Sheet 2 2/11/2012

Exercise 1: Oscillations with an external electric field (15 points = 3 + 2 + 4 + 4 + 2)

A two-level system is described by the Hamiltonian

$$H = H_0 + H_1 \tag{1}$$

with

$$H_0 = M_0 |S\rangle \langle S| + \omega |\omega\rangle \langle \omega| , \qquad (2)$$

$$H_1 = g\cos(\alpha t) \left(|S\rangle \langle \omega| + |\omega\rangle \langle S| \right) . \tag{3}$$

1. Make the following Ansatz

$$|s(t)\rangle = a(t)e^{-iM_0t}|S\rangle + r(t)e^{-i\omega t}|\omega\rangle$$
 (4)

(Note, we have simply factorized out the phases. This trick is typical for the so-called interaction picture).

Determine the first-order differential equations for a(t) and r(t) which must be fulfilled, in order that the state $|s(t)\rangle$ is a solution of the Schrödinger equation

$$i\frac{d}{dt}|s(t)\rangle = H|s(t)\rangle$$
 (5)

Use the following convention: $\beta = M_0 - \omega > 0$, $\Delta = \beta - \alpha$.

- 2. In the Eqs. derived in the previous point there is $\cos(\alpha t)$. Rewrite it as $\cos(\alpha t) = \frac{1}{2} \left(e^{i\alpha t} + e^{-i\alpha t} \right)$. Then, two terms: $e^{i(\beta-\alpha)t}$ and $e^{i(\beta+\alpha)t}$. Neglect the latter. Why is this approximation valid for $\beta \simeq \alpha$.
- 3. The system of first order of diff. Eqs. in (1) can be solved using the simplification in (2). By a further time-derivative one can recast the equation for a(t) as a second-order differential equation of the type

$$\ddot{a} + A\dot{a} + Ba = 0 \tag{6}$$

whereas A and B are some (complex) numbers. Solve the equation for a(t). A similar second-order equation holds for r(t), which can be solved similarly.

- 4. Determine the specific solution for the boundary condition a(0) = 1, r(0) = 0 (that is, $|s(0)\rangle = |S\rangle$). Determine also $p(t) = |a(t)|^2$.
- 5. Discuss the case $\Delta = \beta \alpha = 0$.

Exercise 2: Entanglement with the apparatus (5 points)

Consider a double-slit experiment. Let y be the axis along the screen. The wave function coming from the first slit is $\psi_1(y) = f(y^2)e^{-i\omega(y+\delta/2)}$ and the wave function coming from the second slit is $\psi_2(y) = f(y^2)e^{-i\omega(y-\delta/2)}$, whereas

$$\delta = \frac{d}{L}y\tag{7}$$

whereas d is the distance between the two slits and L the distance of the slit place to the y axis. (The quantity $f(y^2)$ assures the correct normalization of the wave functions, but is not important here).

Now, the particle goes through both slits and the full wave function is given by

$$\psi(y) = \frac{1}{\sqrt{2}} (\psi_1(y) + \psi_2(y)) \tag{8}$$

the probability on the screen is given by

$$\frac{1}{2} |\psi_1(y) + \psi_2(y)|^2 \tag{9}$$

which gives the usual interference fringes. (Verify this!).

Now, let us put a detector just before the two slits which can measures where the particles goes. $\Phi_1(\alpha_i)$ is the wave function of the detector when it measures the electron passing though the first slit; the coordinates α_i with i=1,...N refers to the position of all the atoms of the detectors, that is N is a very large number. (Of course, there are many degenerate possibilities for such a configuration in which the detector shows "slit 1,"). Similarly, $\Phi_2(\alpha_i)$ is the wave function of the detector when it measures the electron passing though the first hole.

Now, in presence of the detector, the full wave function is given by

$$\psi_{tot}(y) = \frac{1}{\sqrt{2}} \left(\psi_1(y) \Phi_1(\alpha_i) + \psi_2(y) \Phi_2(\alpha_i) \right) . \tag{10}$$

Do we see interference on the screen? If not, why not?