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Review of thermodynamics

What is thermodynamics?

• Historic roots: unknown microscopic structure of matter, substance of heat – phlogiston,
specific laws of heat phenomena (irreversibility)

• Modern thermodynamics: no reference to microscopic structure of matter, precise mathe-
matical formulation (exact differential, state function, integrating factor), universal charac-
ter

• Equilibrium systems, static or quasi-static phenomena

• Not only gases but ...

Thermodynamic quantities

• Extensive and intensive quantities

• Pressure p

• Work
dW = pdV (1)

dW > 0 or dW < 0

• Heat Q

• Temperature T , no reference to U = 3
2
NkBT

Equation of state

f(p, V, T ) = 0 (2)

Ideal gas

pV = nRT (3)

n – number of mols, R ≈ 8.3 J
mol·K – gas constant

nR = NkB (4)

kB = 1.38 · 10−23 J
K

– Boltzmann constant, N – number of atoms or molecules

pV = NkBT (5)

0-th principle of thermodynamics

• Thermal contact

• Thermal equilibrium of systems A & B =⇒ no heat transfer
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• 0-th principle of thermodynamics: A & B in thermal equilibrium and B & C in thermal
equilibrium =⇒ A & C in thermal equilibrium (transitive character of thermal equilibrium)

Thermodynamical processes

• Quasi-stationary processes

• Isochoric processes V = const

• Isothermal processes T = const

• Isobaric processes p = const

• Adiabatic processes dQ = 0

• Reversible and irreversible processes

Exact differential

• Exact differential of the function f(x1, x2, . . . , xn)

df = X1dx1 +X2dx2 + . . . Xndxn (6)

dXi

dxj
=
dXj

dxi
, i, j = 1, 2, . . . , n (7)

If the function is explicitly known

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn (8)

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
(9)

• Path independence of the integral∫ B

A

df = f(B)− f(A) (10)

A & B initial and final sets of the variables (x1, x2, . . . , xn).

State function

• The state function fully depends on a state of a system but not on a process by which state
is reached.

• If F is the state function, dF is exact differential.

1-st principle of thermodynamics

• Energy of the system U is the state function and

dU = dQ− dW (11)

• dU is the exact differential but dQ and dW are not. Q and W are not state functions.

• Heat can be converted into work!
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2-nd principle of thermodynamics

• dS = dQ
T

, where dQ is the heat transfer in reversible process, is the exact differential.

• S – entropy is the state function

• ∫ B

A

dQ

T
≤ S(B)− S(A) (12)

The equality is for a reversible and inequality for irreversible process.

• dQ = 0 =⇒ S(A) ≤ S(B) – ‘entropy of an isolated system is a non-decreasing function of
time’

Temperature as integrating factor

• If df = X1dx1 +X2dx2 + · · ·+Xndxn is not exact differential but hdf is, h is the integrating
factor of df .

• In thermodynamics T is the integrating factor of dQ.

• How does it work for an ideal gas?

Express dQ through (V, T ), (V, p) or (T, p) using dU = dQ−pdV , pV = nRT and U = CV T .
Show that dQ/T is the exact differential for every set of variables.

Independence of ideal-gas energy of gas volume

• Trivial problem in statistical mechanics. Since U = 3
2
NkBT , then(∂U

∂V

)
T

= 0. (13)

• How to prove it in thermodynamics?

• Using the first and the second principle of thermodynamics one finds

dS =
dQ

T
=
dU + pdV

T
=

1

T

(∂U
∂T

)
V
dT +

1

T

[(∂U
∂V

)
T

+ p
]
dV. (14)

• Since dS is exact differential we have(
∂

∂V

1

T

(∂U
∂T

)
V

)
T

=

(
∂

∂T

1

T

[(∂U
∂V

)
T

+ p
])

V

. (15)

• Using the property (
∂

∂V

(∂U
∂T

)
V

)
T

=

(
∂

∂T

(∂U
∂V

)
T

)
V

, (16)

one finds ( ∂p
∂T

)
V
− 1

T

[(∂U
∂V

)
T

+ p
]

= 0, (17)

which gives the equality (13) due to the ideal-gas equation of state

pV = nRT. (18)
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Figure 1: Reversible and irreversible gas decompression

Entropy change in isothermal decompression of ideal gas

We consider the reversible and irreversible isothermal decompression of ideal gas, see Fig. 1.
The initial and finals states are the same in both cases: (T, V1)→ (T, V2).

• In the reversible process we have

∆Sgas =

∫
dQ

T
=
Q

T
. (19)

Since U = const, one finds

Q = W =

∫ V2

V1

pdV =

∫ V2

V1

nRT

V
dV = nRT ln

V2
V1
, (20)

and

∆Sgas = nR ln
V2
V1
. (21)

• The entropy change in the irreversible process is the same, because S is the state function.

• Where is the difference? The difference is in the environment: the thermostat and the
spring if present.

• ∆S = ∆Sgas + ∆Senvironment

• In the irreversible decompression ∆Senvironment = 0 and ∆S = ∆Sgas > 0.

• In the reversible decompression ∆Senvironment = −∆Sgas and ∆S = 0.

Heat capacity

• Heat capacity is an amount of heat needed to change the temperature by one degree. It
depends on external conditions.

• Heat capacity at fixed volume

CV ≡
(∂Q
∂T

)
V

(22)

• Heat capacity at fixed pressure

Cp ≡
(∂Q
∂T

)
p

(23)
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• The first principle of thermodynamics dQ = dU + pdV provides the relation

dQ =
(∂U
∂T

)
V
dT +

[(∂U
∂V

)
T

+ p
]
dV, (24)

when (V, T ) are independent variables and

dQ =
[(∂U
∂T

)
p

+ p
(∂V
∂T

)
p

]
dT +

[(∂U
∂p

)
T

+ p
(∂V
∂p

)
T

]
dp, (25)

when (p, T ) are independent variables.

• Consequently

CV =
(∂U
∂T

)
V
, (26)

Cp =
(∂U
∂T

)
p

+ p
(∂V
∂T

)
p

=
(∂H
∂T

)
p
, (27)

where H ≡ U + pV is called the enthalpy.

• Specific heat is the heat capacity per unit amount of a given substance. It characterizes a
substance not a system.

Mayer equation

• Because of (13) the heat capacity CV is simplified to

CV =
dU

dT
, (28)

and
U = CV T, (29)

if
dCV
dT

= 0 & U(T = 0) = 0. (30)

• From statistical mechanics we know that the energy of ideal gas is U = 3
2
NkBT and the

heat capacity, which equals

CV =
3

2
NkB, (31)

is temperature independent.

• Using Eq. (29) and the ideal-gas equation of state (18), the enthalpy equals

H ≡ U + pV = (CV + nR)T, (32)

which gives the Mayer equation

Cp =
(∂H
∂T

)
p

= CV + nR, (33)

usually written as
Cp − CV = nR > 0. (34)
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• Cp is bigger than CV . What is the physical reason?

Adiabatic compression of ideal gas

• When a process is adiabatic (dQ = 0), the first principle of thermodynamics reads

dU + pdV = 0. (35)

• Using Eq. (29) and the ideal-gas equation of state (18), one rewrites the relation (35) as

dT

T
= −γ dV

V
, (36)

where γ ≡ nR
CV

. Integrating Eq. (36), we find

lnT = −γ lnV + const., (37)

where “const.” is an arbitrary constant. Eq. (37) can be rewritten as

TV γ = const. (38)

or using the ideal-gas equation of state (18) as

pV 1+γ = const. (39)

“const.” denotes each time a different constant in Eqs. (37, 38, 39).

• Eq. (39) shows that the pressure grows faster in adiabatic than in isothermal compression.

Figure 2: Izothermal vs. adiabatic compression

3-rd principle of thermodynamics

The 2-nd principle of thermodynamics determines the entropy difference in two states of a
system of interest. The 3-rd principle allows one to determine an absolute value of the entropy.

• According to the third principle of thermodynamics, the entropy of any system
in the temperature of absolute zero is a universal constant which can be chosen as zero.
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• It follows from the 3-rd principle that Cp, CV or any other heat capacity denoted as C
vanishes as T → 0.

• Writing dQ as dQ = C(T )dT , we have

S(T ) =

∫ T

0

C(T ′)

T ′
dT ′. (40)

As T → 0 the interval of integration tends to zero. So we use the approximation

C(T ) = aTα, (41)

where the constant a is independent of T . Substituting (41) into Eq. (40) and performing
the integration one gets

S(T ) =
a

α
Tα. (42)

Since S(T )→ 0 as T → 0, the power α > 0. Consequently, C(T )→ 0 as T → 0.

• The result is in conflict with the formula (31) which is obtained in classical statistical
mechanics. At low temperature quantum effects have to be taken into account.

• Vanishing of C as T → 0 shows that T = 0 is unreachable.

Figure 3: How to get a position of the movable divider?

Free energy

• Free energy F is defined as F ≡ U − TS.

• What for it is? A minimum of F determines a system’s state at fixed T and V .

• Using the first and second principle of thermodynamics (for reversible processes), one writes

dF = dU − SdT − TdS = −pdV − SdT, (43)

As seen dF = 0 if dV = 0 and dT = 0. So, there is extremum of F if T and V are fixed.

• Since in general dQ ≤ TdS, we get

dF = dQ− TdS ≤ 0. (44)

for dV = dT = 0. So, there is minimum of F if T and V are fixed.
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• As a simple application of F consider a system depicted in Fig. 3. Where is an equilibrium
position of the movable divider?

• V = V1 + V2, T1 = T2 = T and F = F1(V1) + F2(V − V1). The condition of a minimum is( ∂F
∂V1

)
T

=
(∂F1

∂V1

)
T

+
(∂F2

∂V1

)
T

=
(∂F1

∂V1

)
T
−
(∂F2

∂V2

)
T

= 0, (45)

which gives (∂F1

∂V1

)
T

=
(∂F2

∂V2

)
T
. (46)

• What does it mean? Since dF = −pdV − SdT

p = −
(∂F
∂V

)
T
. (47)

Therefore, the condition (45) means
p1 = p2. (48)

Free enthalpy

Going from (V, T ) to (p, T ), we need another function different than F to determine a system’s
state.

• Free enthalpy G is defined G = F + pV .

• When T and p are fixed, a minimum G determines a system’s state.


