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Gibbs classical statistical mechanics III

Grand canonical ensemble

� A grand canonical ensemble is relevant for systems which exchange not only energy with
its environment but also particles. The ensemble is also useful for computational reasons.

� The microstate density of grand canonical ensemble is derived considering a small subsystem
(labeled as 1) of the isolated system such that

N = N1 +N2, H = H1 +H2, (1)

and
N1 � N2, H1 � H2. (2)

One expects that
ρ(r1,p1, N1) ∼ ΓN−N1(U − U1), (3)

Using
S(U, V,N) ≡ kB ln ΓN(U, V ), (4)

the relation (3) becomes

ρ(r1,p1, N1) ∼ exp
[ 1

kB
S(U − U1, V2, N −N1)

]
. (5)

Since U � U1 and N � N1, we expand S(U − U1, V2, N −N1) around U as

S(U − U1, V2, N −N1) = S(U, V2, N)− ∂S(U, V2, N)

∂U
U1 −

∂S(U, V2, N)

∂N
N1. (6)

Using the identity
1

T
=
(∂S
∂U

)
V,N

, (7)

and the definition of the chemical potential µ

µ

T
≡ −

( ∂S
∂N

)
U,V

, (8)

the formula (5) is written as

ρ(r1,p1, N1) ∼ exp
[ 1

kB
S(U, V,N)

]
exp

[
− U1 − µN1

kBT

]
. (9)

The first term can be ignored and the density of microscopic states in the grand canonical
ensemble is chosen as

ρ(r,p, N) = exp
[
− H(r,p, N)− µN

kBT

]
. (10)

The system 2 is treated here as a thermostat of the temperature T and a reservoir of
particles.
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Grand partition function

� The grand partition function is defined as

Ξ(T, V, µ) ≡
∞∑
N=0

1

N !

∫
d3Nr

d3Np

(2π~)3
exp

[
− H(r,p, N)− µN

kBT

]
, (11)

where d3Nr ≡ d3r1d
3r2 . . . d

3rN , d3Np
(2π~)3N ≡

d3p1
(2π~)3

d3p2
(2π~)3 . . .

d3pN
(2π~)3 .

� The equivalent definition is

Ξ(T, V, µ) =
∞∑
N=0

zNQN(T, V ), (12)

where z ≡ eβµ is called the fugacity (β ≡ 1
kBT

).

Relation with thermodynamics

� The first step to establish a relation with thermodynamics is to define the internal energy
as the ensemble average of the Hamilton function

U(T, V, µ) ≡ 〈H〉 ≡ 1

Ξ(T, V, µ)

∞∑
N=0

1

N !

∫
d3Nr

d3Np

(2π~)3N
H(r,p, N) (13)

× exp
[
− H(r,p, N)− µN

kBT

]
.

� One observes that

U(T, V, µ) ≡ 〈H〉 = − ∂

∂β
ln Ξ(T, V, µ) + µ〈N〉, (14)

with

〈N〉 =
∞∑
N=0

NPN , (15)

where PN is the particle number distribution

PN =
zNQN(T, V )

Ξ(T, V, µ)
. (16)

Due to Eq. (12) the distribution is normalized that is
∑∞

N=0PN = 1. One observes that

〈N〉 = z
∂

∂z
ln Ξ(T, V, z). (17)

� If the grand partition function is expressed not through µ but z ≡ eβµ, the formula (14)
simplifies to

U(T, V, z) ≡ 〈H〉 = − ∂

∂β
ln Ξ(T, V, z). (18)
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� The second step to establish the relation with thermodynamics is the definition of the grand
thermodynamical potential

Ω(T, V, µ) ≡ −kBT ln Ξ(T, V, µ). (19)

� We are going to prove that
Ω(T, V, µ) = −pV, (20)

but the proof is somewhat cumbersome.

� We start with the observation

Ω(T, V, µ) = F (T, V, 〈N〉)− µ〈N〉, (21)

because F = −kBT lnQN and the dominant contribution to the series (12) comes from
N = 〈N〉.

� To check the equality (21) we derive the equation satisfied Ω(T, V, µ). Computing the
derivative of both sides of the definition (19), one gets(∂Ω

∂T

)
V,〈N〉

= −kB ln Ξ(T, V, µ)− kBT
∂

∂T
ln Ξ(T, V, µ). (22)

Using the definitions (19) and (14), we get

T
(∂Ω

∂T

)
V,〈N〉

= Ω(T, V, µ)− U(T, V, µ) + µ〈N〉. (23)

� Substituting the expression (21) into Eq. (23) and using the definition F ≡ U − TS, one
finds the thermodynamic identity(∂F

∂T

)
V,〈N〉

= −S(T, V, 〈N〉), (24)

which has been already derived. So, the equality (21) is proven.

� To get the desired relation (20) we express the chemical potential (8) as

µ ≡ −T
( ∂S

∂〈N〉

)
U,V

=
( ∂F

∂〈N〉

)
T,V

. (25)

� To prove the relation (25) one computes TdS in two ways. The first one is

TdS = T
(∂S
∂U

)
V,〈N〉

dU + T
( ∂S
∂V

)
U,〈N〉

dV + T
( ∂S

∂〈N〉

)
U,V

d〈N〉. (26)

Taking into account the identity (7) one gets

TdS = dU + T
( ∂S
∂V

)
U,〈N〉

dV + T
( ∂S

∂〈N〉

)
U,V

d〈N〉. (27)

� The second method to compute TdS starts with F ≡ U − TS and dF = dU − TdS − SdT
which gives

TdS = dU − SdT − dF

= dU − SdT −
(∂F
∂T

)
V,〈N〉

dT +
(∂F
∂V

)
T,〈N〉

dV +
( ∂F

∂〈N〉

)
T,V

d〈N〉

= dU +
(∂F
∂V

)
T,〈N〉

dV +
( ∂F

∂〈N〉

)
T,V

d〈N〉, (28)
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where the relation

S = −T
(∂F
∂T

)
V

(29)

has been used.

� Comparing the differentials (27) and (28) one finds the equality (25) and the expression
(21) becomes

Ω(T, V, µ) = F (T, V, 〈N〉)−
( ∂F

∂〈N〉

)
T,V
〈N〉. (30)

� Since the pressure is given as

p = −
(∂F
∂V

)
T,〈N〉

, (31)

the derivative with respect to 〈N〉 has to be changed into the derivative with respect to V
in Eq. (30). The result is ( ∂F

∂〈N〉

)
T,V

=
F

〈N〉
− V

〈N〉

(∂F
∂V

)
T,〈N〉

. (32)

� One proves the equality (32) writing down the free energy

F (T, V, 〈N〉) = 〈N〉f(T, v), (33)

where v ≡ V
〈N〉 . The form is valid for any extensive quantity.

� Taking the derivative, one finds

∂F (V, 〈N〉)
∂〈N〉

= f(v) + 〈N〉∂f(v)

∂〈N〉
= f(v) + 〈N〉 ∂v

∂〈N〉
∂f(v)

∂v

= f(v)− v∂f(v)

∂v
= f(v)− v∂V

∂v

∂f( 〈N〉
V

)

∂V
= f(v)− V

∂f( 〈N〉
V

)

∂V

=
F (V, 〈N〉)
〈N〉

− V

〈N〉
∂F (V, 〈N〉)

∂V
, (34)

where the argument T has been dropped to simplify the notation.

� With the definition of pressure (31) and the equality (32), Eq. (30) changes into the desired
relation (20). Uff ....

Relation of grand potential with thermodynamics – summary

U = − ∂

∂β
ln Ξ(T, V, z), (35)

〈N〉 = z
∂

∂z
ln Ξ(T, V, z), (36)

pV = kBT ln Ξ(T, V, z). (37)
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Ideal gas

� Since

QN(T, V ) =
V N

N !

(mkBT
2π~2

) 3N
2
, (38)

we have

Ξ(T, V, z) =
∞∑
N=0

zNQN(T, V ) = exp
[
zV
(mkBT

2π~2
) 3

2
]
, (39)

because
∞∑
n=1

xn

n!
= ex. (40)

� The thermodynamical quantities are

U = − ∂

∂β
ln Ξ(T, V, z) =

3

2
zV
(mkBT

2π~2
) 3

2
kBT, (41)

〈N〉 = z
∂

∂z
ln Ξ(T, V, z) = zV

(mkBT
2π~2

) 3
2
, (42)

pV = kBT ln Ξ(T, V, z) = zV
(mkBT

2π~2
) 3

2
kBT. (43)

� Substituting 〈N〉 given by Eq. (42) into Eqs. (41) and (43), one gets the well-known formulas

U =
3

2
〈N〉kBT, (44)

pV = 〈N〉kBT, (45)

but N is replaced by 〈N〉. It suggests that the fluctuations are small.

� The particle number distribution (16) is

PN =
〈N〉N

N !
e−〈N〉, (46)

where z is expressed by 〈N〉.

� One recognizes in (46) the Poisson distribution. The variance is

〈N2〉 − 〈N〉2 = 〈N〉. (47)

� A typical deviation of N from 〈N〉 is

∆N ≡
√
〈N2〉 − 〈N〉2 =

√
〈N〉. (48)

Therefore, the relative fluctuations are small

∆N

〈N〉
=

1√
〈N〉

� 1. (49)
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Particle fluctuations in grand canonical ensemble

We are going to generalize the result obtained for the ideal gas.

� The particle number distribution (16) can be written as

PN ∼ zNQN(V, T ) = zNe−βF (T,V,N). (50)

� We expand F (T, V,N) around 〈N〉 as

F (T, V,N) = F (T, V, 〈N〉)+
∂F (T, V, 〈N〉)

∂〈N〉
(N−〈N〉)+

1

2

∂2F (T, V, 〈N〉)
∂〈N〉2

(N−〈N〉)2. (51)

� Using the chemical potential (25), the expansion is rewritten as

F (T, V,N) = F (T, V, 〈N〉) + µ(N − 〈N〉) +
1

2

∂2F (T, V, 〈N〉)
∂〈N〉2

(N − 〈N〉)2 (52)

and the particle number distribution (50) becomes

PN ∼ exp
[
− β

2

∂2F (T, V, 〈N〉)
∂〈N〉2

(N − 〈N〉)2
]
. (53)

One should remember that z ≡ eβµ. The missing constant can be found from the normal-
ization condition.

� Since N � 1 it can be treated as a continuous variable and the distribution (53) can be
written as the Gauss distribution

PN ∼ e−
(N−〈N〉)2

2σ2 , (54)

with

σ2 ≡ 〈N2〉 − 〈N〉2 = kBT
(∂2F (T, V, 〈N〉)

∂〈N〉2
)−1

. (55)

What is the meaning of the thermodynamical quantity (55)?

� Let us replace the derivative with respect of 〈N〉 into the derivative with respect of V .
Writing again F as in Eq. (33) one finds

∂2F (T, V, 〈N〉)
∂〈N〉2

=
v2

〈N〉
∂2f(T, v)

∂v2
. (56)

Since

p = −
(∂F
∂V

)
T,〈N〉

= −∂f(T, v)

∂v
, (57)

we have
∂2F

∂〈N〉2
= − v2

〈N〉
∂p

∂v
= − V 2

〈N〉2
∂p

∂V
, (58)

and

σ2 ≡ −〈N〉
2kBT

V 2

( ∂p
∂V

)−1
T

= −〈N〉
2kBT

V 2

(∂V
∂p

)
T
. (59)
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� The quantity

χ ≡ − 1

V

(∂V
∂p

)
T

(60)

is called the isothermal compressibility. It says how the system’s volume changes when the
pressure grows.

� The variance of particle number distribution in grand canonical ensemble finally equals

〈N2〉 − 〈N〉2 =
〈N〉2kBT

V
χ. (61)

� Let us estimate an order of magnitude of the terms in (61). Both terms in the left hand side
are of order 〈N〉2. The right hand side is of order 〈N〉 because χ and 〈N〉/V are intensive
quantities. So, as long as χ is finite the particle number fluctuations are small.

� At the first order phase transitions χ becomes infinite as the change of volume does not
change the system’s pressure. Then, the particle number fluctuations are large.

Application of grand canonical ensemble – mixture of atomic
and molecular hydrogen

� What is a relative concentration of atomic hydrogen as function of T at fixed V ?

� There are reactions
H + H +X ↔ H2 +X, (62)

where εB = 4.5 eV and N = N1 + 2N2 = const.

�

Ξ(T, V, z1, z2) =
∞∑

N1,N2=0

zN1
1 zN2

2 QN1,N2(T, V ), (63)

where

QN1,N2(T, V ) ≡ 1

N1!N2!

∫
d3N1r1d

3N2r2
d3N1p1

(2π~)3N1

d3N2p2
(2π~)3N2

exp
[
− H(r1, r2,p1,p2)

kBT

]
, (64)

with

H(r1, r2,p1,p2) =

N1∑
i=1

(
m1c

2 +
p2
i

2m1

)
+

N2∑
j=1

(
m2c

2 +
p2
j

2m2

)
. (65)

� One finds

QN1,N2(T, V ) = QN1(T, V )QN2(T, V ) (66)

= e−βN1m1c2
V N1

N1!

(m1kBT

2π~2
) 3N1

2
e−βN2m2c2

V N2

N2!

(m2kBT

2π~2
) 3N2

2
, (67)

which gives

Ξ(T, V, z1, z2) = exp
[
z1e
−βm1c2V

(m1kBT

2π~2
)3/2

+ z2e
−βm2c2V

(m2kBT

2π~2
)3/2]

. (68)
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� The average numbers 〈N1〉 and 〈N2〉 are

〈N1〉 = z1
∂

∂z1
ln Ξ(T, V, z1, z2) = z1e

−βm1c2V
(m1kBT

2π~2
)3/2

, (69)

〈N2〉 = z2
∂

∂z2
ln Ξ(T, V, z1, z2) = z2e

−βm2c2V
(m2kBT

2π~2
)3/2

. (70)

� Since
〈N〉 = 〈N1〉+ 2〈N2〉, (71)

we have

z1e
−βm1c2V

(m1kBT

2π~2
)3/2

+ 2z2e
−βm2c2V

(m2kBT

2π~2
)3/2

= 〈N〉, (72)

which can be rewritten as

z1 + 2e−β(m2−m1)c2
(m2

m1

)3/2
z2 = eβm1c2ρ

( 2π~2

m1kBT

)3/2
, (73)

where ρ ≡ 〈N〉
V

.

� We need a relation which connects µ1 to µ2 which is found from the minimum of free energy

F (T, V, 〈N1〉, 〈N2〉) = F1(T, V, 〈N1〉) + F2(T, V, 〈N2〉). (74)

Taking into account Eq. (71) it is rewritten as

F (T, V, 〈N1〉, 〈N2〉) = F1(T, V, 〈N〉 − 2〈N2〉) + F2(T, V, 〈N2〉). (75)

� The condition of minimum reads

∂F (T, V, 〈N1〉, 〈N2〉)
∂〈N2〉

=
∂F1(T, V, 〈N〉 − 2〈N2〉)

∂〈N2〉
+
∂F2(T, V, 〈N2〉)

∂〈N2〉
= 0, (76)

which gives

2
∂F1(T, V, 〈N1〉)

∂〈N1〉
=
∂F2(T, V, 〈N2〉)

∂〈N2〉
. (77)

Because of the definition (25), one finds the desired relation as

2µ1 = µ2, (78)

or equivalently z2 = z21 .

� Eq. (73) becomes the quadratic equation for z1

az21 + z1 + c = 0, (79)

where

a ≡ 2e−β(m2−m1)c2
(m2

m1

)3/2
, c ≡ −eβm1c2

〈N〉
V

( 2π~2

m1kBT

)3/2
. (80)

The positive solution is

z1 =

√
1− 4ac− 1

2a
. (81)
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� Keeping in mind that
m2c

2 = 2m1c
2 − εB, (82)

with m1c
2 � εB, the solution (81) is

z1 =
eβ(m1c2−εB)

27/2

(√
1 + 29/2 eβεBρ

( 2π~2
m1kBT

)3/2
− 1

)
. (83)

� The complete analysis requires a numerical computation. We consider two extreme cases
of high and low temperatures At high temepratures the second term under the root in (83)
is small. Expanding the root one gets

z1 = eβm1c2ρ
( 2π~2

m1kBT

)3/2
. (84)

Substituting the result (84) into Eq. (69) we find

〈N1〉
〈N〉

= 1. (85)

So, the hydrogen is almost completely in the atomic form. One finds a small admixture of
molecules substituting the fugacity (84) in Eq. (70)

〈N2〉
〈N〉

= eβεBρ
( 4π~2

m1kBT

)3/2
. (86)

The molecular admixture becomes smaller and smaller as the temperature grows.

� At low temeratures when eβεB � 1 which requires kBT � εB the mixture should be dilute
to remain classical. Then, the second term under the root in Eq. (83) is much bigger than
unity and

z1 =
eβ(m1c2−εB/2)

25/4
ρ1/2

( 2π~2

m1kBT

)3/4
. (87)

Substituting the fugacity (87) into Eq. (70), one finds

〈N2〉
〈N〉

=
1

2
, (88)

which means that almost all hydrogen is in the molecular form. A small admixture of atoms
is found substituting the fugacity (87) into Eq. (69)

〈N1〉
〈N〉

=
e−

βεB
2

4

(m1kBT

π~2ρ2/3
)3/4

. (89)

The atomic admixture becomes bigger and bigger as the temperature grows.


