=-\frac{v^{2}}{\langle N\rangle} \frac{\partial p}{\partial v}=-\frac{V^{2}}{\langle N\rangle^{2}} \frac{\partial p}{\partial V}, \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2} \equiv-\frac{\langle N\rangle^{2} k_{B} T}{V^{2}}\left(\frac{\partial p}{\partial V}\right)_{T}^{-1}=-\frac{\langle N\rangle^{2} k_{B} T}{V^{2}}\left(\frac{\partial V}{\partial p}\right)_{T} \tag{59}
\end{equation*}
$$

- The quantity

$$
\begin{equation*}
\chi \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} \tag{60}
\end{equation*}
$$

is called the isothermal compressibility. It says how the system's volume changes when the pressure grows.

- The variance of particle number distribution in grand canonical ensemble finally equals

$$
\begin{equation*}
\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\frac{\langle N\rangle^{2} k_{B} T}{V} \chi \tag{61}
\end{equation*}
$$

- Let us estimate an order of magnitude of the terms in (61). Both terms in the left hand side are of order $\langle N\rangle^{2}$. The right hand side is of order $\langle N\rangle$ because χ and $\langle N\rangle / V$ are intensive quantities. So, as long as χ is finite the particle number fluctuations are small.
- At the first order phase transitions χ becomes infinite as the change of volume does not change the system's pressure. Then, the particle number fluctuations are large.

Application of grand canonical ensemble - mixture of atomic and molecular hydrogen

- What is a relative concentration of atomic hydrogen as function of T at fixed V ?
- There are reactions

$$
\begin{equation*}
\mathrm{H}+\mathrm{H}+X \leftrightarrow \mathrm{H}_{2}+X \tag{62}
\end{equation*}
$$

where $\epsilon_{B}=4.5 \mathrm{eV}$ and $N=N_{1}+2 N_{2}=$ const.

$$
\begin{equation*}
\Xi\left(T, V, z_{1}, z_{2}\right)=\sum_{N_{1}, N_{2}=0}^{\infty} z_{1}^{N_{1}} z_{2}^{N_{2}} Q_{N_{1}, N_{2}}(T, V) \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{N_{1}, N_{2}}(T, V) \equiv \frac{1}{N_{1}!N_{2}!} \int d^{3 N_{1}} r_{1} d^{3 N_{2}} r_{2} \frac{d^{3 N_{1}} p_{1}}{(2 \pi \hbar)^{3 N_{1}}} \frac{d^{3 N_{2}} p_{2}}{(2 \pi \hbar)^{3 N_{2}}} \exp \left[-\frac{\mathcal{H}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)}{k_{B} T}\right], \tag{64}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{H}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=\sum_{i=1}^{N_{1}}\left(m_{1} c^{2}+\frac{\mathbf{p}_{i}^{2}}{2 m_{1}}\right)+\sum_{j=1}^{N_{2}}\left(m_{2} c^{2}+\frac{\mathbf{p}_{j}^{2}}{2 m_{2}}\right) \tag{65}
\end{equation*}
$$

- One finds

$$
\begin{align*}
Q_{N_{1}, N_{2}}(T, V) & =Q_{N_{1}}(T, V) Q_{N_{2}}(T, V) \tag{66}\\
& =e^{-\beta N_{1} m_{1} c^{2}} \frac{V^{N_{1}}}{N_{1}!}\left(\frac{m_{1} k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N_{1}}{2}} e^{-\beta N_{2} m_{2} c^{2}} \frac{V^{N_{2}}}{N_{2}!}\left(\frac{m_{2} k_{B} T}{2 \pi \hbar^{2}}\right)^{\frac{3 N_{2}}{2}} \tag{67}
\end{align*}
$$

which gives

$$
\begin{equation*}
\Xi\left(T, V, z_{1}, z_{2}\right)=\exp \left[z_{1} e^{-\beta m_{1} c^{2}} V\left(\frac{m_{1} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}+z_{2} e^{-\beta m_{2} c^{2}} V\left(\frac{m_{2} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}\right] \tag{68}
\end{equation*}
$$

- The average numbers $\left\langle N_{1}\right\rangle$ and $\left\langle N_{2}\right\rangle$ are

$$
\begin{align*}
& \left\langle N_{1}\right\rangle=z_{1} \frac{\partial}{\partial z_{1}} \ln \Xi\left(T, V, z_{1}, z_{2}\right)=z_{1} e^{-\beta m_{1} c^{2}} V\left(\frac{m_{1} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \tag{69}\\
& \left\langle N_{2}\right\rangle=z_{2} \frac{\partial}{\partial z_{2}} \ln \Xi\left(T, V, z_{1}, z_{2}\right)=z_{2} e^{-\beta m_{2} c^{2}} V\left(\frac{m_{2} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} \tag{70}
\end{align*}
$$

- Since

$$
\begin{equation*}
\langle N\rangle=\left\langle N_{1}\right\rangle+2\left\langle N_{2}\right\rangle \tag{71}
\end{equation*}
$$

we have

$$
\begin{equation*}
z_{1} e^{-\beta m_{1} c^{2}} V\left(\frac{m_{1} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}+2 z_{2} e^{-\beta m_{2} c^{2}} V\left(\frac{m_{2} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=\langle N\rangle \tag{72}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
z_{1}+2 e^{-\beta\left(m_{2}-m_{1}\right) c^{2}}\left(\frac{m_{2}}{m_{1}}\right)^{3 / 2} z_{2}=e^{\beta m_{1} c^{2}} \rho\left(\frac{2 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 2} \tag{73}
\end{equation*}
$$

where $\rho \equiv \frac{\langle N\rangle}{V}$.

- We need a relation which connects μ_{1} to μ_{2} which is found from the minimum of free energy

$$
\begin{equation*}
F\left(T, V,\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle\right)=F_{1}\left(T, V,\left\langle N_{1}\right\rangle\right)+F_{2}\left(T, V,\left\langle N_{2}\right\rangle\right) \tag{74}
\end{equation*}
$$

Taking into account Eq. (71) it is rewritten as

$$
\begin{equation*}
F\left(T, V,\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle\right)=F_{1}\left(T, V,\langle N\rangle-2\left\langle N_{2}\right\rangle\right)+F_{2}\left(T, V,\left\langle N_{2}\right\rangle\right) \tag{75}
\end{equation*}
$$

- The condition of minimum reads

$$
\begin{equation*}
\frac{\partial F\left(T, V,\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle\right)}{\partial\left\langle N_{2}\right\rangle}=\frac{\partial F_{1}\left(T, V,\langle N\rangle-2\left\langle N_{2}\right\rangle\right)}{\partial\left\langle N_{2}\right\rangle}+\frac{\partial F_{2}\left(T, V,\left\langle N_{2}\right\rangle\right)}{\partial\left\langle N_{2}\right\rangle}=0 \tag{76}
\end{equation*}
$$

which gives

$$
\begin{equation*}
2 \frac{\partial F_{1}\left(T, V,\left\langle N_{1}\right\rangle\right)}{\partial\left\langle N_{1}\right\rangle}=\frac{\partial F_{2}\left(T, V,\left\langle N_{2}\right\rangle\right)}{\partial\left\langle N_{2}\right\rangle} \tag{77}
\end{equation*}
$$

Because of the definition (25), one finds the desired relation as

$$
\begin{equation*}
2 \mu_{1}=\mu_{2} \tag{78}
\end{equation*}
$$

or equivalently $z_{2}=z_{1}^{2}$.

- Eq. (73) becomes the quadratic equation for z_{1}

$$
\begin{equation*}
a z_{1}^{2}+z_{1}+c=0 \tag{79}
\end{equation*}
$$

where

$$
\begin{equation*}
a \equiv 2 e^{-\beta\left(m_{2}-m_{1}\right) c^{2}}\left(\frac{m_{2}}{m_{1}}\right)^{3 / 2}, \quad c \equiv-e^{\beta m_{1} c^{2}} \frac{\langle N\rangle}{V}\left(\frac{2 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 2} \tag{80}
\end{equation*}
$$

The positive solution is

$$
\begin{equation*}
z_{1}=\frac{\sqrt{1-4 a c}-1}{2 a} \tag{81}
\end{equation*}
$$

- Keeping in mind that

$$
\begin{equation*}
m_{2} c^{2}=2 m_{1} c^{2}-\epsilon_{B} \tag{82}
\end{equation*}
$$

with $m_{1} c^{2} \gg \epsilon_{B}$, the solution (81) is

$$
\begin{equation*}
z_{1}=\frac{e^{\beta\left(m_{1} c^{2}-\epsilon_{B}\right)}}{2^{7 / 2}}\left(\sqrt{1+2^{9 / 2} e^{\beta \epsilon_{B}} \rho\left(\frac{2 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 2}}-1\right) \tag{83}
\end{equation*}
$$

- The complete analysis requires a numerical computation. We consider two extreme cases of high and low temperatures At high temepratures the second term under the root in (83) is small. Expanding the root one gets

$$
\begin{equation*}
z_{1}=e^{\beta m_{1} c^{2}} \rho\left(\frac{2 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 2} \tag{84}
\end{equation*}
$$

Substituting the result (84) into Eq. (69) we find

$$
\begin{equation*}
\frac{\left\langle N_{1}\right\rangle}{\langle N\rangle}=1 \tag{85}
\end{equation*}
$$

So, the hydrogen is almost completely in the atomic form. One finds a small admixture of molecules substituting the fugacity (84) in Eq. (70)

$$
\begin{equation*}
\frac{\left\langle N_{2}\right\rangle}{\langle N\rangle}=e^{\beta \epsilon_{B}} \rho\left(\frac{4 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 2} \tag{86}
\end{equation*}
$$

The molecular admixture becomes smaller and smaller as the temperature grows.

- At low temeratures when $e^{\beta \epsilon_{B}} \gg 1$ which requires $k_{B} T \ll \epsilon_{B}$ the mixture should be dilute to remain classical. Then, the second term under the root in Eq. (83) is much bigger than unity and

$$
\begin{equation*}
z_{1}=\frac{e^{\beta\left(m_{1} c^{2}-\epsilon_{B} / 2\right)}}{2^{5 / 4}} \rho^{1 / 2}\left(\frac{2 \pi \hbar^{2}}{m_{1} k_{B} T}\right)^{3 / 4} \tag{87}
\end{equation*}
$$

Substituting the fugacity (87) into Eq. (70), one finds

$$
\begin{equation*}
\frac{\left\langle N_{2}\right\rangle}{\langle N\rangle}=\frac{1}{2}, \tag{88}
\end{equation*}
$$

which means that almost all hydrogen is in the molecular form. A small admixture of atoms is found substituting the fugacity (87) into Eq. (69)

$$
\begin{equation*}
\frac{\left\langle N_{1}\right\rangle}{\langle N\rangle}=\frac{e^{-\frac{\beta \epsilon_{B}}{2}}}{4}\left(\frac{m_{1} k_{B} T}{\pi \hbar^{2} \rho^{2 / 3}}\right)^{3 / 4} \tag{89}
\end{equation*}
$$

The atomic admixture becomes bigger and bigger as the temperature grows.

