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On isometric embeddings into the Urysohn universal metric space
Edmund Ben Ami
Ben Gurion University of the Negev, Beer Sheva, Israel
edmundbenami@yahoo.com

If X is a non-compact Polish space, then X can be embedded in the Urysohn space in such a way
that every isometry of X has a unique extension to an isometry of the entire Urysohn space. Some
consequences of that will be discussed.

On convergence with respect to a sigma-ideal
Marek Balcerzak
Institute of Mathematics  Lódź Technical University, I-2, ul. Wlczańska 215, 93-005  Lódź, Poland
mbalce@p.lodz.pl

Convergence in measure for sequences of measurable functions on the unit interval is more general
than convergence almost everywhere. By the Riesz theorem, fn is convergent to f in measure on the
unit interval if every subsequence of fn contains a subsequence convergent to f almost everywhere. This
equivalence has yielded an abstract notion of convergence for sequences of S-measurable functions with
respect to a sigma-ideal J contained in a sigma-algebra S of subsets of a given set Y . In general,
J-convergence does not generate a topology but it is possible to introduce J-Cauchy sequences and J-
completeness on the space of S-measurable functions on Y . For the unit interval, in the measure case, J-
completeness is well known by the Riesz theorem, and in the category case, J-completeness is a nontrivial
result due to Wagner-Bojakowska and Wilczynski. We present several operations on abstract measurable
spaces which preserve J-completeness. Also, we consider the notions of parametric J-convergence and
parametric J-completeness.

On n-reflexive Banach spaces
Iryna Banakh
Institute of Applied Problems of Mechanics and Mathematics of Ukrainian Academy of Sciences (Lviv,
Ukraine)
tbanakh@yahoo.com

Coauthors: Taras Banakh, Elena Riss

In the talk we shall address the following problem posed by Elena Riss in 2000 on the Winter School
in Krǐstanovice (Čech Republic):

Question 1. Is a separable infinite-dimensional Banach space X reflexive if each net in X has an
accumulation point in the weak topology of X?

By a net in a Banach space (X, ‖ · ‖) we understand an ε-net N ⊂ X for some ε > 0. A subset N ⊂ X
is called an ε-net for a subset B ⊂ X if for every point x ∈ B there is a point y ∈ N with ‖x − y‖ < ε.

It turns out that Question 1 is equivalent to an even more intriguing question concerning ∞-reflexive
Banach spaces.

Definition 1. A Banach space (X, ‖ · ‖) is called r-reflexive where r ∈ [0, +∞] if for every cover U of
X by weakly open sets there is a finite subfamily V ⊂ U that covers an open unit ball B1(x) = {y ∈ X :
‖x − y‖ < 1} centered at some point x ∈ X with ‖x‖ ≤ r.

Observe that a Banach space is reflexive if and only if it is 0-reflexive. We shall say that a Banach
space X is ω-reflexive if it is r-reflexive for some r ∈ [0,∞).

It turns out that for infinite-dimensional separable Banach spaces the property appearing in Question 1
is equivalent to the ∞-reflexivity.

Theorem 1. An infinite-dimensional separable Banach space X is ∞-reflexive (resp. ω-reflexive) if and
only if every net in X has an accumulation point (resp. contains a non-trivial convergent sequence) in
the weak topology of X.

So, Question 1 can be reformulated it terms of the r-reflexivity as follows:
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Question 2. Is a (separable) Banach space X reflexive if it is ∞-reflexive? ω-reflexive?

The first counterexample that comes to mind is the quasireflexive James space J (having codimension
1 in its second dual). We recall that a Banach space X is quasireflexive if it has finite codimension in its
second dual space X∗∗.

Theorem 2. The quasireflexive James space J is not ω-reflexive.

However we do not know if the James space is ∞-reflexive.

Question 3. Is each quasireflexive Banach space ∞-reflexive? Is the James space ∞-reflexive?

Our principal result on separable ∞-reflexive Banach spaces asserts that any such a space has Asplund
dual. We recall that a Banach space X is Asplund if each separable subspace Y of X has separable dual
Y ∗.

Theorem 3. Each separable ∞-reflexive Banach space X has Asplund dual X∗.

Since the Banach space l1 is not Asplund, Theorem 3 implies the result of [Ba] (asserting that the
dual space X∗ of a separable ∞-reflexive Banach space X contains no copy of l1).

The proof of Theorem 3 relies on a characterization of the Asplund property of the dual Banach space
in terms of so-called ∗-weak covering properties.

Definition 2. A Banach space X is defined to satisfy the τ -covering property, where τ is a weaker linear
topology on X, if for every bounded subset B ⊂ X and every sequence (Ui)

∞
i=1 of τ -open sets in X whose

intersection
⋂∞

i=1 Ui is a norm-neighborhood of the origin in X there are points x1, . . . , xn ∈ X such that
B ⊂

⋃n
i=1(xi + Ui).

If τ is the weak or ∗-weak topology, then we say about the weak or ∗-weak covering properties, briefly,
WCP and ∗-WCP.

Theorem 3 can be derived from the following theorem that can have an independent value.

Theorem 4. (1) Each separable ∞-reflexive Banach space has the weak covering property;
(2) If a Banach space X has the weak covering property, then the second dual space X∗∗ has the

∗-weak covering property;
(3) A Banach space X is Asplund if and only if the dual space X∗ has the ∗-weak covering property.

The obtained results fit into the following diagram connecting various reflexivity-like properties and
holding for any separable Banach space X:

X is 0-reflexive - X is ω-reflexive - X is ∞-reflexive - X has WCP

6
? ?

X is reflexive - X is quasireflexive

6

- X
∗ is Asplund -� X

∗∗ has ∗-WCP

Now let us discuss some stability properties of r-reflexive spaces and ask some related questions.

Theorem 5. Let Z be a Banach subspace of a separable Banach space X.

(1) If X is an r-reflexive Banach space for some r ∈ [0, +∞], then the quotient space X/Z is r-
reflexive too.

(2) If X is r-reflexive for some r ∈ {0, ω,∞}, then each Banach space Y isomorphic to X is r-
reflexive.

(3) If both the spaces Z and X/Z are r-reflexive for some r ∈ {0, ω,∞}, then X is r-reflexive.

Question 4. Is a subspace of a (separable) r-reflexive Banach space r-reflexive (at least for r ∈ {ω,∞})?

Since the r-reflexivity is an isomorphic property for r ∈ {0, ω,∞}, we may also ask:

Question 5. Is the r-reflexivity an isomorphic property for arbitrary r ∈ (0, +∞)?

Our next question concerns the separability assumption in Theorem 3.

Question 6. Has each ∞-reflexive Banach space Asplund dual?
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We can give a partial answer for Banach spaces with ℵ0-monolithic dual space. We recall that a
topological space X is monolithic (resp. ℵ0-monolithic) if each (separable) subspace Y of X has network
weight nw(Y ) equal to the density dens(Y ) of Y . It is easy to see that each Banach space is monolithic
in norm and weak topologies.

We shall say that a Banach space X has (ℵ0-)monolithic dual space, if the dual space X∗ is (ℵ0-
)monolithic with respect to the ∗-weak topology. It can be shown that a Banach space X has (ℵ0-
)monolithic dual if and only if for any (separable) subset Y ⊂ X∗ the annulator Y > = {x ∈ X : ∀y∗ ∈
Y y∗(x) = 0} has dens(X/Y > = dens(Y ) in X. The latter property was introduced in [BPZ] as the
property (1). Since Corson compacta are monolithic, each weakly Lindelöf determined Banach space
(=Banach space with Corson dual ball) has monolithic dual.

Proposition 1. Each ∞-reflexive Banach space with ℵ0-monolithic dual has Asplund dual.

Question 7. Has each separable ∞-reflexive Banach space separable dual?

Unlike the ∗-weak covering property (which is equivalent to the Asplundness of predual), we have very
poor information about Banach spaces with the weak covering property. All we know about these spaces
is summed up in Theorem 4 and the following

Proposition 2. (1) A quotient space of a Banach space with weak covering property has that property
too.

(2) The product X×Y of a Banach space X with the weak covering property and a finite-dimensional
Banach space Y has the weak covering property.

Question 8. Is the weak covering property a Three Space Property? Is it hereditary with respect to
subspaces and products?

Also Questions 2–7 can be posed with the ∞-reflexivity replaced by the weak covering property.

References
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Absolute Z∞-spaces: a new dimension class of compacta
Taras Banakh
Akademia Świȩtokrzyska in Kielce (Poland) and Lviv National University (Ukraine)
tbanakh@franko.lviv.ua

In this talk we shall introduce so called absolute Z∞-spaces forming a new dimension class of compacta
and discuss its relationship with other dimension classes. The concept of an absolute Z∞-space is related
to the notion of a Zn-set, well studied in infinite-dimensional and geometric topology. By definition, a
closed subset A of a topological space X is called a Zn-set where n ∈ ω ∪ {∞}, if every map f : In → X
of the n-dimensional cube In = [0, 1]n can be uniformly approximated by maps whose images miss the
set A. Observe that a subset A ⊂ X is a Z0-set if and only if A is closed and nowhere dense in X. It
is well-known that every Zn-set A in an ANR-space X is locally homotopically n-negligible in the sense
that for every open set U ⊂ X the relative homotopy groups πk(U,U \A) vanish for all k ≤ n. Replacing
the relative homotopy groups with relative homology groups we arrive to the notion of a homological
Zn-set: a closed subset A ⊂ X is a homological Zn-set in X if the relative homology groups Hk(U,U \A)
vanish for all open sets U ⊂ X and all k ≤ n. The relationship between Zn-sets and their homological
counterparts is described by

Theorem 1. A closed subset A of an ANR-space X is a homological Zn-set if and only if A × {0} is a
Zn+1-set in X × [−1, 1].

According to an old result of Kroonengerg [6], each closed finite-dimensional subset of the Hilbert cube
Q = [0, 1]ω is a homological Z∞-set. On the other hand, the Hilbert cube contains closed zero-dimensional
subsets (so-called wild Cantor sets) failing to be Z2-sets, see [9]. Thus homological Zn-sets behave in
more regular and predictable way comparing to their homotopical counterparts.
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Having in mind the mention result of Kroonenberg, let us define a compact space X to be an absolute
Zn-space if for every embedding e : X → Q of X into the Hilbert cube Q the image e(X) is a homological
Zn-set in Q. By AZn we shall denote the class of all compact metrizable absolute Zn-spaces. Observe
that the class AZ0 coincides with the class of compact spaces that contain no copy of the Hilbert cube
and thus is the largest non-trivial closed hereditary class of metrizable compacta. The class AZ∞ also
is closed with respect to countable unions and taking closed subspaces. Also this class is closed with
respect to multiplication by finite-dimensional compacta, more generally by trt-dimensional compacta.
The latter class is defined with help of the separation dimension t(·) introduced by Stainke [8] and its
transfinite extension trt(·) introduced by Arenas, Chatyrko and Puertas [1]. Given a topological space X
we write:

• trt(X) = −1 iff X = ∅;
• trt(X) ≤ α where α is an ordinal if each closed subset B ⊂ X containing more than one point

can be separated by a closed subset C ⊂ B with trt(C) < α.

A topological space X is called trt-dimensional if trt(X) ≤ α for some ordinal α.
The relationship of the classes AZn with other dimension classses are described in the following dia-

gramm in which an arrow x → y means that x ⊂ y:

fd cd σhd trt C wid- - - - -
�

�
��� 66

fdZ afd AZ∞ AZn AZ1 AZ0
- - - - -

In this diagram

• fd stands for the class of finite-dimensional compacta;
• fdZ is the class of compacta with finite integral cohomological dimension;
• afd is the class of almost finite-dimensional compacta, where a space X is alsmost finite-dimensional

if sup{dim(F ) : F ⊂
cl

X dim(F ) < ∞} < ∞;

• cd is the class of countable-dimensional compacta;
• σhd is the class of compacta that are countable unions of hereditarily disconnected subspaces;
• trt is the class of trt-dimensional compacta;
• C is the class of compacta with the property C;
• wid is the class of weakly infinite-dimensional compacta.

Now we pose some open problems related to this diagram. The classes cd and σhd of countable-
dimensional and σ-hereditarily disconnected compacta are distinguished by the famous Pol’s compactum,
and a compact spaces distingushing the classes wid and C was recently constructed by P. Borst [4]. We
do not know if the other considered classes also are different.

Question 1. Is each trt-dimensional compactum σ-hereditarily disconnected? Is each C-compactum trt-
dimensional?

Some immediate questions still are open for the tranfinite dimension trt.

Question 2. Is the ordinal trt(X) countable for each trt-dimensional metrizable compactum X? Given
a (countable) ordinal α is there a compact (metric) space X with trt(Xα) = α?

Question 3. Is C ⊂ AZ∞? Is wid ⊂ AZ2?

This question is related to another one:

Question 4. Let W ⊂ Q be a closed weakly-infinite dimensional subset (with the property C). Is the
complement Q \ W homologically trivial?

Question 5. What can be said about the classes AZn for n ∈ N? Are they hereditary with respect to
taking closed subspaces? Are they pairwise distinct?

We have defined absolute Z∞-compacta with help of their embedding into the Hilbert cube. What
about embeddings into other spaces resembling the Hilbert cube?
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Question 6. Let A be a compact subset of an absolute retract X whose all points are homological Z∞-
points. Is A a homological Z∞-set in X if A is an absolute Z∞-space?

Compact absolute retracts whose all points are homological Z∞-points seem to be very close to being
Hilbert cubes. By [3] all such spaces fail to be C-spaces and have infinite cohomological dimension with
respect to any coefficient group.

Question 7. Let X be a compact absolute retract whose all points are homological Z∞-points. Is X
strongly infinite-dimensional? Is X × [0, 1]2 homeomorphic to the Hilbert cube? Is X homeomorphic to
Q if X has DDP, the Disjoint Disks Property?

In light of this question we should mention an example of a fake Hilbert cube constructed by Singh [7].
He constructed a compact absolute retract X such that (i) all points of X are homological Z∞-points,
(ii) X × [0, 1]2 and X × X are homeomorphic to Q but (iii) X contains no proper closed ANR-subspace
of X of dimension greater than one.

References

[1] F. Arenas, V. Chatyrko, M. Puertas, Transfinite extension of Steinke’s dimension. Acta Math. Hungar. 88: 105–112,

2000.

[2] T. Banakh, R. Cauty, A homological selection theorem implying a division theorem for Q-manifolds. preprint.

[3] T. Banakh, R. Cauty, A. Karassev, On homotopical and homological Zn-sets. preprint.

[4] P. Borst, A weakly infinite-dimensional compactum not having property C. preprint, 2005.
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Grothendieck property in Sacks model
Christina Brech
Universidade de So Paulo, Brazil / Universit de Paris 7, France
kika@ime.usp.br

For an infinite Boolean algebra B, let C(KB) be the Banach space of the continuous real-valued
functions on its Stone space KB, with the supremum norm. A Boolean algebra B is said to have the
Grothendieck property whenever each weak-star convergent sequence in C(KB)∗ converges weakly. The
purpose of this work is to prove the consistency of the existence of a Boolean algebra with the Grothendieck
property and with cardinality less than the continuum cardinal. The negation of this fact follows from
p = c.

Schachermayer proved that a necessary (but not sufficient) condition for a Boolean algebra to have the
Grothendieck property is that it is not a countable union of a strictly increasing sequence of subalgebras.
Just and Koszmider showed that in the model obtained by a product of Sacks forcings, there is a Boolean
algebra with cardinality less than c and which is not such a union. This motivated us to prove that the
Boolean algebra has the Grothendieck property.

Complete Boolean algebras, or even σ-complete Boolean algebras, have the Grothendieck property.
There are other properties, such as the subsequential completeness property or the subsequential inter-
polation property, which are also stronger than the Grothendieck property. However, all of them imply
that the Boolean algebra has cardinality at least c, which is not the case of ours. This illustrates that
these properties are quite far from the Grothendieck property.
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Ideal convergence and quotient Boolean algebras
Rafa l Filipów
Institute of Mathematics, University of Gdańsk, Poland
rfilipow@math.univ.gda.pl

Coauthors: N. Mrożek, I. Rec law and P. Szuca

We generalize the Bolzano-Weierstrass theorem (that every bounded sequence of reals admits a con-
vergent subsequence) on ideal convergence. We show examples of ideals with and without Bolzano-
Weierstrass property, and give characterizations of BW property in terms of submeasures and extend-
ability to a maximal P-ideal. We show applications to the various orderings of ideals and its Boolean
algebras.

Games and metrisability of manifolds
David Gauld
University of Auckland, New Zealand
d.gauld@auckland.ac.nz

Coauthors: Jiling Cao, Sina Greenwood, Abdul Mohamad

By a manifold we mean a connected, Hausdorff, locally Euclidean space, while Ck(X) denotes the space
of all continuous real-valued functions on X with the compact-open topology. We show that metrisability
of a manifold M is equivalent to a number of different conditions involving games on Ck(M). It is also
equivalent to the space Ck(M) being Baire and being Volterra, a weakening of the Baire condition.

Descriptive properties of families of automomeomorphisms of the unit interval
Szymon G la̧b
Mathematical Institute, Polish Academy of Science, Śniadeckich 8, 00-956 Warszawa, Poland
szymon glab@yahoo.com

Let H ⊂ C[0, 1] be the set of all increasing autohomeomorphisms of [0, 1]. We say that f ∈ H is a
strictly singular autohomeomorphism, if f has no positive finite derivative at any point, more exactly, f
has no positive finite derivative at any point of (0, 1) and no one-sided derivative at 0 and 1, right-hand
and left-hand, respectively. We show that the family of all strictly singular autohomeomorphisms is Π1

1–
complete, in particular non–Borel. This solves a problem mentioned by Graf, Mauldin and Williams in
1986.

Embedding inverse semigroups into global semigroups of compact groups
Olena Hryniv
Lviv National University, Ukraine
olena hryniv@ukr.net

We address the Gutik’s problem on characterization of topological semigroups embeddable into global
semigroups of topological groups.

By the global semigroup Γ(G) of a topological group G we understand the hyperspace of non-empty
compact subsets of G, endowed with the Vietoris topology and the semigroup operation A · B = {a · b :
a ∈ A, b ∈ B}.

Answering the Gutik’s question, we prove that a compact topological inverse Clifford semigroup S
embeds into a global semigroup Γ(G) of a compact topological group G if and only if the semilattice of
idempotents of S is zero-dimentional.

We recall that a semigroup S is inverse (and Clifford) if for any element x ∈ S there exists a unique
inverse element x−1 ∈ S, such that x · x−1 · x = x, x−1 · x · x−1 = x−1 (and x−1 · x = x · x−1).
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Characterization of Spaces with Ideal Convergence Property
Jakub Jasinski
University of Scranton, Scranton Pa. USA
jasinski@scranton.edu

Coauthors: Ireneusz Rec law

Abstract: We say that a sequence of functions fn : X → R is I-convergent to a function g : X → R

if for every ε > 0 and every x ∈ X the set {n ∈ ω : |fn(x) − g(x)| ≥ ε} ∈ I. IC(I) denotes
the class of spaces X where I-convergence implies pointwise convergence on a set from the dual filter
F(I) = {B ⊆ ω|Bc ∈ I}. In Jasinski, Rec law, Ideal Concergence of Continuous Functions, Topology and
its Applications (to appear) we studied IC(I) in case I was the density ideal or the ideal of bounded
subsets of ω×ω. Here we attempt to characterize IC(I) spaces for the entire class of ideals. For example
we show that if I is an analytic, atomless P-ideal on ω then IC(I) ⊆ s0.

Transitive operations and new small subsets of the reals
Jan Kraszewski
Mathematical Institute, Wroc law University, Poland
kraszew@math.uni.wroc.pl

For two translation invariant families I and J of subsets of the Cantor space 2ω such that I ⊆ J we
define a family

Gt(J, I) = {A ⊆ 2ω : (∀ B ∈ I) A + B ∈ J}.

It occurs that many types of small subsets of the reals can be expressed in the form Gt(J, I). Among
them there are everywhere meager and everyehere null sets, new classes of small sets. We define and
investigate these classes.

Linearly ordered compacta and projections in Banach spaces
Wies law Kubís
Instytut Matematyki, Akademia Świȩtokrzyska, Kielce, Poland
wkubis@pu.kielce.pl

I will describe an example of a linearly ordered compact K of weight ℵ1, for which the Banach space
C(K) does not have a decomposition into a continuous chain of complemented separable subspaces. On
the other hand, C(K) can be decomposed into a (discontinuous!) chain of one-complemented separable
subspaces. Recall that a subspace is one-complemented if there is a norm-one projection onto it. A
well-ordered chain {Eξ}ξ<ρ of closed subspaces is continuous if Eδ is the closure of

⋃
ξ<δ Eξ for every

limit ordinal δ.
The above compact space K is a natural continuous order preserving image of a linearly ordered

Valdivia compact, therefore C(K) is a closed subspace of a Banach space with a projectional resolution
of the identity. This answers two questions due to V. Montesinos and O. Kalenda respectively.

Sandwich-type characterization of completely regular spaces
Tomasz Kubiak
Wydzia l Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza, Poznań, Poland
tkubiak@amu.edu.pl

Coauthors: Javier Gutierrez Garcia, Departamento de Matematicas, Universidad del Pais Vasco, Bilbao,
Spain

All the higher separation axioms in topology, except for complete regularity, are known to have
sandwich-type characterizations. We provide a characterization of complete regularity in terms of in-
serting a continuous real-valued function. The known fact that each continuous real-valued function on
a compact subset of a Tychonoff space has a continuous extension to the whole space is obtained as a
corollary.
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Cardinal invariants for C-cross topologies
Andrzej Kucharski
Institute of Mathematics, University of Silesia, Katowice, Poland
akuchar@ux2.math.us.edu.pl

Coauthors: Szymon Plewik

Let X and Y be topological spaces. Consider a family C of subsets of X × Y which is closed under
finite intersections and such that for each G ∈ C the set Gx = {y ∈ Y : (x, y) ∈ G} has non-empty interior
in Y , and the set Gy = {x ∈ X : (x, y) ∈ G} has non-empty interior in X. Additionally assume, that C
contains a π-base for the product topology on X × Y . The topology on X × Y generated by C is called
C-cross topology.

C-cross topologies are generalizations of the product topology τ , the topology of separate continuity
σ or the cross topology γ: See a survey article by M. Henriksen and R. G. Woods, Separate versus joint
continuity: a tale of four topologies in Top. Appl. 97 (1999), no. 1-2, 175–205. For many cases C-cross
topologies fulfill the Kuratowski-Ulam Theorem.

If X is a topological space with the topology λ, then let nwdλ denotes the ideal of all nowhere dense
subset of X, and let Mλ denotes the σ−ideal of all meager subsets of X. For the plane with various
C-cross topologies the following results are obtained:

If F ∈ nwdτ , then F is nowhere dense with respect to a C-cross topology, too;
cof (nwdγ) > 2ω and cof (Mγ) > 2ω;
cov (Mγ) = cov (Mτ );
If X is a not meager subset of the reals, then the square X × X is not meager with respect to γ.

Moreover, non (Mγ) = non (Mτ ).
Note also, that for the plane nwdτ = nwdσ.
If X is a metric space and Y ⊆ X is a dense subsets, then cof (nwdX) = cof (nwdY ): Here nwdZ

denotes nowhere dense subsets in Z. This last equality does not hold, whenever one considers the plane
with the cross topology and the square of the rationals.

Indicatrices of Cn[0, 1] functions
Aleksandra Kwiatkowska
Mathematical Institute of the Wroc law University, Poland
ola 171@wp.pl

We give necessary and sufficient conditions on a function f : [0, 1] → {1, 2, . . . , c} under which there
exists a Cn[0, 1] function (n = 1, 2 . . . ,∞) F : [0, 1] → [0, 1] such that for every y ∈ [0, 1], f(y) = |F−1(y)|.

First we give such a characterisation for continuous functions F and sketch a construction. Then
adding some modifications we give such a characterisation for continuous functions F of Vn(F ) < ∞
(Vn(F ) denotes n-variation). Finally using the theorem of Laczkovich and Preiss ( which states that for
the above function there exists a homeomorphism h : [0, 1] → [0, 1] such that F ◦ h ∈ Cn[0, 1] ) we obtain
a required characterisation.

Independent Families and Topology
Marcin Kysiak
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland
mkysiak@mimuw.edu.pl

The talk will be largely inspired by an open problem in infinitary combinatorics concerning functions
from ω1 to ω posed by Holický, Zajiček and Zelený. Although the problem as far as I know remains open,
I am going to show that it is somewhat related to σ-independent families. In particular, I am going to
reprove one of their results using a slight modification of a theorem on σ-independent families attributed
to Tarski.

To obtain this modification, I shall use a tricky technique of some topological flavor, which can be
used as well to obtain elegant proofs of classical facts on independent families.
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On uniform Eberlein compact spaces
Arkady Leiderman
Ben-Gurion University of the Negev, Beer Sheva, Israel
arkady@math.bgu.ac.il

A compact space is said to be a uniform Eberlein (an Eberlein) compact if it is homeomorphic to a
weakly compact subset of a Hilbert (a Banach) space. The main purpose of our research is to examine
which purely topological properties distinguish between Eberlein and uniform Eberlein compact spaces.
We observe that every metrizable space can be embedded into a uniform Eberlein compact. We show
that if X and Y are l-equivalent spaces, and X is a uniform Eberlein compact, then Y also is a uniform
Eberlein compact. We don’t know if the same statement is true for t-equivalence. We give an example
of an Eberlein compact space which can not be represented as a countable union of uniform Eberlein
compacts.

Each Abelian group contains subset of arbitrary Prodanov index (with two exceptions)
Nadya Lyaskovska
Ivan Franko National University of Lviv, Ukraine
Lyaskovska@yahoo.com

The notion of smallness is represented in many parts of mathematics. Here we discuss the smallness in
combinatorial sense. For a subset A of a Abelian group G, the Prodanov index of A, denoted by ind+

P (A),
is the cardinal

ind+
P (A) = inf{α : for everyB ⊂ G of size |B| = α there are b, b

′

∈ B with b + A ∩ b
′

+ A 6= ∅}.
If the Prodanov index of a subset A is equal to some natural number n it means that there are n − 1

disjoint shifts of A.
Theorem. Each infinite Abelian group G contains a subset A ⊂ G with ind+

P (A) = α for any cardinal
α > 4.
Theorem. Each infinite Abelian group G which is not isomorphic to ⊕Z2 contains a subset A ⊂ G with

ind+
P (A) = 4.

Remark. The group ⊕Z2 does not contain a subset A ⊂ G with ind+
P (A) = 4.

Theorem. Each infinite Abelian group G which is not isomorphic to ⊕Z3 contains a subset A ⊂ G with
ind+

P (A) = 3.

Remark. The group ⊕Z3 does not contain a subset A ⊂ G with ind+
P (A) = 3.

Applications of pcf theory to topology and measure theory
Henryk Michalewski
Ben Gurion University, Beer Sheva, Israel
henrykm@cs.bgu.ac.il

Coauthors: M. Kojman

We prove that there exists a normal space such that every Baire measure is extendible to a Borel
measure but there exists a Baire measure which is not extendible to a regular Borel measure. This gives
an answer to a question of Ohta and Tamano and provides a partial answer to a question of Fremlin.

The Near Coherence of Filters Principle does not imply the Filter dichotomy Principle
Heike Mildenberger
Universität Wien, Kurt Gödel Research Center for Mathematical Logic, Währinger Str. 25, 1090 Wien,
Austria
heike@logic.univie.ac.at

Coauthors: Saharon Shelah
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We show that there is a forcing extension in which any two ultrafilters on ω are nearly coherent and
there is a non-meagre filter that is not nearly ultra. This answers Blass’ longstanding question whether
the principle of near coherence of filters is strictly weaker than the filter dichotomy principle.

Egorov theorem and Q-ideals
Nikodem Mrożek
Institute of Mathematics, University of Gdańsk, Poland
medokin12@o2.pl

Last year Marek Balcerzak, Katarzyna Dems and Andrzej Komisarski proved statistical version of
Egorov theorem. We extend their result into many other ideals especially analytic P-ideals, which are
nicely characterized by S lawomir Solecki. We show ideals for which holds weak and strong version of
Egorov theorem. We also characterize such ideals using the notion of Q-ideals.

Topological properties of spaces of measures
Grzegorz Plebanek
Institute of Mathematics, University of Wroc law, Poland
grzes@math.uni.wroc.pl

Given a compact space K, we consider the space P (K) of regular probability measures defined on K.
Such a space P (K) may be equipped with a natural compact topology (the weak∗ topology inherited
from C(K)∗).

We discuss some results and open problems on possible connections between basic topological proper-
ties of P (K) and the space K itself. In particular, we mention a ZFC example showing that there is no
(so far. . . ) natural criterion for separability of P (K).

Universally Kuratowski-Ulam spaces
Szymon Plewik
Institute of Mathematics, University of Silesia, Katowice, Poland
plewik@math.us.edu.pl

Coauthors: Andrzej Kucharski

We consider a version of the open-open game, which was invented by P. Daniels, K. Kunen and H.
Zhou, On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220. Two players take turns playing
with a topological space X. Player I chooses a finite family A0 of non-empty open subsets of X. Then
Player II chooses a finite family B0 of non-empty open subsets of X such that for each U ∈ A0 there
exists V ∈ B0 with V ⊆ U . Similarly at the n-th round Player I chooses a finite family An of non-empty
open subset of X. Then Player II chooses a finite family Bn of non-empty open subsets of X such that for
each U ∈ An there exists V ∈ Bn with V ⊆ U . If for any natural number k the union

⋃
{Bk ∪Bk+1 ∪ . . .}

is a dense subset of X, then Player I wins; otherwise Player II wins. The space X is I-favorable whenever
Player I wins no matter how Player II plays. We say that Player I has a winning strategy.

We have compared notions of uK-U and uK-U∗ spaces. A space Y is universally Kuratowski-Ulam
(for short, uK-U space), whenever for any topological space X and a meager set E ⊆ X × Y , the set

{x ∈ X : {y ∈ Y : (x, y) ∈ E} is not meager in Y }

is meager in X, uK-U spaces has been investigated by D. Fremlin, T. Natkaniec and I. Reclaw, Universally
Kuratowski-Ulam spaces, Fund. Math. 165 (2000), no. 3, 239 - 247. A space Y is universally Kuratowski-
Ulam∗ (for short, uK-U∗ space), whenever for a topological space X and a nowhere dense set E ⊆ X ×Y
the set

{x ∈ X : {y ∈ Y : (x, y) ∈ E} is not nowhere dense in Y }

is meager in X, it has been introduced by D. Fremlin, Universally Kuratowski-Ulam spaces, a note from:
www.essex.ac.uk/maths/staff/fremlin/preprints.htm.

The main results are :
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• Every I-favorable space is universally Kuratowski-Ulam ∗,
• If a compact space Y is I-favorable, then the hyperspace exp(Y ) with the Vietoris topology is

I-favorable, and hence universally Kuratowski-Ulam∗,

One may conjecture that there is a compact universally Kuratowski-Ulam space which is not I-favorable.

Questions for Justin Moore
Anatolij Plichko
Instytut Matematyki, Politechnika Krakowska, im.Tadeusza Kościuszki, ul. Warszawska 24, 31-155 Kraków,
Poland
aplichko@usk.pk.edu.pl

Uniform spaces through the looking-glass
Igor Protasov
Taras Shevchenko Kyiv National University, Ukraine
tatiana 1@voliacable.com

A ball structure is a triple B = (X,P,B), where X, P are nonempty sets and, for any x ∈ X and
α ∈ P , B(x, α) is a subset of X which is called a ball of radius α around x. It is supposed that x ∈ B(x, α)
for all x ∈ X,α ∈ P . The set X is called the support of B, P is called the set of radiuses. Given any
x ∈ X,A ⊆ X,α ∈ P we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃

a∈A

B(a, α), B∗(A,α) =
⋃

a∈A

B∗(a, α)

A ball structure B = (X,P,B) is called

• lower symmetric if, for any α, β ∈ P , there exist α′, β′ ∈ P such that, for every x ∈ X,

B∗(x, α′) ⊆ B(x, α), B(x, β′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β′ such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, γ), γ) ⊆ B(x, α) ∩ B(x, β);

• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).

Let B = (X,P,B) be a lower symmetric and lower multiplicative ball structure. Then the family

{
⋃

x∈X

B(x, α) × B(x, α) : α ∈ P}

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand, if
U ⊆ X × X is a uniformity on X, then the ball structure (X,U , B) is lower symmetric and lower
multiplicative, where B(x,U) = {y ∈ X : (x, y) ∈ U}. Thus, the lower symmetric and lower multiplicative
ball structures can be identified with the uniform topological spaces.

A ball structure is said to be a ballean (or a coarse structure) if it is upper symmetric and upper
multiplicative. For motivation to study balleans as the asymptotic counterparts of the uniform topological
spaces see [1], [2], [3], [4].

Now we define the mappings which play the part of uniformly continuous mappings on the ballean
stage. Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping f : X1 → X2 is called a
≺-mapping if, for every α ∈ P1,there exists β ∈ P2 such that, for every x ∈ X1,

f(B1(x, α)) ⊆ B2(f(x), β).

A bijection f : X1 → X2 is called an asymorphism between B1 and B2 if f and f−1 are ≺-mappings. If
X1 = X2 and the identity mapping id : X1 → X2 is an asymorphism,we identify B1 and B2, and write
B1 = B2.
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Let B = (X,P,B) be a ballean. We say that a subset A of X is

• bounded if there exist x ∈ X and α ∈ P such that A ⊆ B(x, α);
• large if there exists α ∈ P such that X = B(A,α);
• small if X \ B(A,α) is large for every α ∈ P ;
• thick if int(A,α) 6= ∅ for every α ∈ P , where int(A,α) = {x ∈ X : B(x, α) ⊆ A};
• extralarge if int(A,α) is large for every α ∈ P ;
• piecewise large if there exists β ∈ P such that int(B(A, β), α) 6= ∅ for every α ∈ P ;
• pseudodiscrete if, for every α ∈ P , there exist a bounded subset V of X such that B(x, α)∩A = {a}

for every a ∈ A \ V .

These observations give a foundation for the following uniform spaces-balleans vocabulary:
dense subset large subset

nowhere dense subset small subset
subset with nonempty interior thick subset

subset with dense interior extralarge subset
somewhere dense subset piecewise large subset

discrete subset pseudodiscrete subset
Using this vocabulary, we get the following cardinal invariants of a ballean:
density(B)= min{|L|: L is a large subset of X},
cellularity(B)=sup{|F |: F is a disjoint family of thick subsets of X},
spread(B)=sup{|Y |B: Y is a pseudodiscrete subset of X}, where |Y |B = min{|Y \ V | : V is a bounded

subset of X}.
Given a cardinal κ, we say that a ballean B = (X,P,B) is κ-resolvable if X can be partitioned to κ

large subsets. The resolvability of B is the cardinal

res(B) = sup{κ : B is κ − resolvable}.

Given a cardinal κ, we say that a ballean B = (X,P,B) is κ− extraresolvable if there exists a family
F of large subsets of X such that |F| = κ and F ∩F ′ is small whenever F, F ′ are distinct elements of F .
The extraresolvability of B is the cardinal

exres(B) = sup{κ : B is κ − extraresolvable}.

In the talk I intend to survey the interplays between these invariants and show some of its applications.
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Bolzano Weierstrass property for ideals
Ireneusz Rec law
Institute of Mathematics, University of Gdańsk, Poland
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Locally convex topological vector spaces which are reconstructible from their homeomor-
phism groups
Matatyahu Rubin
Ben Gurion University of the Negev, Beer Sheva, Israel
matti@cs.bgu.ac.il

Let X and Y be open subsets of locally convex topological vector spaces E and F respectively. Denote
their homeomorphism groups by H(X) and H(Y ), and suppose that ϕ is an isomorphism between H(X)
and H(Y ). It is an open question whether the above implies that there is a homeomorphism τ between
X and Y such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ H(X).

The above is true, however, in the special case that the spaces E and F are normed spaces (1989). The
above is also true under the weaker assumption that E and F are normal space, and admit a continuous
norm (Leiderman Rubin 2001).

We shall prove here another special case.

Theorem A: Let X and Y be open subsets of locally convex metrizable topological vector spaces E
and F respectively and ϕ be an isomorphism between H(X) and H(Y ). Then there is a homeomorphism
τ between X and Y such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ H(X).

Theorem A relies on Theorem B which is stated below. A pair (X,G) in which X is a topological
space and G is a subgroup of the group H(X) of all auto-homeomorphisms of X is called a space-group
pair. A class K of space-group pairs is faithful if for every (X,G), (Y,H) ∈ K and an isomorphism ϕ
between G and H there is a homeomorphism τ between X and Y such that ϕ(g) = τ ◦ g ◦ τ−1 for every
g ∈ G.

Let (X,G) be a space-group pair and S ⊆ X be open. S is strongly flexible, if for every infi-
nite A ⊆ S without accumulation points in X, there is a nonempty open set V ⊆ X such that
for every nonempty open set W ⊆ V there is g ∈ G such that the sets {a ∈ A | g(a) ∈ W} and
{a ∈ A | }for some neighborhood U of a, g�U = Id are infinite.

Theorem B: Let K be the class of all space-group pairs (X,G) such that
(1) X is regular, first countable and has no isolated points.
(2) For every x ∈ X and an open neighborhood U of x the set

{g(x) | g ∈ G and g�(X − U) = Id} is somewhere dense.
(3) The family of strongly flexible sets is a cover of X.
Then K is faithful.

Theorem B has applications other than Theorem A.

Maximal abelian self adjoint subalgebras of the Calkin algebra
Juris Steprans
Department of Mathematics and Statistics, York University, Toronto, Canada
steprans@yorku.ca

The Calkin algebra is the quotient of the algebra of bounded operators on separable Hilbert space
modulo the ideal of compact operators; as such it can be viewed as a non-commutative version of the
power set of the integers modulo the ideal of finite sets. It is of interest to examine to what extent the
large body of set theoretic results about the Cech-Stone compactification of the integers (and its algebra
of clopen sets) can be carried over to the context of the Calkin algebra and its state space.

This talk will provide some background on these matters and then look at a specific application to
the construction of maximal abelian self adjoint subalgebras (masas) of the Calkin algebra. Canonical
examples of masas are obtained, for example, by considering the algebra of diagonal operators with
respect to a fixed basis in Hilbert space and then lifting to the Calkin algebra. Multiplication by L∞

provides similar examples. The structure of other examples remains to be analyzed completely and is
likely to depend on set theoretic hyptheses. Some examples of such constructions will be examined.
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Fuzzy Set Theory in Encoding Spatial Relations
Les Sztandera
Philadelphia University, USA
SztanderaL@PhilaU.edu

Spatial relationships between regions in an image play an important role in scene understanding.
Humans are able to quickly ascertain the relationship between two objects, for example B is to the right
of A, or B is in front of A, but this has turned out to be a somewhat illusive task for automation. When
the objects in a scene are represented by crisp sets, the all-or-nothing definitions of the subsets actually
add to the problem of generating such relational descriptions. It is our belief that definitions of spatial
relationships based on fuzzy set theory, coupled with a fuzzy segmentation will yield realistic results.

Towards a structure theory for T5 compact spaces
Stevo Todorčević
CNRS Paris, France and University of Toronto, Toronto, Canada
stevo@math.jussieu.fr

We describe a context in which the class of compact ccc T5 spaces looks quite close to the class of
compact metric spaces.

The combinatorics of the Baire group
Boaz Tsaban
The Weizmann Institute of Science, Rehovot, Israel
boaz.tsaban@weizmann.ac.il

Coauthors: Micha l Machura

We study subgroups of Z
N which possess group theoretic properties of boundedness type, analogous

to properties introduced by Menger (1924), Hurewicz (1925), Rothberger (1938), and Scheepers (1996).
(The studied properties were introduced independently by Kocinac and Okunev).

We obtain purely combinatorial characterizations of these properties, and combine them with other
techniques to solve several questions of Babinkostova, Kocinac, and Scheepers.

An informal thesis emerging from our study is that the Baire group is a “universal” group with respect
to boundedness properties of groups.

This paper is available online at http://arxiv.org/abs/math.GN/0508146

Examples of function spaces which are non-separable topological Hilbert manifolds
Atsushi Yamashita
University of Tokyo, Japan
yonster@ms.u-tokyo.ac.jp

Using Toruńczyk’s characterization theorem [1], we show that the space CB(X,Y ) of bounded contin-
uous mappings from X into Y is a topological manifold modelled on the Hilbert space of weight 2ω, with
respect to the topology of uniform convergence, under the following three assumptions:

(1) X is a noncompact, separable and metrizable space,
(2) Y is a complete metric space which is an ANRU (ANR in uniform sense, a notion introduced by

Nguyen To Nhu [2]),
(3) the components of Y have diameters bounded away from zero.
Compact polyhedra satisfy assumptions (2) and (3) for Y . The assumption (2) and (3) can be replaced

by ”Y is a connected complete Riemannian manifold”, where the metric is determined by the geodesics.
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Complete nonmeasurabilitty in regular families of small sets
Szymon Żeberski
Mathematical Institute, University of Wroclaw, Poland
szebe@math.uni.wroc.pl

Coauthors: Robert Ralowski (Technical University of Wroclaw)

MSC: Primary 03E75; Secondary 03E35, 28A05, 28A99
Keywords: Lebesgue measure, Baire property, measurable set, algebraic sum

The main motivation of this paper is the following theorem which is known in the literature as Four
Poles Theorem.

Theorem 1 (Brzuchowski, Cichon, Grzegorek, Ryll-Nardzewski). Let X be any Polish space and let I
be a σ–ideal with Borel base. Assume that A ⊆ I is point-finite family i.e. for each x ∈ X|{A ∈ A : x ∈
A}| < ω and

⋃
A = X. Then there exists a subfamily A0 ⊆ A such that

⋃
A0 is I–nonmeasurable i.e. for

each B ∈ B(X) B4
⋃

A0 /∈ I.

In various cases it is possible to obtain more than nonmeasurability of the union of a subfamily A0.
Namely, the intersection of this union with any measurable set that is not in I is nonmeasurable (recall,
the measurability is understood here in the sense of belonging to the σ-algebra generated by the family
of Borel sets and I). Such strong conclusion can be obtained for the ideal of first Baire category sets
under the assumption that A is a partition (see [3]).

In this paper we show how to obtain complete nonmeasurability of the union of subfamily of A assuming
that the family A is in some sense regular. We avoid to use any additional set-theoretic assumptions.

Definition 1. Let (X, I) be a Polish ideal space. Let A ⊆ X. We say that A is completely I–
nonmeasurable if

∀B ∈ B(X) A ∩ B 6= ∅ ∧ Ac ∩ B 6= ∅.

Let us notice that A is completely [X]≤ω–nonmeasurable iff A is a Bernstein set. A set A is completely
L–nonmeasurable if A has full outer measure and its inner measure is zero.

Now, we we deal with c.c.c. ideals. Let us recall that for a set A ⊆ X by [A]I we denote the Borel
envelope of A, i.e. the minimal (mod I) Borel set containing A.

Theorem 2. Let X be an uncountable Polish space. Let I ⊆ P (X) be a c.c.c σ-ideal with Borel base.
Assume that we have a family F ⊆ I satisfying the following conditions

(1) F is point-finite.
(2) (∀B ∈ B + (X))(B ⊆ [

⋃
F ]I → |{F ∈ F : F ∩ B 6= ∅}| = 2ω).

Then there exists a subfamily F ′ ⊆ F such that
⋃

F ′ is completely I–nonmeasurable in [
⋃

F ]I .
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