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Kinetic theory IV

In this lecture there will be discussed transport phenomena and transport coefficients of heat
conductivity and viscosity. The equations of viscous hydrodynamics will be also derived.

Relaxation time approximation

• A complicated structure of the Boltzmann collision term is a serious obstacle in applica-
tions of the kinetic theory. The collision term is radically simplified in the relaxation time
approximation which is

C(t, r,p) =
1

τ

(
f eq(t, r,p)− f(t, r,p)

)
, (1)

where τ is called the relaxation time discussed later on and f eq(t, r,p) is the distribution
function of local equilibrium

f eq(t, r,p) = ρ(t, r)
( 2π

mkBT (t, r)

)3/2
exp

[
−
(
p−mu(t, r)

)2
2mkBT (t, r)

]
. (2)

• To clarify a physical meaning of the collision term (1), let us consider a system which
is homogeneous. Consequently, the distribution function is position independent and the
equilibrium function is time independent. The kinetic equation then equals

∂f(t,p)

∂t
=
f eq(p)− f(t,p)

τ
, (3)

and its solution is
f(t,p) =

(
f(0,p)− f eq(p)

)
e−

t
τ + f eq(p). (4)

As seen the system evolves towards equilibrium and f(t,p) = f eq(p) after the time t� τ .
The parameter τ is a characteristic time of equilibration.

Rough estimate of τ

To fully specify the collision term (1) the parameter τ needs to be estimated.

• If τ is identified as the mean free flight time of a gas particle it is

τ =
l̄

v̄
, (5)

where v̄ is the average velocity of a gas particle and l̄ is its mean free path.

• The velocity v̄ is estimated equating the particle kinetic energy 1
2
mv̄2 to the thermal average

energy 3
2
kBT which gives

v̄ =

√
3kBT

m
. (6)
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• To get the mean free path l̄ we consider a test particle which has just experienced a collision
and we ask when the particle will collide again. If the interaction cross section is σ the
collision will occur when a gas particle appears in a cylinder of the base area σ and the axis
along the test-particle velocity. The cylinder’s height equals the mean-free path l and the
number of particles in the cylinder equals one. Thus we require l̄σρ = 1 which gives

l̄ =
1

ρσ
. (7)

• Substituting the formulas (6, 7) into Eq. (5), one gets the following rough estimate of the
relaxation time

τ =
1

ρσ

√
m

3kBT
. (8)

More accurate estimate of τ

• A more accurate estimate of τ can be obtained comparing the Boltzmann collision term with
that of the relaxation time approximation (1). Let us assume that there is the approximate
equality

f eq(p)− f(t, r,p)

τ
=

∫
d3p1
(2π)3

dΩ |v − v1|
dσ

dΩ

[
f(t, r,p′) f(t, r,p′1)− f(t, r,p) f(t, r,p1)

]
. (9)

On both sides of Eq. (9) there are positive and negative terms. So, we require

f(t, r,p)

τ
=

∫
d3p1
(2π)3

dΩ |v − v1|
dσ

dΩ
f(t, r,p) f(t, r,p1). (10)

• Assuming that the cross section weakly depends on the initial momentum p + p1 and
scattering angle Ω, we can perform the angular integral in Eq. (10) and we get

f(t, r,p)

τ
=
σ

m

∫
d3p1
(2π)3

|p− p1| f(t, r,p) f(t, r,p1). (11)

• If one divides Eq. (11) by f(t, r,p) the relaxation time τ is momentum dependent. This is
physically realistic but the relaxation time approximation is no longer simple. We instead
take the momentum integral of both sides of Eq. (11) which gives

1

τ
=

σ

mρ

∫
d3p

(2π)3
d3p1
(2π)3

|p− p1| f(t, r,p) f(t, r,p1). (12)

• Now we substitute the local equilibrium distribution (2) with u = 0 into Eq. (12). To
perform the momentum integrals we introduce the center-of-mass variables: P = 1

2
(p + p1)

and q = p− p1. The integrals over P and q factorize from each other and one gets

1

τ
=
σρ

m

( 2π

mkBT

)3∫ d3P

(2π)3
exp
[
− P2

mkBT

] ∫ d3q

(2π)3
|q| exp

[
− q2

4mkBT

]
= 4σρ

√
kBT

πm
, (13)

which finally gives

τ =
1

4ρσ

√
πm

kBT
. (14)
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• Taking into account that 1√
3
≈ 0.58 and

√
π
4
≈ 0.44 the estimates (8) and (14) agree with

each other surprisingly well. In our further considerations we will ignore the numerical
factor and we will use the estimate

τ =
1

ρσ

√
m

kBT
. (15)

Nitrogen in normal conditions

To get an idea about magnitudes of parameters, in particular about τ , let us consider nitrogen
in the normal conditions that is at the temperature 0 ◦C = 273 K and the pressure 1 atm =
760 mmHg. Nitrogen, which makes up about 80% of air, is a gas of diatomic molecules N2 in
normal conditions. There are two stable isotopes 14N and 15N but the former one is much more
abundant.

• The nitrogen mass density is 1.25 · 10−3 g cm−3.

• The atomic mass of 14N is 14 atomic mass units u (u = 1.66 · 10−24 g) that is 2.32 · 10−23g.
The mass of the molecule N2 equals m = 4.64 · 10−23g.

• The density of molecules N2 is ρ = 2.69 · 1019 cm−3.

• The diameter of a molecule N2 is a ≈ 2.5
◦
A = 2.5 · 10−8 cm. Since the (classical) cross

section of a collision of two balls of a diameter a is σ = πa2, we get the interaction cross
section σ = 2.0 · 10−15 cm2.

• The mean free path is l̄ = (ρσ)−1 = 1.9 · 10−5 cm.

• At T = 273 K the thermal velocity is v̄ =
√

3kBT
m

= 4.9 · 104 cm
s

, where we have used

kB = 1.38 · 10−16 g cm2

s2 K
.

• The relaxation time is finally found as τ = l̄ v̄−1 = 3.9 · 10−10 s.

Solution of kinetic equation

• We look for a solution of the equation( ∂
∂t

+ v · ∇
)
f(t, r,p) =

1

τ

(
f eq(t, r,p)− f(t, r,p)

)
. (16)

• Since we expect that a solution of Eq. (16) evolves towards the local thermodynamical
equilibrium, we look for the solution of the form

f(t, r,p) = f eq(t, r,p) + δf(t, r,p), (17)

with
f eq(t, r,p)� |δf(t, r,p)|. (18)

• Substituting the function (17) into the equation (16) and using the condition (18), we obtain

δf(t, r,p) = −τDvf
eq(t, r,p), (19)

where the substantial derivative equals

Dv ≡
∂

∂t
+ v · ∇. (20)
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• Taking into account that the equilibrium distribution function depends on t and r only
through ρ,u and T , we compute the left-hand-side of Eq. (19) as

Dvf
eq =

∂f eq

∂ρ
Dvρ+

∂f eq

∂ui
Dvu

i +
∂f eq

∂T
DvT, (21)

which gives

Dvf
eq

f eq
=

1

ρ
Dvρ+

pi −mui

kBT
Dvu

i +
1

T

((p−mu)2

2mkBT
− 3

2

)
DvT. (22)

• Since the function δf(t, r,p) is assumed to be small, the functions ρ,u and T are expected
to satisfy the equations of ideal hydrodynamics

Duρ+ ρ∇ · u = 0, (23)

Duu +
1

mρ
∇p = 0, (24)

DuT +
2

3
T∇ · u = 0, (25)

which allows one to eliminate the time derivative of ρ,u and T from the right-hand-side of
Eq. (22). Additionally expressing the pressure as p = ρkBT and using the particle velocity
v ≡ p

m
instead of the momentum p, one obtains

Dvf
eq

f eq
=

m

kBT

(
(vi − ui)(vj − uj)∇jui − 1

3
(vi − ui)(vi − ui)∇juj

)
+

1

T

( m

2kBT
(vi − ui)(vi − ui)− 5

2

)
(vj − uj)∇jT. (26)

• Substituting the result (26) into Eq. (19) we finally find

δf = −τf eq
[ m

kBT

(
(vi − ui)(vj − uj)∇jui − 1

3
(vi − ui)(vi − ui)∇juj

)
(27)

+
1

T

( m

2kBT
(vi − ui)(vi − ui)− 5

2

)
(vj − uj)∇jT

]
.

In this way, we have found the approximate solution f = f eq + δf of the kinetic equation
(16).

Matching conditions

Since the equations of ideal hydrodynamics (23, 24, 25) are used to derive the function (27),
the function satisfies the matching conditions to be discussed here.

• The equilibrium distribution function (2) is expressed through ρ, T and u. Consequently,

ρ(t, r) =

∫
d3p

(2π)3
f eq(t, r,p) = ρ(t, r), (28)

P i(t, r) =

∫
d3p

(2π)3
pif eq(t, r,p) = mρ(t, r)ui(t, r), (29)

ε(t, r) =

∫
d3p

(2π)3
εpf

eq(t, r,p) =
1

2
mρ(t, r) u2(t, r) +

3

2
ρ kBT (t, r). (30)
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• However, the left-hand-sides of the equations (28, 29, 30) should be also reproduced by the
function f(t, r,p). Thus, we arrive to the matching conditions:∫

d3p

(2π)3
f eq(t, r,p) =

∫
d3p

(2π)3
f(t, r,p), (31)∫

d3p

(2π)3
pif eq(t, r,p) =

∫
d3p

(2π)3
pif(t, r,p), (32)∫

d3p

(2π)3
εpf

eq(t, r,p) =

∫
d3p

(2π)3
εpf(t, r,p). (33)

which mean that∫
d3p

(2π)3
δf(t, r,p) =

∫
d3p

(2π)3
piδf(t, r,p) =

∫
d3p

(2π)3
εpδf(t, r,p) = 0. (34)

• A direct computation shows that the matching conditions (34) are indeed satisfied by the
function (27).

• Let us prove the first and the simplest condition (34). For this purpose we compute∫
d3p

(2π)3
δf = −τρ

( m

2πkBT

)3/2 ∫
d3w exp

[
− mw2

2kBT

]
(35)

×
[ m

kBT

(
wiwj∇jui − 1

3
wiwi∇juj

)
+

1

T

( m

2kBT
wiwi − 5

2

)
wj∇jT

]
,

where the local equilibrium distribution function (2) has been used and we have changed
the variables p→ w ≡ p/m− u.

• Further on we use the relations∫
d3w exp

[
− mw2

2kBT

]
wi = 0, (36)

∫
d3w exp

[
− mw2

2kBT

]
wiwj = (2π)3/2

(kBT
m

)5/2
δij, (37)

∫
d3w exp

[
− mw2

2kBT

]
wiwjwk = 0, (38)

∫
d3w exp

[
− mw2

2kBT

]
w2wiwj = 5(2π)3/2

(kBT
m

)7/2
δij (39)

∫
d3w exp

[
− mw2

2kBT

]
w4wiwj = 35(2π)3/2

(kBT
m

)9/2
δij, (40)

∫
d3w exp

[
− mw2

2kBT

]
wiwjwkwl = (2π)3/2

(kBT
m

)7/2(
δijδkl + δikδjl + δilδjk

)
, (41)

which can be easily derived.
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• Taking into account the equalities (36, 37, 38), the right-hand-side of Eq. (35) vanishes.

• The remaining two matching conditions (34) are proved in the similar way.

• The matching conditions (34) have been obtained because ρ, T and u satisfy the equations
of ideal hydrodynamics. However, one can invert the reasoning, the matching conditions
are required and consequently ρ, T and u satisfy the equations of ideal hydrodynamics.

Macroscopic quantities

When the ideal hydrodynamics was derived the macroscopic quantities were computed with
the distribution function of local equilibrium. Now we are going to discuss what happens when
the correction δf given by Eq. (27) is included.

• We are interested in the particle density ρ, particle flux j, momentum density P i, momentum
flux Πij, energy denisty ε and energy flux I which are defined as

ρ(t, r) ≡
∫

d3p

(2π)3
f(t, r,p), j(t, r) ≡

∫
d3p

(2π)3
p

m
f(t, r,p), (42)

P i(t, r) ≡
∫

d3p

(2π)3
pif(t, r,p), Πij(t, r) ≡

∫
d3p

(2π)3
pipj

m
f(t, r,p), (43)

ε(t, r) ≡
∫

d3p

(2π)3
εpf(t, r,p), I(t, r) ≡

∫
d3p

(2π)3
p

m
εpf(t, r,p). (44)

• Because of the matching condistions (34), ρ, j, P i and ε remain as in the ideal hydrody-
namics that is

j = ρu, P = mρu, ε =
1

2
mρu2 +

3

2
ρ kBT. (45)

• The momentum and energy fluxes Πij and I are modified as

Πij = mρuiuj + δijρ kBT + δΠij, (46)

I =
1

2
mρu3 +

5

2
ρu kBT + δI, (47)

where δΠij and δI are the dissipative corrections coming from δf .

• A dissipation is an irreversible energy transfer associated with the entropy growth. A typical

example is friction. It will be clear soon why δΠij and δI are called dissipative corrections.
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Dissipative energy flux

• Let us compute the dissipative energy flux defined as

δI ≡
∫

d3p

(2π)3
p

m
εpδf. (48)

• Using δf given by Eq. (27), one finds

δI = − τρm4

25/2(πmkBT )3/2

∫
d3w (w + u)3 exp

[
− mw2

2kBT

]
(49)

×
[ m

kBT

(
wiwj∇jui − 1

3
w2∇juj

)
+

1

T

( m

2kBT
w2 − 5

2

)
wj∇jT

]
,

where instead of the momentum p we use the velocity w ≡ p/m− u.

• Ignoring the terms which are odd functions of w and vanish due to integration over w, the
flux (49) is written as

δI = δI1 + δI2 + δI3 + δI4, (50)

where

δI1 ≡ − τρm4

25/2(πmkBT )3/2T

∫
d3ww3 exp

[
− mw2

2kBT

]( m

2kBT
w2 − 5

2

)
wj∇jT, (51)

δI2 ≡ − 3τρm5u

25/2(πm)3/2(kBT )5/2

∫
d3ww2 exp

[
− mw2

2kBT

](
wiwj∇jui − 1

3
w2∇juj

)
, (52)

δI3 ≡ − 3τρm4u2

25/2(πmkBT )3/2T

∫
d3ww exp

[
− mw2

2kBT

]( m

2kBT
w2 − 5

2

)
wj∇jT, (53)

δI4 ≡ − τρm5u3

25/2(πm)3/2(kBT )5/2

∫
d3w exp

[
− mw2

2kBT

](
wiwj∇jui − 1

3
w2∇juj

)
. (54)

• Using the formulas (36-40) we find

δI1 = −5

2
τρ k2BT ∇T, δI2 = δI3 = δI4 = 0, (55)

which finally gives

δI = −5

2
τρ k2BT ∇T. (56)

• It appears that only the temperature gradient contributes to the energy flux while the
velocity gradient, which is also present in the expression of δf , does not. A temperature
equalization is an irreversible process, which justifies the use of the term dissipative flux.
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Heat conductivity

• Substituting the expression (56) into Eq. (47) we find the total energy flux as

I =
1

2
mρu3 +

5

2
ρu kBT −

5

2
τρ k2BT ∇T. (57)

The first two terms correspond to the energy transport due to the non-vanishing fluid
velocity u.

• The heat flow q is the energy flux caused by the temperature gradient. So, we write

q = −5

2
τρ k2BT ∇T. (58)

Since the coefficient τρ k2BT is positive, the heat flows, as expected, in the direction of
temperature decrease.

• The equation (58) agrees with the experimentally established relation known as the Fourier’s
law of thermal conduction

q = −κ∇T, (59)

where κ is the coefficient of heat conductivity.

• Comparing the relations (58) are (59), one finds κ as

κ =
5

2
τρ k2BT. (60)

• Taking into account the estimate of relaxation time (15), the heat conductivity coefficient
is

κ =
5

2

kB
√
mkBT

σ
. (61)

The characteristic features of the formula (61) are that κ is independent of gas density and
is proportional to the square root of the temperature. Dilute gases indeed manifest such a
behavior.

Dissipative momentum flux

• Let us compute the dissipative momentum flux defined as

δΠij ≡
∫

d3p

(2π)3
pipj

m
δf. (62)

• Substituting δf given by Eq. (27) into the formula (62), one finds

δΠij = − τρm4

(2πmkBT )3/2

∫
d3w (wi + ui)(wj + uj) exp

[
− mw2

2kBT

]
(63)

×
[ m

kBT

(
wkwl∇luk − 1

3
w2∇kuk

)
+

1

T

( m

2kBT
w2 − 5

2

)
wk∇kT

]
,

where instead of the momentum p we introduced the velocity w ≡ p/m− u. Ignoring the
terms which are odd functions of w and vanish due to integration over w, the flux (63) is
written as

δΠij = δΠij
1 + δΠij

2 + δΠij
3 + δΠij

4 , (64)
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Figure 1: Configuration of fluid velocity used to introduce a viscosity coefficient η

where

δΠij
1 = − τρm7/2

(2π)3/2(kBT )5/2

∫
d3w exp

[
− mw2

2kBT

]
wiwj

(
wkwl∇luk − 1

3
w2∇kuk

)
, (65)

δΠij
2 = − τρm5/2uj

(2π)3/2(kBT )3/2T

∫
d3w exp

[
− mw2

2kBT

]( m

2kBT
w2 − 5

2

)
wiwk∇kT, (66)

δΠij
3 = − τρm5/2ui

(2π)3/2(kBT )3/2T

∫
d3w exp

[
− mw2

2kBT

]( m

2kBT
w2 − 5

2

)
wjwk∇kT, (67)

δΠij
4 = − τρm7/2uiuj

(2π)3/2(kBT )5/2

∫
d3w exp

[
− mw2

2kBT

](
wkwl∇luk − 1

3
w2∇kuk

)
. (68)

• Using the formulas (36-41) we find

δΠij
1 = −τρ kBT

[
∇iuj +∇jui − 2

3
δij∇kuk

]
, (69)

δΠij
2 = δΠij

3 = δΠij
4 = 0, (70)

which finally provides

δΠij = −τρ kBT
[
∇iuj +∇jui − 2

3
δij∇kuk

]
. (71)

• As seen, the velocity gradient contributes to the momentum flux but the temperature
gradient, which is also present in the expression of δf , does not. A velocity equalization is
an irreversible process caused by friction. It justifies the use of the term dissipative flux.

• The full momentum flux Πij is

Πij = mρuiuj + δijρ kBT − τρ kBT
[
∇iuj +∇jui − 2

3
δij∇kuk

]
. (72)
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Viscosity

• Let us consider the scheme of gas flow shown in Fig. 1. The fluid velocity u is along the
axis x that is u = (ux, 0, 0) with the velocity ux dependent on y and independent of z.

• Studying experimentally the gas flow in such a configuration, it was found that the friction
force Fx per unit area A in the xz−plane is proportional to the velocity gradient

Fx
A

= −η∂ux
∂y

, (73)

where the proportionality constant η is the viscosity coefficient.

• The component Πxy of the momentum flux tensor equals the momentum along the axis
x transported along the axis y per unit time and unit area in the xz−plane. In other
words, this is the force per unit area in the xz−plane acting along the axis x. Therefore,
Πxy = Fx/A.

• Since u = (ux, 0, 0), we find from Eq. (72) that

Πxy =
Fx
A

= −τρ kBT
∂ux
∂y

(74)

and comparing it with Eq. (73), we obtain

η = τρ kBT. (75)

• Taking into account the estimate of relaxation time (15), the viscosity coefficient equals

η =

√
mkBT

σ
. (76)

As seen, it is independent of gas density and proportional to the square root of the tem-
perature.

• Taking the ratio of the coefficients (60) and (75), one finds the relation

κ

kBη
=

5

2
, (77)

which is supported experimentally.

Hydrodynamics of viscous fluid

• Equations of viscous hydrodynamics are obtained substituting ρ, j, P i, ε, Πij and I, which
are given as

j = ρu, P = mρu, ε =
1

2
mρu2 +

3

2
ρ kBT, (78)

Πij = mρuiuj + δijρ kBT − η
[
∇iuj +∇jui − 2

3
δij∇kuk

]
, (79)

I =
1

2
mρu3 +

5

2
ρu kBT − κ∇T, (80)
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into the macroscopic conservation laws

∂ρ(t, r)

∂t
+∇ · j(t, r) = 0, (81)

∂P i(t, r)

∂t
+∇jΠij(t, r) = 0, (82)

∂ε(t, r)

∂t
+∇ · I(t, r) = 0. (83)

• The first equation, which expresses the particle number conservation, is not modified when
compared to that of the ideal hydrodynamics because ρ and j do not have dissipative
contributions. So, we have ( ∂

∂t
+ u · ∇

)
ρ+ ρ∇ · u = 0. (84)

• Using Eq. (84), the equation (82) provides the famous Navier–Stokes equation( ∂
∂t

+ u · ∇
)
u +

1

mρ
∇
(
p− η

3
∇ · u

)
− η

mρ
∇2u = 0, (85)

where in case under consideration the pressure p is given by the ideal gas equation of state

p = ρ kBT. (86)

• The Navier–Stokes equation, which becomes the Euler equation when η = 0, is a pillar of
fluid mechanics. Our derivation holds for a dilute gas but the equation is applicable to
fluids as well.

• An apparently simple equation (85) is actually very complex and difficult to solve mostly
because of its non-linearity. Even in case of incompressible fluid when ∇ · u = 0, general
solutions are not known. The equation predicts, in particular, that under certain conditions
there occurs a turbulence – chaotic flow of viscous liquid. A secret of the phenomenon, which
is still not well understood, is hidden in the Navier–Stokes equation (85).

• Using Eqs. (84, 85), the continuity equation (83) provides the equation( ∂
∂t

+ u · ∇
)
T +

2

3
T∇ · u− 2κ

3ρ
∇2T = 0. (87)

• If u = 0, Eq. (87) changes into the equation of heat conductivity( ∂
∂t
− α∇2

)
T = 0, (88)

where α ≡ 2κ
3ρ

. Eq. (88) becomes the diffusion equation if T is replaced by the density

of diffusing particles and α by the diffusion constant. In contrast to Eq. (87), the linear
equation (88) can be rather easily solved.

• Five equations (84, 85, 87) constitute the system of equations of viscous hydrodynamics.
Since there are six unknown functions: ρ,u, p, T , the equation of state (86) must be added
to close the system.

• An analysis of the equations (84, 85, 87) is at the heart of a vast branch of physics and
applied mathematics known as a mechanics of continuous media. The problem is beyond
the scope of the lectures. Our goal was to show how viscous hydrodynamics emerges from
kinetic theory.


