
Programowanie dynamiczne,
a problemy optymalizacyjne

W procesie opracowywania algorytmu programowania dynamicznego 
dla problemu optymalizacji wyróżniamy etapy:

Etap1. Określenie właściwości rekurencyjnej, która daje rozwiązanie 
             optymalne dla realizacji problemu.

Etap2. Obliczenie wartości rozwiązania optymalnego w porządku 
            wstępującym.

Etap3. Skonstruowanie rozwiązania optymalnego w porządku 
            wstępującym

Nie jest prawdą, że problem optymalizacji może zawsze zostać 
rozwiązany przy użyciu programowania dynamicznego. Aby tak było 
w problemie musi mieć zastosowanie zasada optymalności.

Zasada optymalności.

Zasada optymalności ma zastosowanie w problemie wówczas, gdy 
rozwiązanie optymalne realizacji problemu zawsze zawiera 
rozwiązania optymalne dla wszystkich podrealizacji.

Zasada optymalności w problemie najkrótszej drogi:  jeżeli νk jest 
wierzchołkiem należącym do drogi optymalnej z νi do νj , to poddrogi 
z νi do νk oraz z νk do νj również muszą być optymalne. Optymalne 
rozwiązanie realizacji zawiera rozwiązania optymalne wszystkich 
podrealizacji.

Jeżeli zasada optymalności ma zastosowanie w przypadku danego 
problemu, to można określić właściwość rekurencyjną, która będzie 
dawać optymalne rozwiązanie realizacji w kontekście optymalnych 
rozwiązań podrealizacji.



W praktyce zanim jeszcze założy się, że rozwiązanie optymalne może 
zostać otrzymane dzięki programowaniu dynamicznemu trzeba 
wykazać, że zasada optymalności ma zastosowanie.
    
Przykład.
Rozważmy  problem  znalezienia  najdłuższych! prostych  dróg 
wiodących  od  każdego  wierzchołka  do  wszystkich  innych 
wierzchołków.  Ograniczamy  się  do  prostych  dróg,  ponieważ  w 
przypadku cykli zawsze możemy utworzyć dowolnie długą poprzez 
powtórne przechodzenie przez cykl.

Optymalna (najdłuższa) prosta droga z ν1 do ν4 to [ν1 , ν3 , ν2 , ν4]. 
Poddroga [ν1, ν3] nie jest optymalną drogą z ν1 do ν3 ponieważ 

           długość[ν1, ν3] = 1    <    długość[ν1, ν2 ,ν3] = 4 

Zatem zasada optymalności nie ma zastosowania. Wynika to z faktu, 
że optymalne drogi ν1 do ν3 oraz z ν3 do ν4 nie mogą zostać powiązane, 
aby utworzyć optymalną drogę z ν1 do ν4 . W ten sposób utworzymy 
cykl, nie optymalną drogę.



Łańcuchowe mnożenie macierzy

Załóżmy, że chcemy pomnożyć macierze o wymiarach 2x3 i 3x4 w 
następujący sposób:

┌             ┐      ┌                 ┐      ┌                            ┐
│  1  2  3 │      │ 7  8  9  1  │      │ 29   35   41    38 │
│  4  5  6 │  x  │ 2  3  4  5  │  =  │ 74   89   104  83 │ = C(2,4)
└             ┘      │ 6  7  8  9  │      └                            ┘
                         └                 ┘
Macierz wynikowa ma rozmiary 2x4.
Każdy element można uzyskać poprzez 3 mnożenia,
przykładowo C(1,1) = 1x7 + 2x2 + 3x6
W iloczynie macierzy występuje 2x4=8 pozycji wiec całkowita liczba 
elementarnych operacji mnożenia wynosi 2x4x3 = 24.

Ogólnie w celu pomnożenia macierzy o wymiarach  i x j przez 
macierz o wymiarach j x k standardowo musimy wykonać i x j x k 
elementarnych operacji mnożenia.

Weźmy mnożenie:
                  A     x       B      x      C     x     D
               20x2         2x30        30x12     12x8

Mnożenie macierzy jest łączne. Może być realizowane przykładowo:
Ax(Bx(CxD)) lub (AxB)x(CxD).

Istnieje 5 różnych kolejności w których można pomnożyć 4 macierze :
Ax(Bx(CxD)) = 30x12x8 + 2x30x8 +20x2x8         = 3680

(AxB)x(CxD) = 20x2x30 + 30x12x8 +20x30x8   = 8880

Ax((BxC)xD) = 2x30x12 + 2x12x8 + 20x2x8        = 1232

((AxB)xC)xD = 20x2x30 + 20x30x12 + 20x12x8  = 10320

(Ax(BxC))xD = 2x30x12 + 20x2x12 + 20x12x8    = 3120 .



Każde mnożenie 4 macierzy wymaga innej liczby elementarnych 
operacji mnożenia. Trzecia kolejność jest optymalna.

Zadanie:
Opracować algorytm określający optymalną kolejność mnożenia n 
macierzy.

Kolejność mnożenia macierzy zależy tylko od rozmiarów macierzy.

Dane: 
Ilość macierzy n oraz rozmiary macierzy.

Algorytm metodą siłową - rozważenie wszystkich kolejności i 
wybranie minimum.

Czas wykonania algorytmu siłowego.
Niech tn  będzie liczbą różnych kolejności mnożenia n macierzy: 
A1,A2,…,An.
Weźmy podzbiór kolejności dla których macierz A1 jest ostatnią 
mnożoną macierzą. W podzbiorze tym mnożymy macierze od A2 do 
An, liczba różnych kolejności w tym podzbiorze wynosi tn-1 :
                                         A1 x (A2…An)        
                                                       ↑_ tn-1 różnych możliwości

Drugi podzbiór jest zbiorem kolejności, w przypadkach w których 
macierz An jest ostatnią mnożoną macierzą. Liczba kolejności w tym 
podzbiorze również wynosi tn-1. 

Zatem dla n macierzy:                                            tn ≥ tn-1 + tn-1 = 2 tn-1

Natomiast dla 2 macierzy:                                                       t2 = 1

Korzystając z rozwiązania równania rekurencyjnego:           tn ≥ 2n-2 



Dla tego problemu ma zastosowanie zasada optymalności, tzn. 
optymalna kolejność mnożenia n macierzy zawiera optymalną 
kolejność mnożenia dowolnego podzbioru zbioru n macierzy.

Przykładowo, jeżeli optymalna kolejność mnożenia 6 macierzy jest:

                                                    A1((((A2A3)A4)A5)A6)
to
                                                           (A2A3)A4

Musi być optymalną kolejnością mnożenia macierzy od A2 do A4 .

Ponieważ mnożymy (k-1)-szą macierz, Ak-1, przez k-tą macierz, Ak, 
liczba kolumn w Ak-1 musi być równa liczbie wierszy w Ak .
Przyjmując, że d0 jest liczbą wierszy w A1, zaś dk jest liczbą kolumn w 
Ak   dla 1 ≤ k ≤ n, to wymiary Ak będą wynosić dk-1 x dk .

Do rozwiązania problemu wykorzystamy sekwencje tablic dla 
1 ≤ i ≤ j ≤ n :

     M[i][j] = minimalna liczba mnożeń wymaganych do pomnożenia  
                    macierzy od Ai  do Aj , jeżeli i < j
     M[i][i] = 0



Przykład (6 macierzy):

                     A1    x     A2       x       A3     x    A4     x     A5    x    A6

                   5x2         2x3         3x4         4x6          6x7        7x8 
                   d0 d1       d1 d2        d2 d3       d3 d4        d4 d5        d5 d6

Dla pomnożenia macierzy A4 , A5 , A6 możemy określić dwie 
kolejności oraz liczby elementarnych operacji mnożenia:

  (A4 A5)A6   Liczba operacji mnożenia  = d3 x d4 x d5 + d3 x d5 x d6

                                                              = 4 x 6 x 7 + 4 x 7 x 8 = 392

  A4 (A5 A6 ) Liczba operacji mnożenia  = d4 x d5  x d6  + d3 x d4 x d6

                                                              = 6 x 7 x 8 + 4 x 6 x 8 = 528

Stąd:                    M[4][6] = minimum(392,528) = 392
_______________________________________________________________

Optymalna kolejność mnożenia 6 macierzy musi mieć jeden z 
rozkładów:

1. A1(A2A3A4A5A6)

2. (A1A2 )(A3A4A5A6)

3. (A1A2A3 )(A4A5A6)

4. (A1A2A3A4)(A5A6)

5. (A1A2A3A4A5)A6

gdzie iloczyn w nawiasie jest uzyskiwany zgodnie z optymalna 
kolejnością.

Liczba operacji mnożenia dla k-tego rozkładu jest minimalną liczba 
potrzebną do otrzymania każdego czynnika, powiększoną o liczbę 
potrzebną do pomnożenia dwóch czynników:



                          M[1][k] + M[k+1][6] + d0 dk d6

 Zatem:
                          M[1][6] = minimum(M[1][k] + M[k+1][6] + d0 dk d6 )
                                            1≤ k ≤ 5

Uogólniając ten rezultat w celu uzyskania właściwości rekurencyjnej, 
związanej z mnożeniem macierzy dostajemy (dla 1≤ i ≤  j ≤ n ) :

                            M[i][j] = minimum(M[i][k] + M[k+1][j] + di-1 dk dj )
                                            i ≤ k ≤ j-1

                            M[i][i] = 0

Algorytm typu dziel i zwyciężaj oparty na tej właściwości jest 
wykonywany w czasie wykładniczym.

Można jednak przedstawić wydajniejszy algorytm dynamiczny liczący 
M[i][j] w kolejnych etapach.

Używamy siatkę podobną do trójkąta Pascala.
Element M[i][j] jest obliczany:
- na podstawie wszystkich wpisów ze swojego wiersza znajdujących 
się po jego lewej stronie
- wpisów ze swojej kolumny, znajdujących się poniżej niego

Algorytm:
- ustawiamy wartość elementów na głównej przekątnej na 0

- obliczamy wszystkie elementy na przekątnej powyżej (przekątna 1)

- obliczamy wszystkie wartości na przekątnej 2

- kontynuujemy obliczenia aż do uzyskania jedynej wartości na 
  przekątnej 5, która jest odpowiedzią końcową M[1][6]



Przykład (6 macierzy)

Obliczamy przekątną 0:

                   M[i][i] = 0   dla   1≤ i ≤ 6

Obliczamy przekątną 1:

                 M[1][2] = minimum( M[1][k] + M[k+1][2] + d0 dk d2 )
                                    1 ≤ k ≤ 1

                               = M[1][1] + M[2][2] + d0 d1 d2

                               = 0 + 0 + 5 x 2 x 3 = 30

Wartości  M[2][3] ,  M[3][4] , M[4][5] , M[5][6] liczymy podobnie.



Obliczamy przekątną 2:

                 M[1][3] = minimum( M[1][k] + M[k+1][3] + d0 dk d3 )
                                    1 ≤ k ≤ 2

                               = minimum( M[1][1] + M[2][3] + d0 d1 d3 ,
                                                    M[1][2] + M[3][3] + d0 d2 d3 )
                         =minimum( 0 + 24 + 5 x 2 x 4, 30 + 0 + 5 x 3 x 4 )=64
                               
Wartości  M[2][4] , M[3][5] , M[4][6]  liczymy podobnie.

Obliczamy przekątną 3:

                 M[1][4] = minimum( M[1][k] + M[k+1][4] + d0 dk d4 )
                                    1 ≤ k ≤ 3

                               = minimum( M[1][1] + M[2][4] + d0 d1 d4 ,
                                                    M[1][2] + M[3][4] + d0 d2 d4 ,
                                                    M[1][3] + M[4][4] + d0 d3 d4  )

                              = minimum( 0 + 72 + 5 x 2 x 6, 30 + 72 + 5 x 3 x 6,
                                                    64 + 0 + 5 x 4 x 6 ) = 132

Wartości  M[2][5] , M[3][6]   liczymy podobnie.

Przekątną 4 liczymy podobnie :   M[1][5] = 226, M[2][6] = 268 
Przekątną 5 liczymy podobnie :   M[1][6] = 348

________________________________________________________
Algorytm: minimalna liczba operacji mnożenia

Problem : określić minimalną liczbę elementarnych operacji 
mnożenia, wymaganych w celu pomnożenia n macierzy oraz 
kolejność wykonywania mnożeń, która zapewnia minimalną liczbę 
operacji.

Dane: liczba macierzy n oraz tablica liczb całkowitych d, 
indeksowana od 0 do n, gdzie d[i-1] x d[i] jest rozmiarem i-tej 
macierzy.



Wynik : minmult – minimalna liczba elementarnych operacji 
mnożenia, wymaganych w celu pomnożenia n macierzy; 
dwuwymiarowa tablica P, na podstawie której można określić 
optymalną kolejność. P[i][j] jest punktem, w którym macierze od i do 
j zostaną rozdzielone w kolejności optymalnej dla mnożenia macierzy. 

int minmult(int n, const int d[], index P[][])
{
 index i,j,k,diagonal;
 int M[1..n][1..n];

 for (i=1; i ≤ n; i++)
     M[i][i]=0;
 for (diagonal = 1; diagonal ≤ n-1; diagonal++)
    for (i=1; i ≤ n - diagonal; i++)
    {
       j=i+diagonal;
      M[i][j]= minimum (M[i][k]+M[k+1][j]+
               i ≤ k ≤ j-1  d[i-1]*d[k]*d[j] )

      P[i][j] = wartość k, która dała minimum
    }
return M[1][n];
}

________________________________________________________
Złożoność czasowa – minimalna liczba operacji mnożenia.

Operacją podstawową są instrukcje wykonywane dla każdej wartości 
k, w tym sprawdzenie czy wartość jest minimalna.

Rozmiar danych: n- liczba macierzy do pomnożenia.
Mamy do czynienia z pętlą w pętli. Ponieważ j = i + diagonal dla 
danych diagonal oraz i. 
Liczba przebiegów pętli k wynosi



        j – 1 – i + 1  =  i + diagonal – 1 – i + 1 =  diagonal

Dla danej wartości diagonal liczba przebiegów pętli for-i wynosi n-
diagonal. 
Diagonal może przyjmować wartości od 1 do n - 1 , całkowita liczba 
powtórzeń operacji podstawowej wynosi
      n-1

      Σ [(n – diagonal) x diagonal]= n(n-1)(n+1)/6 ∈ Θ(n3)
diagonal=1 
Przykład:  

P[2][5] = 4    oznacza optymalną kolejność mnożenia  (A2 A3 A4) A5 
Punkt 4 jest punktem rozdzielenia macierzy w celu otrzymania 
czynników.

Mając tablicę P:
          1       2       3       4       5       6
       1 |        1       1        1      1       1
          |                 
       2 |                 2        3      4       5
          |
       3 |                           3      4       5
          |
       4 |                                   4       5
          |
       5 |                                            5

możemy odczytać:
      P[1][6] = 1   ->  A1 (A2 A3 A4 A5 A6)
      P[2][6] = 5   ->  A1 ((A2 A3 A4 A5) A6)
      P[2][5] = 4   ->  A1 (((A2 A3 A4) A5) A6)
      P[2][4] = 3   ->  A1 ((((A2 A3) A4) A5) A6)



Algorytm: wyświetlanie optymalnej kolejności

Problem: wyświetlić optymalną kolejność dla mnożenia n macierzy.
Dane: dodatnia liczba całkowita n oraz tablica P
Wynik: optymalna kolejność mnożenia macierzy
     

void order(index i, index j)
{
  if (i==j)
    cout << “A” << i;
  else {
    k = P[i][j];
    cout << “(“;
    order(i,k);
    order(k+1,j);
    cout << “)”;
  }
}



Optymalne drzewa 
wyszukiwania binarnego

Opracowujemy  algorytm  określania  optymalnego  sposobu 
zorganizowania  zbioru  elementów  w postaci  drzewa  wyszukiwania 
binarnego.  

Dla  każdego wierzchołka  w drzewie  binarnym poddrzewo,  którego 
korzeniem jest lewy (prawy) potomek tego wierzchołka, nosi nazwę 
lewego (prawego) poddrzewa wierzchołka. 

Lewe  (prawe)  poddrzewo  korzenia  drzewa  nazywamy  lewym 
(prawym) poddrzewem drzewa.

Drzewo wyszukiwania binarnego.

Drzewo wyszukiwania binarnego jest binarnym drzewem elementów 
(nazywanych kluczami) pochodzących ze zbioru uporządkowanego. 
Musi spełniać warunki:

1. Każdy wierzchołek zawiera jeden klucz.

2. Każdy  klucz  w  lewym  poddrzewie  danego  wierzchołka  jest 
mniejszy lub równy kluczowi tego wierzchołka.

3. Klucze  znajdujące  się  w  prawym  poddrzewie  danego 
wierzchołka są większe lub równe kluczowi tego wierzchołka.



Przykład.

Dwa  drzewa  o  tych  samych  kluczach.  W  lewym  drzewie  prawe 
poddrzewo  wierzchołka  Rudolf zawiera  klucze  (imiona)  Tomasz, 
Urszula,  Waldemar  wszystkie  większe  od  Rudolf  zgodnie  z 
porządkiem alfabetycznym. 
Zakładamy, że klucze są unikatowe.

Głębokość wierzchołka w drzewie jest liczbą krawędzi w unikatowej 
drodze,  wiodącej  od  korzenia  do  tego  wierzchołka,  inaczej  zwana 
poziomem wierzchołka w drzewie.

Głębokość  drzewa  to  maksymalna  głębokość  wszystkich 
wierzchołków  (w  przykładzie  -  drzewo  po  lewej  głębokość  3,  po 
prawej głębokość 2)

Drzewo  nazywane  jest  zrównoważonym,  jeżeli  głębokość  dwóch 
poddrzew każdego wierzchołka nigdy nie różni się o więcej niż 1 (w 
przykładzie  –  lewe  drzewo  nie  jest  zrównoważone,  prawe  jest 
zrównoważone).



Zwykle  drzewo wyszukiwania  binarnego  zawiera  pozycje,  które  są 
pobierane  zgodnie  z  wartościami  kluczy.  Celem  jest  takie 
zorganizowanie  kluczy  w  drzewie  wyszukiwania  binarnego,  aby 
średni  czas  zlokalizowania  klucza  był  minimalny.  Drzewo 
zorganizowane w ten sposób jest nazywane optymalnym.

Jeżeli wszystkie klucze charakteryzuje to samo prawdopodobieństwo 
zostania kluczem wyszukiwania, to drzewo z przykładu (prawe) jest 
optymalne.

Weźmy  przypadek,  w  którym  wiadomo,  że  klucz  wyszukiwania 
występuje w drzewie. Aby zminimalizować średni czas wyszukiwania 
musimy określić złożoność czasową operacji lokalizowania klucza. 

________________________________________________________
Algorytm  wyszukiwania  klucza  w  drzewie  wyszukiwania 
binarnego

Wykorzystujemy strukturę danych:
    struct nodetype
    {
       keytype key;
       nodetype* left;
       nodetype* right;
    };
    typedef nodetype* node_pointer;

Zmienna  typu  node_pointer jest  wskaźnikiem do rekordu typu 
nodetype.

Problem: określić wierzchołek zawierający klucz  w  drzewie 
                 wyszukiwania binarnego, zakładając że taki występuje 
                 w drzewie.

Dane: wskaźnik tree do drzewa wyszukiwania binarnego oraz 
            klucz keyin.

Wynik: wskaźnik p do wierzchołka zawierającego klucz.



void search(node_pointer tree, 
            keytype keyin,
            node_pointer p)
{
  bool found;

  p = tree;
  found = false;
  while (!found)
     if (p->key == keyin)
         found = true;
     else if (keyin < p->key)
          p = p->left;
          else
          p = p->right;
}

Liczbę  porównań  wykonywanych  przez  procedurę  search w  celu 
zlokalizowania  klucza  możemy  nazwać  czasem  wyszukiwania. 
Chcemy znaleźć drzewo, dla którego średni czas wyszukiwania jest 
najmniejszy. 

Zakładając, że w każdym przebiegu pętli while wykonywane jest tylko 
jedno porównanie możemy napisać :  
                       czas wyszukiwania = głębokość(key) + 1 
Przykładowo (lewe poddrzewo):
                       czas wyszukiwania = głębokość(Urszula) + 1 = 2+1 = 3

Niech Key1, Key2, …, Keyn będą n uporządkowanymi kluczami oraz pi 

będzie  prawdopodobieństwem  tego,  że  Keyi jest  kluczem 
wyszukiwania.  Jeżeli  ci oznacza  liczbę  porównań  koniecznych  do 
znalezienia klucza Keyi w danym drzewie, to: 
                                                                   n

                     średni czas wyszukiwania = Σci pi

                                                                  i=1 

Jest to wartość która trzeba zminimalizować.



Przykład.

Mamy 5 różnych drzew dla n = 3. Wartości kluczy nie są istotne.  

Jeżeli:
              p1 = 0.7     ,      p2 = 0.2     oraz     p3 = 0.1

to średnie czasy wyszukiwania dla drzew wynoszą :

1. 3(0.7) + 2(0.2) + 1(0.1) = 2.6
2. 2(0.7) + 3(0.2) + 1(0.1) = 2.1
3. 2(0.7) + 1(0.2) + 2(0.1) = 1.8
4. 1(0.7) + 3(0.2) + 2(0.1) = 1.5
5. 1(0.7) + 2(0.2) + 3(0.1) = 1.4

Piąte drzewo jest optymalne.



Oczywiście znalezienie optymalnego drzewa wyszukiwania binarnego 
poprzez rozpatrzenie wszystkich drzew wiąże się z ilością drzew co 
najmniej wykładniczą w stosunku do n. 
W drzewie o głębokości n-1 wierzchołek na każdym z n-1 poziomów 
(oprócz  korzenia)  może  się  znajdować  na  prawo  lub  lewo.  Zatem 
liczba różnych drzew o głębokości n-1 wynosi 2n-1

Załóżmy,  że  klucze  od  Keyi do  Keyj są  ułożone  w  drzewie,  które 
minimalizuje wielkość:
                                  j

                                 Σ cm pm 
                                 m=i 

gdzie cm jest liczbą porównań wymaganych do zlokalizowania klucza 
Keym w drzewie. Drzewo to nazywamy optymalnym.

Wartość  optymalną  oznaczymy  jako  A[i][j]  oraz  A[i][i]=pi (jeden 
klucz wymaga jednego porównania).

Korzystając  z  przykładu  można  pokazać,  że  w  problemie  tym 
zachowana jest zasada optymalności.

Możemy sobie wyobrazić n różnych drzew optymalnych: drzewo 1 w 
którym  Key1 jest  w  korzeniu,  drzewo  2  w  którym  Key2 jest  w 
korzeniu, … , drzewo n w którym Keyn jest w korzeniu. Dla 1 ≤ k ≤ n 
poddrzewa drzewa k muszą być optymalne, więc czasy wyszukiwania 
w tych poddrzewach można opisać:



Dla każdego m ≠ k wymagana jest o jeden większa liczba porównań w 
celu  zlokalizowania  klucza  Keym w  drzewie  k niż  w  celu 
zlokalizowania  tego  klucza  w  poddrzewie  w  którym  się  znajduje. 
Dodatkowe porównanie jest związane z korzeniem i daje 1 x  pm do 
średniego czasu wyszukiwania.

Średni czas wyszukiwania dla drzewa k wynosi 

lub inaczej
                                                          n

                 A[1][k-1] + A[k+1][n] + Σ  pm

                                                        m=1

Jedno z k drzew musi być optymalne więc średni czas wyszukiwania 
optymalnego drzewa określa zależność: 
                                                                                          n

                A[1][n] = minimum(A[1][k-1] + A[k+1][n]) + Σ  pm

                                                                                         m=1

gdzie A[1][0] i A[n+1][n] są z definicji równe 0.

Uogólniamy  definicje  na  klucze  od  Keyi do  Keyj ,  gdzie  i  < j  
i otrzymujemy:



                                                                                       j

                A[i][j] = minimum(A[i][k-1] + A[k+1][j]) + Σ  pm  i < j
                                  i ≤ k ≤ j                                            m=i

               A[i][i] = pi

               A[i][i-1]   oraz A[j+1][j]  są z definicji równe 0.

Wyliczenia  prowadzimy  podobnie  jak  w  algorytmie  łańcuchowego 
mnożenia macierzy.

Algorytm  znajdowania  optymalnego  drzewa  przeszukiwania 
binarnego.
 
Problem:  określenie optymalnego drzewa wyszukiwania  binarnego  
                   dla  zbioru kluczy,  z  których  każdy  posiada  przypisane 
                   prawdopodobieństwo zostania kluczem wyszukiwania.

Dane: n-liczba kluczy oraz tablica liczb rzeczywistych p indeksowana 
            od 1 do n, gdzie p[i] jest prawdopodobieństwem wyszukiwania 
            i-tego klucza

Wyniki:  zmienna  minavg, której wartością  jest średni czas  
               wyszukiwania optymalnego drzewa wyszukiwania 
               binarnego oraz tablica R, z której można skonstruować 
               drzewo optymalne. R[i][j]  jest  indeksem  klucza   
               znajdującego  się   w   korzeniu  drzewa  optymalnego,  
               zawierającego klucze od i-tego do j-tego.



void optsearch(int n, const float p[],
               float minavg, index R[][])
{
   index i, j, k, diagonal;
   float A[1..n+1][0..n];
   
   for (i=1; i <= n; i++) {
       A[i][i-1] = 0;
       A[i][i] = p[i];
       R[i][i] = i;
       R[i][i-1] = 0;
   }
   A[n+1][n] = 0;
   for(diagonal = 1; diagonal <= n-1; diagonal++)
    for(i = 1; i <= n - diagonal; i++)  //Przekatna 1
      {                        //tuz nad glowna przek
       j = i + diagonal;
                                             j

       A[i][j]=minimum(A[i][k-1]+A[k+1][j] + Σ pm ;
               i ≤ k ≤ j                        m=i 

       R[i][j]= wartość k, która dała minimum;
   }
  minavg = A[1][n];
}

Złożoność  czasową  można  określić  podobnie  jak  dla  mnożenia 
łańcuchowego macierzy:

                        T(n) = n(n-1)(n+1)/6  ∈ Θ( n3 )

Algorytm  budowania  optymalnego  drzewa  przeszukiwania 
binarnego.

Problem: zbudować optymalne drzewo wyszukiwania binarnego.

Dane: n – liczba  kluczy,  tablica Key zawierająca  n  uporządkowa- 
           nych  kluczy  oraz tablica R, utworzona w poprzednim 
           algorytmie.  R[i][j] jest indeksem klucza w korzeniu drzewa 
           optymalnego,  zawierającego klucze od i-tego do j-tego



Wynik: wskaźnik  tree  do  optymalnego  drzewa  wyszukiwania  
              binarnego, zawierającego n kluczy.

node_pointer tree(index i,j)
{
   index k;
   node_pointer p;

   k = R[i][j];
   if(k == 0)
      return NULL;
   else
   {
   p = new nodetype;
   p->key = Key[k];
   p->left = tree(i,k-1);
   p->right = tree(k+1,j);
   return p;
   }
}

Przykład.
Załóżmy, że mamy następujące wartości w tablicy Key:
   Damian        Izabela        Rudolf       Waldemar
   Key[1]         Key[2]        Key[3]         Key[4]

oraz
  p1 = 3/8        p2 = 3/8       p3 = 1/8       p4 = 1/8

Tablice A i R będą wówczas wyglądać:   
      0     1       2       3        4                                           0      1        2         3        4
  1 | 0   3/8   9/8    11/8   7/4                                      1 |0      1        1         2        2
     |                                                                               |         
  2 |       0     3/8     5/8     1                                        2 |        0        2         2        2
     |                                                                               |
  3 |               0       1/8    3/8                                      3 |                  0         3        3
     |                                                                               |
  4 |                         0      1/8                                      4 |                            0         4
     |                                                                               |
  5 |                                  0                                        5 |                                       0

                         A                                                                               R





Problem komiwojażera.

Komiwojażer planuje podróż, która uwzględnia odwiedzenie 20 miast. 
Każde miasto jest połączone z niektórymi innymi miastami. Chcemy 
zminimalizować czas czyli musimy określić najkrótszą trasę, która 
rozpoczyna się w mieście początkowym, przebiega przez wszystkie 
miasta i kończy w punkcie startu.

Problem określania najkrótszej trasy nosi nazwę problemu 
komiwojażera.

Problem może być reprezentowany przez graf ważony, z 
wierzchołkami-miastami.

Trasa (droga Hamiltona) w grafie skierowanym jest drogą wiodącą z 
wierzchołka do niego samego, przechodzącą przez wszystkie 
wierzcholki dokładnie raz.

Optymalna trasa w ważonym grafie skierownym jest taką drogą, 
która posiada najmniejszą długość.

Problem polega na na znalezieniu optymalnej trasy w ważonym grafie 
skierowanym, kiedy instnieje przynajmniej jedna trasa.

Wierzchołek początkowy to ν1.



Możemy przykładowo opisać trzy trasy:
                                   length[ν1, ν2, ν3, ν4, ν1] = 22
                                   length[ν1, ν3, ν2, ν4, ν1] = 26
                                   length[ν1, ν3, ν4, ν2, ν1] = 21

Ostatnia trasa jest optymalna.

Najprostsza realizacja polega na rozważeniu wszystkich tras. 
W ogólnym przypadku może istnieć krawędź łącząca każdy 
wierzchołek z każdym innym wierzchołkiem. Drugi wierzchołek na 
trasie może być jednym z  n-1 wierzchołków, trzeci wierzchołek – 
jednym spośród n-2 wierzchołków, n-ty wierzchołek – ostatnim 
wierzchołkiem. 

Zatem całkowita liczba tras wynosi   -   (n-1)(n-2)…1 = (n-1)!
co oznacza wartość gorszą od wykładniczej.

Czy można zastosować programowanie dynamiczne ?

Jeżeli νk jest pierwszym wierzchołkiem po ν1 na trasie optymalnej, 
to droga podrzędna tej trasy z νk do ν1 musi być drogą najkrótszą, 
przechodzącą przez wszystkie pozostałe wierzchołki dokładnie raz. 
Zatem zasada optymalności działa i można stosować programowanie 
dynamiczne.

Graf reprezentuje macierz przyległości W:

                               1__2__3__4
                            1| 0   2    9    ∞   
                              |
                            2| 1   0    6     4
                              |
                            3| ∞  7    0     8
                              |
                            4| 6   3    ∞    0



W rozwiązaniu:
V = zbiór wszystkich wierzchołków
A = podzbiór zbioru V
D[νi][A] = długość najkrótszej drogi z νi do ν1 przechodzącej przez  
                   każdy wierzchołek A dokładnie raz

Zatem w przykładzie:     V = {ν1, ν2, ν3, ν4} – reprezentuje zbiór, 
                                                          [ ]          – reprezentuje drogę 

Jeżeli A = {ν3},        to         

                   D[ν2][A] = length[ν2, ν3, ν1] = ∞

Jeżeli A = {ν3, ν4},   to
        
            D[ν2][A] = minimum(length[ν2, ν3, ν4, ν1],length[ν2, ν4, ν3, ν1])
                            = minimum(20, ∞) = 20

Zbiór V – {ν1, νj} zawiera wszystkie wierzchołki oprócz ν1 oraz νj i 
ma zastosowanie zasada optymalności, możemy stwierdzić:

     Długość trasy minimalnej = minimum(W[1][j]+D[νj][V-{ν1, νj}])
                                                       2 ≤ j ≤ n

i ogólnie dla i ≠ 1oraz νi nie należącego do A

    D[νi][A] = minimum(W[i][j]+D[νj][A-{νj}])  jeżeli A ≠ ∅
                                     j: νj ∈ A

   D[νi][∅] = W[i][1]

Określmy optymalną trasę dla grafu z przykładu.
Dla zbioru pustego:

                    D[ν2][∅] = 1
                    D[ν3][∅] = ∞
                    D[ν4][∅] = 6



Teraz rozważamy wszystkie zbiory zawierające jeden element:

                 D[ν3][{ν2}] = minimum(W[3][j] +D[νj][{ν2}-{νj}])
                                     = W[3][2] + D[ν2][∅] = 7 + 1 = 8

Podobnie:
                 D[ν4][{ν2}] = 3 + 1 = 4
                 D[ν2][{ν3}] = 6 + ∞ = ∞
                 D[ν4][{ν3}] = ∞ + ∞ = ∞
                 D[ν2][{ν4}] = 4  + 6  = 10
                 D[ν3][{ν4}] = 8  + 6  = 14

Teraz rozważamy wszystkie zbiory zawierające dwa elementy:

 D[ν4][{ν2, ν3}] = minimum(W[4][j] +D[νj][{ν2,ν3} - {νj}])
                               j:νj ∈ {ν2, ν3 }

                       = minimum(W[4][2]+D[ν2][{ν3}], W[4][3]+D[ν3][{ν2}])
                       = minimum(3+∞, ∞+8) = ∞

Podobnie:

D[ν3][{ν2, ν4}] = minimum(7+10, 8+4)   = 12
D[ν2][{ν3, ν4}] = minimum(6+14, 4+∞ ) = 20

Na końcu liczymy długość optymalnej trasy:
D[ν1][{ν2, ν3, ν4}] = minimum(W[1][j] +D[νj][{ν2,ν3, ν4} - {νj}])

                               = minimum(W[1][2] +D[ν2][{ν3,ν4}],
                                                  W[1][3] +D[ν3][{ν2,ν4}],
                                                  W[1][4] +D[ν4][{ν2,ν3}])
                               = minimum(2+20, 9+12, 26/∞) = 21



_______________________________________________________
Algorytm programowania dynamicznego dla problemu 
komiwojażera

Problem: określić optymalną trasę w ważonym grafie skierowanym.  
                 Wagi są liczbami nieujemnymi.

Dane wejściowe: ważony graf skierowany oraz n, liczba 
wierzchołków w grafie. Graf reprezentujemy macierzą przyległości W
W[i][j] reprezentuje wagę krawędzi od wierzchołka i-tego do j-tego.

Wynik: zmienna minlength, której wartością jest długość optymalnej 
trasy oraz macierz P, na podstawie której konstruujemy optymalną 
trasę. Wiersze tablicy P są indeksowane od 1 do n, zaś jej kolumny są 
indeksowane przez wszystkie podzbiory zbioru V-{ν1}. Element P[i]
[A] jest indeksem pierwszego wierzchołka, znajdującego się po {νi} 
na najkrótszej drodze z νi do ν1 , która przechodzi przez wszystkie 
wierzchołki A dokładnie raz.

void komiwojazer(int n,
                 const number W[][],
                 index P[][],
                 number minlength)
{
 index i,j,k;
 number D[1..n][podzbior zbioru V-{ν1}];

 for(i=2;i<=n;i++)
     D[i][ ∅] = W[i][1];

 for(k=1;k<=n-2;k++)
  for(wszystkie podzbiory A∈V-{ν1} z k wierzch)
   for(i,takie ze i≠1 oraz νi nie należy do A){
    D[i][A]=minimum(W[i][j]+D[j][A-{νj}]);
                                               j: νj ∈ A

    P[i][A] = wartość j, która daje minimum;
   }



D[1][V-{ν1}] = minimum(W[1][j]+D[j][V-{ν1,νj]); 
               2 ≤ j ≤ n

P[1][V-{ν1}] = wartość j, która daje minimum;
minlength = D[1][V-{ν1}];
}

Elementy tablicy P, wymagane do określenia optymalnej trasy dla 
grafu z przykładu to:

                                   P[1,{ν2, ν3, ν4}]   P[3,{ν2, ν4}]    P[4,{ν2}]

Optymalną trasę można uzyskać:

 Indeks pierwszego wierzchołka = P[1][{ν2, ν3, ν4}]  = 3
                                                            ______________|
                                                           ↓
     Indeks drugiego wierzchołka = P[3][{ν2, ν4}] = 4
                                                                  ________|
                                                                 ↓
          Indeks trzeciego wierzchołka =  P[4][{ν2}] = 2

Optymalna trasa ma postać:  
                                               {ν1, ν3, ν4, ν2, ν1} 

Dotychczas nie opracowano algorytmu dla problemu komiwojażera, 
którego złożoność w najgorszym przypadku byłaby lepsza niż 
wykładnicza.


