
Programowanie dynamiczne,
a problemy optymalizacyjne

W procesie opracowywania algorytmu programowania dynamicznego
dla problemu optymalizacji wyróżniamy etapy:

Etap1. Określenie właściwości rekurencyjnej, która daje rozwiązanie
 optymalne dla realizacji problemu.

Etap2. Obliczenie wartości rozwiązania optymalnego w porządku
 wstępującym.

Etap3. Skonstruowanie rozwiązania optymalnego w porządku
 wstępującym

Nie jest prawdą, że problem optymalizacji może zawsze zostać
rozwiązany przy użyciu programowania dynamicznego. Aby tak było
w problemie musi mieć zastosowanie zasada optymalności.

Zasada optymalności.

Zasada optymalności ma zastosowanie w problemie wówczas, gdy
rozwiązanie optymalne realizacji problemu zawsze zawiera
rozwiązania optymalne dla wszystkich podrealizacji.

Zasada optymalności w problemie najkrótszej drogi: jeżeli νk jest
wierzchołkiem należącym do drogi optymalnej z νi do νj , to poddrogi
z νi do νk oraz z νk do νj również muszą być optymalne. Optymalne
rozwiązanie realizacji zawiera rozwiązania optymalne wszystkich
podrealizacji.

Jeżeli zasada optymalności ma zastosowanie w przypadku danego
problemu, to można określić właściwość rekurencyjną, która będzie
dawać optymalne rozwiązanie realizacji w kontekście optymalnych
rozwiązań podrealizacji.

W praktyce zanim jeszcze założy się, że rozwiązanie optymalne może
zostać otrzymane dzięki programowaniu dynamicznemu trzeba
wykazać, że zasada optymalności ma zastosowanie.

Przykład.
Rozważmy problem znalezienia najdłuższych! prostych dróg
wiodących od każdego wierzchołka do wszystkich innych
wierzchołków. Ograniczamy się do prostych dróg, ponieważ w
przypadku cykli zawsze możemy utworzyć dowolnie długą poprzez
powtórne przechodzenie przez cykl.

Optymalna (najdłuższa) prosta droga z ν1 do ν4 to [ν1 , ν3 , ν2 , ν4].
Poddroga [ν1, ν3] nie jest optymalną drogą z ν1 do ν3 ponieważ

 długość[ν1, ν3] = 1 < długość[ν1, ν2 ,ν3] = 4

Zatem zasada optymalności nie ma zastosowania. Wynika to z faktu,
że optymalne drogi ν1 do ν3 oraz z ν3 do ν4 nie mogą zostać powiązane,
aby utworzyć optymalną drogę z ν1 do ν4 . W ten sposób utworzymy
cykl, nie optymalną drogę.

Łańcuchowe mnożenie macierzy

Załóżmy, że chcemy pomnożyć macierze o wymiarach 2x3 i 3x4 w
następujący sposób:

┌ ┐ ┌ ┐ ┌ ┐
│ 1 2 3 │ │ 7 8 9 1 │ │ 29 35 41 38 │
│ 4 5 6 │ x │ 2 3 4 5 │ = │ 74 89 104 83 │ = C(2,4)
└ ┘ │ 6 7 8 9 │ └ ┘
 └ ┘
Macierz wynikowa ma rozmiary 2x4.
Każdy element można uzyskać poprzez 3 mnożenia,
przykładowo C(1,1) = 1x7 + 2x2 + 3x6
W iloczynie macierzy występuje 2x4=8 pozycji wiec całkowita liczba
elementarnych operacji mnożenia wynosi 2x4x3 = 24.

Ogólnie w celu pomnożenia macierzy o wymiarach i x j przez
macierz o wymiarach j x k standardowo musimy wykonać i x j x k
elementarnych operacji mnożenia.

Weźmy mnożenie:
 A x B x C x D
 20x2 2x30 30x12 12x8

Mnożenie macierzy jest łączne. Może być realizowane przykładowo:
Ax(Bx(CxD)) lub (AxB)x(CxD).

Istnieje 5 różnych kolejności w których można pomnożyć 4 macierze :
Ax(Bx(CxD)) = 30x12x8 + 2x30x8 +20x2x8 = 3680

(AxB)x(CxD) = 20x2x30 + 30x12x8 +20x30x8 = 8880

Ax((BxC)xD) = 2x30x12 + 2x12x8 + 20x2x8 = 1232

((AxB)xC)xD = 20x2x30 + 20x30x12 + 20x12x8 = 10320

(Ax(BxC))xD = 2x30x12 + 20x2x12 + 20x12x8 = 3120 .

Każde mnożenie 4 macierzy wymaga innej liczby elementarnych
operacji mnożenia. Trzecia kolejność jest optymalna.

Zadanie:
Opracować algorytm określający optymalną kolejność mnożenia n
macierzy.

Kolejność mnożenia macierzy zależy tylko od rozmiarów macierzy.

Dane:
Ilość macierzy n oraz rozmiary macierzy.

Algorytm metodą siłową - rozważenie wszystkich kolejności i
wybranie minimum.

Czas wykonania algorytmu siłowego.
Niech tn będzie liczbą różnych kolejności mnożenia n macierzy:
A1,A2,…,An.
Weźmy podzbiór kolejności dla których macierz A1 jest ostatnią
mnożoną macierzą. W podzbiorze tym mnożymy macierze od A2 do
An, liczba różnych kolejności w tym podzbiorze wynosi tn-1 :
 A1 x (A2…An)
 ↑_ tn-1 różnych możliwości

Drugi podzbiór jest zbiorem kolejności, w przypadkach w których
macierz An jest ostatnią mnożoną macierzą. Liczba kolejności w tym
podzbiorze również wynosi tn-1.

Zatem dla n macierzy: tn ≥ tn-1 + tn-1 = 2 tn-1

Natomiast dla 2 macierzy: t2 = 1

Korzystając z rozwiązania równania rekurencyjnego: tn ≥ 2n-2

Dla tego problemu ma zastosowanie zasada optymalności, tzn.
optymalna kolejność mnożenia n macierzy zawiera optymalną
kolejność mnożenia dowolnego podzbioru zbioru n macierzy.

Przykładowo, jeżeli optymalna kolejność mnożenia 6 macierzy jest:

 A1((((A2A3)A4)A5)A6)
to
 (A2A3)A4

Musi być optymalną kolejnością mnożenia macierzy od A2 do A4 .

Ponieważ mnożymy (k-1)-szą macierz, Ak-1, przez k-tą macierz, Ak,
liczba kolumn w Ak-1 musi być równa liczbie wierszy w Ak .
Przyjmując, że d0 jest liczbą wierszy w A1, zaś dk jest liczbą kolumn w
Ak dla 1 ≤ k ≤ n, to wymiary Ak będą wynosić dk-1 x dk .

Do rozwiązania problemu wykorzystamy sekwencje tablic dla
1 ≤ i ≤ j ≤ n :

 M[i][j] = minimalna liczba mnożeń wymaganych do pomnożenia
 macierzy od Ai do Aj , jeżeli i < j
 M[i][i] = 0

Przykład (6 macierzy):

 A1 x A2 x A3 x A4 x A5 x A6

 5x2 2x3 3x4 4x6 6x7 7x8
 d0 d1 d1 d2 d2 d3 d3 d4 d4 d5 d5 d6

Dla pomnożenia macierzy A4 , A5 , A6 możemy określić dwie
kolejności oraz liczby elementarnych operacji mnożenia:

 (A4 A5)A6 Liczba operacji mnożenia = d3 x d4 x d5 + d3 x d5 x d6

 = 4 x 6 x 7 + 4 x 7 x 8 = 392

 A4 (A5 A6) Liczba operacji mnożenia = d4 x d5 x d6 + d3 x d4 x d6

 = 6 x 7 x 8 + 4 x 6 x 8 = 528

Stąd: M[4][6] = minimum(392,528) = 392

Optymalna kolejność mnożenia 6 macierzy musi mieć jeden z
rozkładów:

1. A1(A2A3A4A5A6)

2. (A1A2)(A3A4A5A6)

3. (A1A2A3)(A4A5A6)

4. (A1A2A3A4)(A5A6)

5. (A1A2A3A4A5)A6

gdzie iloczyn w nawiasie jest uzyskiwany zgodnie z optymalna
kolejnością.

Liczba operacji mnożenia dla k-tego rozkładu jest minimalną liczba
potrzebną do otrzymania każdego czynnika, powiększoną o liczbę
potrzebną do pomnożenia dwóch czynników:

 M[1][k] + M[k+1][6] + d0 dk d6

 Zatem:
 M[1][6] = minimum(M[1][k] + M[k+1][6] + d0 dk d6)
 1≤ k ≤ 5

Uogólniając ten rezultat w celu uzyskania właściwości rekurencyjnej,
związanej z mnożeniem macierzy dostajemy (dla 1≤ i ≤ j ≤ n) :

 M[i][j] = minimum(M[i][k] + M[k+1][j] + di-1 dk dj)
 i ≤ k ≤ j-1

 M[i][i] = 0

Algorytm typu dziel i zwyciężaj oparty na tej właściwości jest
wykonywany w czasie wykładniczym.

Można jednak przedstawić wydajniejszy algorytm dynamiczny liczący
M[i][j] w kolejnych etapach.

Używamy siatkę podobną do trójkąta Pascala.
Element M[i][j] jest obliczany:
- na podstawie wszystkich wpisów ze swojego wiersza znajdujących
się po jego lewej stronie
- wpisów ze swojej kolumny, znajdujących się poniżej niego

Algorytm:
- ustawiamy wartość elementów na głównej przekątnej na 0

- obliczamy wszystkie elementy na przekątnej powyżej (przekątna 1)

- obliczamy wszystkie wartości na przekątnej 2

- kontynuujemy obliczenia aż do uzyskania jedynej wartości na
 przekątnej 5, która jest odpowiedzią końcową M[1][6]

Przykład (6 macierzy)

Obliczamy przekątną 0:

 M[i][i] = 0 dla 1≤ i ≤ 6

Obliczamy przekątną 1:

 M[1][2] = minimum(M[1][k] + M[k+1][2] + d0 dk d2)
 1 ≤ k ≤ 1

 = M[1][1] + M[2][2] + d0 d1 d2

 = 0 + 0 + 5 x 2 x 3 = 30

Wartości M[2][3] , M[3][4] , M[4][5] , M[5][6] liczymy podobnie.

Obliczamy przekątną 2:

 M[1][3] = minimum(M[1][k] + M[k+1][3] + d0 dk d3)
 1 ≤ k ≤ 2

 = minimum(M[1][1] + M[2][3] + d0 d1 d3 ,
 M[1][2] + M[3][3] + d0 d2 d3)
 =minimum(0 + 24 + 5 x 2 x 4, 30 + 0 + 5 x 3 x 4)=64

Wartości M[2][4] , M[3][5] , M[4][6] liczymy podobnie.

Obliczamy przekątną 3:

 M[1][4] = minimum(M[1][k] + M[k+1][4] + d0 dk d4)
 1 ≤ k ≤ 3

 = minimum(M[1][1] + M[2][4] + d0 d1 d4 ,
 M[1][2] + M[3][4] + d0 d2 d4 ,
 M[1][3] + M[4][4] + d0 d3 d4)

 = minimum(0 + 72 + 5 x 2 x 6, 30 + 72 + 5 x 3 x 6,
 64 + 0 + 5 x 4 x 6) = 132

Wartości M[2][5] , M[3][6] liczymy podobnie.

Przekątną 4 liczymy podobnie : M[1][5] = 226, M[2][6] = 268
Przekątną 5 liczymy podobnie : M[1][6] = 348

__
Algorytm: minimalna liczba operacji mnożenia

Problem : określić minimalną liczbę elementarnych operacji
mnożenia, wymaganych w celu pomnożenia n macierzy oraz
kolejność wykonywania mnożeń, która zapewnia minimalną liczbę
operacji.

Dane: liczba macierzy n oraz tablica liczb całkowitych d,
indeksowana od 0 do n, gdzie d[i-1] x d[i] jest rozmiarem i-tej
macierzy.

Wynik : minmult – minimalna liczba elementarnych operacji
mnożenia, wymaganych w celu pomnożenia n macierzy;
dwuwymiarowa tablica P, na podstawie której można określić
optymalną kolejność. P[i][j] jest punktem, w którym macierze od i do
j zostaną rozdzielone w kolejności optymalnej dla mnożenia macierzy.

int minmult(int n, const int d[], index P[][])
{
 index i,j,k,diagonal;
 int M[1..n][1..n];

 for (i=1; i ≤ n; i++)
 M[i][i]=0;
 for (diagonal = 1; diagonal ≤ n-1; diagonal++)
 for (i=1; i ≤ n - diagonal; i++)
 {
 j=i+diagonal;
 M[i][j]= minimum (M[i][k]+M[k+1][j]+
 i ≤ k ≤ j-1 d[i-1]*d[k]*d[j])

 P[i][j] = wartość k, która dała minimum
 }
return M[1][n];
}

__
Złożoność czasowa – minimalna liczba operacji mnożenia.

Operacją podstawową są instrukcje wykonywane dla każdej wartości
k, w tym sprawdzenie czy wartość jest minimalna.

Rozmiar danych: n- liczba macierzy do pomnożenia.
Mamy do czynienia z pętlą w pętli. Ponieważ j = i + diagonal dla
danych diagonal oraz i.
Liczba przebiegów pętli k wynosi

 j – 1 – i + 1 = i + diagonal – 1 – i + 1 = diagonal

Dla danej wartości diagonal liczba przebiegów pętli for-i wynosi n-
diagonal.
Diagonal może przyjmować wartości od 1 do n - 1 , całkowita liczba
powtórzeń operacji podstawowej wynosi
 n-1

 Σ [(n – diagonal) x diagonal]= n(n-1)(n+1)/6 ∈ Θ(n3)
diagonal=1
Przykład:

P[2][5] = 4 oznacza optymalną kolejność mnożenia (A2 A3 A4) A5
Punkt 4 jest punktem rozdzielenia macierzy w celu otrzymania
czynników.

Mając tablicę P:
 1 2 3 4 5 6
 1 | 1 1 1 1 1
 |
 2 | 2 3 4 5
 |
 3 | 3 4 5
 |
 4 | 4 5
 |
 5 | 5

możemy odczytać:
 P[1][6] = 1 -> A1 (A2 A3 A4 A5 A6)
 P[2][6] = 5 -> A1 ((A2 A3 A4 A5) A6)
 P[2][5] = 4 -> A1 (((A2 A3 A4) A5) A6)
 P[2][4] = 3 -> A1 ((((A2 A3) A4) A5) A6)

Algorytm: wyświetlanie optymalnej kolejności

Problem: wyświetlić optymalną kolejność dla mnożenia n macierzy.
Dane: dodatnia liczba całkowita n oraz tablica P
Wynik: optymalna kolejność mnożenia macierzy

void order(index i, index j)
{
 if (i==j)
 cout << “A” << i;
 else {
 k = P[i][j];
 cout << “(“;
 order(i,k);
 order(k+1,j);
 cout << “)”;
 }
}

Optymalne drzewa
wyszukiwania binarnego

Opracowujemy algorytm określania optymalnego sposobu
zorganizowania zbioru elementów w postaci drzewa wyszukiwania
binarnego.

Dla każdego wierzchołka w drzewie binarnym poddrzewo, którego
korzeniem jest lewy (prawy) potomek tego wierzchołka, nosi nazwę
lewego (prawego) poddrzewa wierzchołka.

Lewe (prawe) poddrzewo korzenia drzewa nazywamy lewym
(prawym) poddrzewem drzewa.

Drzewo wyszukiwania binarnego.

Drzewo wyszukiwania binarnego jest binarnym drzewem elementów
(nazywanych kluczami) pochodzących ze zbioru uporządkowanego.
Musi spełniać warunki:

1. Każdy wierzchołek zawiera jeden klucz.

2. Każdy klucz w lewym poddrzewie danego wierzchołka jest
mniejszy lub równy kluczowi tego wierzchołka.

3. Klucze znajdujące się w prawym poddrzewie danego
wierzchołka są większe lub równe kluczowi tego wierzchołka.

Przykład.

Dwa drzewa o tych samych kluczach. W lewym drzewie prawe
poddrzewo wierzchołka Rudolf zawiera klucze (imiona) Tomasz,
Urszula, Waldemar wszystkie większe od Rudolf zgodnie z
porządkiem alfabetycznym.
Zakładamy, że klucze są unikatowe.

Głębokość wierzchołka w drzewie jest liczbą krawędzi w unikatowej
drodze, wiodącej od korzenia do tego wierzchołka, inaczej zwana
poziomem wierzchołka w drzewie.

Głębokość drzewa to maksymalna głębokość wszystkich
wierzchołków (w przykładzie - drzewo po lewej głębokość 3, po
prawej głębokość 2)

Drzewo nazywane jest zrównoważonym, jeżeli głębokość dwóch
poddrzew każdego wierzchołka nigdy nie różni się o więcej niż 1 (w
przykładzie – lewe drzewo nie jest zrównoważone, prawe jest
zrównoważone).

Zwykle drzewo wyszukiwania binarnego zawiera pozycje, które są
pobierane zgodnie z wartościami kluczy. Celem jest takie
zorganizowanie kluczy w drzewie wyszukiwania binarnego, aby
średni czas zlokalizowania klucza był minimalny. Drzewo
zorganizowane w ten sposób jest nazywane optymalnym.

Jeżeli wszystkie klucze charakteryzuje to samo prawdopodobieństwo
zostania kluczem wyszukiwania, to drzewo z przykładu (prawe) jest
optymalne.

Weźmy przypadek, w którym wiadomo, że klucz wyszukiwania
występuje w drzewie. Aby zminimalizować średni czas wyszukiwania
musimy określić złożoność czasową operacji lokalizowania klucza.

__
Algorytm wyszukiwania klucza w drzewie wyszukiwania
binarnego

Wykorzystujemy strukturę danych:
 struct nodetype
 {
 keytype key;
 nodetype* left;
 nodetype* right;
 };
 typedef nodetype* node_pointer;

Zmienna typu node_pointer jest wskaźnikiem do rekordu typu
nodetype.

Problem: określić wierzchołek zawierający klucz w drzewie
 wyszukiwania binarnego, zakładając że taki występuje
 w drzewie.

Dane: wskaźnik tree do drzewa wyszukiwania binarnego oraz
 klucz keyin.

Wynik: wskaźnik p do wierzchołka zawierającego klucz.

void search(node_pointer tree,
 keytype keyin,
 node_pointer p)
{
 bool found;

 p = tree;
 found = false;
 while (!found)
 if (p->key == keyin)
 found = true;
 else if (keyin < p->key)
 p = p->left;
 else
 p = p->right;
}

Liczbę porównań wykonywanych przez procedurę search w celu
zlokalizowania klucza możemy nazwać czasem wyszukiwania.
Chcemy znaleźć drzewo, dla którego średni czas wyszukiwania jest
najmniejszy.

Zakładając, że w każdym przebiegu pętli while wykonywane jest tylko
jedno porównanie możemy napisać :
 czas wyszukiwania = głębokość(key) + 1
Przykładowo (lewe poddrzewo):
 czas wyszukiwania = głębokość(Urszula) + 1 = 2+1 = 3

Niech Key1, Key2, …, Keyn będą n uporządkowanymi kluczami oraz pi

będzie prawdopodobieństwem tego, że Keyi jest kluczem
wyszukiwania. Jeżeli ci oznacza liczbę porównań koniecznych do
znalezienia klucza Keyi w danym drzewie, to:
 n

 średni czas wyszukiwania = Σci pi

 i=1

Jest to wartość która trzeba zminimalizować.

Przykład.

Mamy 5 różnych drzew dla n = 3. Wartości kluczy nie są istotne.

Jeżeli:
 p1 = 0.7 , p2 = 0.2 oraz p3 = 0.1

to średnie czasy wyszukiwania dla drzew wynoszą :

1. 3(0.7) + 2(0.2) + 1(0.1) = 2.6
2. 2(0.7) + 3(0.2) + 1(0.1) = 2.1
3. 2(0.7) + 1(0.2) + 2(0.1) = 1.8
4. 1(0.7) + 3(0.2) + 2(0.1) = 1.5
5. 1(0.7) + 2(0.2) + 3(0.1) = 1.4

Piąte drzewo jest optymalne.

Oczywiście znalezienie optymalnego drzewa wyszukiwania binarnego
poprzez rozpatrzenie wszystkich drzew wiąże się z ilością drzew co
najmniej wykładniczą w stosunku do n.
W drzewie o głębokości n-1 wierzchołek na każdym z n-1 poziomów
(oprócz korzenia) może się znajdować na prawo lub lewo. Zatem
liczba różnych drzew o głębokości n-1 wynosi 2n-1

Załóżmy, że klucze od Keyi do Keyj są ułożone w drzewie, które
minimalizuje wielkość:
 j

 Σ cm pm
 m=i

gdzie cm jest liczbą porównań wymaganych do zlokalizowania klucza
Keym w drzewie. Drzewo to nazywamy optymalnym.

Wartość optymalną oznaczymy jako A[i][j] oraz A[i][i]=pi (jeden
klucz wymaga jednego porównania).

Korzystając z przykładu można pokazać, że w problemie tym
zachowana jest zasada optymalności.

Możemy sobie wyobrazić n różnych drzew optymalnych: drzewo 1 w
którym Key1 jest w korzeniu, drzewo 2 w którym Key2 jest w
korzeniu, … , drzewo n w którym Keyn jest w korzeniu. Dla 1 ≤ k ≤ n
poddrzewa drzewa k muszą być optymalne, więc czasy wyszukiwania
w tych poddrzewach można opisać:

Dla każdego m ≠ k wymagana jest o jeden większa liczba porównań w
celu zlokalizowania klucza Keym w drzewie k niż w celu
zlokalizowania tego klucza w poddrzewie w którym się znajduje.
Dodatkowe porównanie jest związane z korzeniem i daje 1 x pm do
średniego czasu wyszukiwania.

Średni czas wyszukiwania dla drzewa k wynosi

lub inaczej
 n

 A[1][k-1] + A[k+1][n] + Σ pm

 m=1

Jedno z k drzew musi być optymalne więc średni czas wyszukiwania
optymalnego drzewa określa zależność:
 n

 A[1][n] = minimum(A[1][k-1] + A[k+1][n]) + Σ pm

 m=1

gdzie A[1][0] i A[n+1][n] są z definicji równe 0.

Uogólniamy definicje na klucze od Keyi do Keyj , gdzie i < j
i otrzymujemy:

 j

 A[i][j] = minimum(A[i][k-1] + A[k+1][j]) + Σ pm i < j
 i ≤ k ≤ j m=i

 A[i][i] = pi

 A[i][i-1] oraz A[j+1][j] są z definicji równe 0.

Wyliczenia prowadzimy podobnie jak w algorytmie łańcuchowego
mnożenia macierzy.

Algorytm znajdowania optymalnego drzewa przeszukiwania
binarnego.

Problem: określenie optymalnego drzewa wyszukiwania binarnego
 dla zbioru kluczy, z których każdy posiada przypisane
 prawdopodobieństwo zostania kluczem wyszukiwania.

Dane: n-liczba kluczy oraz tablica liczb rzeczywistych p indeksowana
 od 1 do n, gdzie p[i] jest prawdopodobieństwem wyszukiwania
 i-tego klucza

Wyniki: zmienna minavg, której wartością jest średni czas
 wyszukiwania optymalnego drzewa wyszukiwania
 binarnego oraz tablica R, z której można skonstruować
 drzewo optymalne. R[i][j] jest indeksem klucza
 znajdującego się w korzeniu drzewa optymalnego,
 zawierającego klucze od i-tego do j-tego.

void optsearch(int n, const float p[],
 float minavg, index R[][])
{
 index i, j, k, diagonal;
 float A[1..n+1][0..n];

 for (i=1; i <= n; i++) {
 A[i][i-1] = 0;
 A[i][i] = p[i];
 R[i][i] = i;
 R[i][i-1] = 0;
 }
 A[n+1][n] = 0;
 for(diagonal = 1; diagonal <= n-1; diagonal++)
 for(i = 1; i <= n - diagonal; i++) //Przekatna 1
 { //tuz nad glowna przek
 j = i + diagonal;
 j

 A[i][j]=minimum(A[i][k-1]+A[k+1][j] + Σ pm ;
 i ≤ k ≤ j m=i

 R[i][j]= wartość k, która dała minimum;
 }
 minavg = A[1][n];
}

Złożoność czasową można określić podobnie jak dla mnożenia
łańcuchowego macierzy:

 T(n) = n(n-1)(n+1)/6 ∈ Θ(n3)

Algorytm budowania optymalnego drzewa przeszukiwania
binarnego.

Problem: zbudować optymalne drzewo wyszukiwania binarnego.

Dane: n – liczba kluczy, tablica Key zawierająca n uporządkowa-
 nych kluczy oraz tablica R, utworzona w poprzednim
 algorytmie. R[i][j] jest indeksem klucza w korzeniu drzewa
 optymalnego, zawierającego klucze od i-tego do j-tego

Wynik: wskaźnik tree do optymalnego drzewa wyszukiwania
 binarnego, zawierającego n kluczy.

node_pointer tree(index i,j)
{
 index k;
 node_pointer p;

 k = R[i][j];
 if(k == 0)
 return NULL;
 else
 {
 p = new nodetype;
 p->key = Key[k];
 p->left = tree(i,k-1);
 p->right = tree(k+1,j);
 return p;
 }
}

Przykład.
Załóżmy, że mamy następujące wartości w tablicy Key:
 Damian Izabela Rudolf Waldemar
 Key[1] Key[2] Key[3] Key[4]

oraz
 p1 = 3/8 p2 = 3/8 p3 = 1/8 p4 = 1/8

Tablice A i R będą wówczas wyglądać:
 0 1 2 3 4 0 1 2 3 4
 1 | 0 3/8 9/8 11/8 7/4 1 |0 1 1 2 2
 | |
 2 | 0 3/8 5/8 1 2 | 0 2 2 2
 | |
 3 | 0 1/8 3/8 3 | 0 3 3
 | |
 4 | 0 1/8 4 | 0 4
 | |
 5 | 0 5 | 0

 A R

Problem komiwojażera.

Komiwojażer planuje podróż, która uwzględnia odwiedzenie 20 miast.
Każde miasto jest połączone z niektórymi innymi miastami. Chcemy
zminimalizować czas czyli musimy określić najkrótszą trasę, która
rozpoczyna się w mieście początkowym, przebiega przez wszystkie
miasta i kończy w punkcie startu.

Problem określania najkrótszej trasy nosi nazwę problemu
komiwojażera.

Problem może być reprezentowany przez graf ważony, z
wierzchołkami-miastami.

Trasa (droga Hamiltona) w grafie skierowanym jest drogą wiodącą z
wierzchołka do niego samego, przechodzącą przez wszystkie
wierzcholki dokładnie raz.

Optymalna trasa w ważonym grafie skierownym jest taką drogą,
która posiada najmniejszą długość.

Problem polega na na znalezieniu optymalnej trasy w ważonym grafie
skierowanym, kiedy instnieje przynajmniej jedna trasa.

Wierzchołek początkowy to ν1.

Możemy przykładowo opisać trzy trasy:
 length[ν1, ν2, ν3, ν4, ν1] = 22
 length[ν1, ν3, ν2, ν4, ν1] = 26
 length[ν1, ν3, ν4, ν2, ν1] = 21

Ostatnia trasa jest optymalna.

Najprostsza realizacja polega na rozważeniu wszystkich tras.
W ogólnym przypadku może istnieć krawędź łącząca każdy
wierzchołek z każdym innym wierzchołkiem. Drugi wierzchołek na
trasie może być jednym z n-1 wierzchołków, trzeci wierzchołek –
jednym spośród n-2 wierzchołków, n-ty wierzchołek – ostatnim
wierzchołkiem.

Zatem całkowita liczba tras wynosi - (n-1)(n-2)…1 = (n-1)!
co oznacza wartość gorszą od wykładniczej.

Czy można zastosować programowanie dynamiczne ?

Jeżeli νk jest pierwszym wierzchołkiem po ν1 na trasie optymalnej,
to droga podrzędna tej trasy z νk do ν1 musi być drogą najkrótszą,
przechodzącą przez wszystkie pozostałe wierzchołki dokładnie raz.
Zatem zasada optymalności działa i można stosować programowanie
dynamiczne.

Graf reprezentuje macierz przyległości W:

 1__2__3__4
 1| 0 2 9 ∞
 |
 2| 1 0 6 4
 |
 3| ∞ 7 0 8
 |
 4| 6 3 ∞ 0

W rozwiązaniu:
V = zbiór wszystkich wierzchołków
A = podzbiór zbioru V
D[νi][A] = długość najkrótszej drogi z νi do ν1 przechodzącej przez
 każdy wierzchołek A dokładnie raz

Zatem w przykładzie: V = {ν1, ν2, ν3, ν4} – reprezentuje zbiór,
 [] – reprezentuje drogę

Jeżeli A = {ν3}, to

 D[ν2][A] = length[ν2, ν3, ν1] = ∞

Jeżeli A = {ν3, ν4}, to

 D[ν2][A] = minimum(length[ν2, ν3, ν4, ν1],length[ν2, ν4, ν3, ν1])
 = minimum(20, ∞) = 20

Zbiór V – {ν1, νj} zawiera wszystkie wierzchołki oprócz ν1 oraz νj i
ma zastosowanie zasada optymalności, możemy stwierdzić:

 Długość trasy minimalnej = minimum(W[1][j]+D[νj][V-{ν1, νj}])
 2 ≤ j ≤ n

i ogólnie dla i ≠ 1oraz νi nie należącego do A

 D[νi][A] = minimum(W[i][j]+D[νj][A-{νj}]) jeżeli A ≠ ∅
 j: νj ∈ A

 D[νi][∅] = W[i][1]

Określmy optymalną trasę dla grafu z przykładu.
Dla zbioru pustego:

 D[ν2][∅] = 1
 D[ν3][∅] = ∞
 D[ν4][∅] = 6

Teraz rozważamy wszystkie zbiory zawierające jeden element:

 D[ν3][{ν2}] = minimum(W[3][j] +D[νj][{ν2}-{νj}])
 = W[3][2] + D[ν2][∅] = 7 + 1 = 8

Podobnie:
 D[ν4][{ν2}] = 3 + 1 = 4
 D[ν2][{ν3}] = 6 + ∞ = ∞
 D[ν4][{ν3}] = ∞ + ∞ = ∞
 D[ν2][{ν4}] = 4 + 6 = 10
 D[ν3][{ν4}] = 8 + 6 = 14

Teraz rozważamy wszystkie zbiory zawierające dwa elementy:

 D[ν4][{ν2, ν3}] = minimum(W[4][j] +D[νj][{ν2,ν3} - {νj}])
 j:νj ∈ {ν2, ν3 }

 = minimum(W[4][2]+D[ν2][{ν3}], W[4][3]+D[ν3][{ν2}])
 = minimum(3+∞, ∞+8) = ∞

Podobnie:

D[ν3][{ν2, ν4}] = minimum(7+10, 8+4) = 12
D[ν2][{ν3, ν4}] = minimum(6+14, 4+∞) = 20

Na końcu liczymy długość optymalnej trasy:
D[ν1][{ν2, ν3, ν4}] = minimum(W[1][j] +D[νj][{ν2,ν3, ν4} - {νj}])

 = minimum(W[1][2] +D[ν2][{ν3,ν4}],
 W[1][3] +D[ν3][{ν2,ν4}],
 W[1][4] +D[ν4][{ν2,ν3}])
 = minimum(2+20, 9+12, 26/∞) = 21

Algorytm programowania dynamicznego dla problemu
komiwojażera

Problem: określić optymalną trasę w ważonym grafie skierowanym.
 Wagi są liczbami nieujemnymi.

Dane wejściowe: ważony graf skierowany oraz n, liczba
wierzchołków w grafie. Graf reprezentujemy macierzą przyległości W
W[i][j] reprezentuje wagę krawędzi od wierzchołka i-tego do j-tego.

Wynik: zmienna minlength, której wartością jest długość optymalnej
trasy oraz macierz P, na podstawie której konstruujemy optymalną
trasę. Wiersze tablicy P są indeksowane od 1 do n, zaś jej kolumny są
indeksowane przez wszystkie podzbiory zbioru V-{ν1}. Element P[i]
[A] jest indeksem pierwszego wierzchołka, znajdującego się po {νi}
na najkrótszej drodze z νi do ν1 , która przechodzi przez wszystkie
wierzchołki A dokładnie raz.

void komiwojazer(int n,
 const number W[][],
 index P[][],
 number minlength)
{
 index i,j,k;
 number D[1..n][podzbior zbioru V-{ν1}];

 for(i=2;i<=n;i++)
 D[i][∅] = W[i][1];

 for(k=1;k<=n-2;k++)
 for(wszystkie podzbiory A∈V-{ν1} z k wierzch)
 for(i,takie ze i≠1 oraz νi nie należy do A){
 D[i][A]=minimum(W[i][j]+D[j][A-{νj}]);
 j: νj ∈ A

 P[i][A] = wartość j, która daje minimum;
 }

D[1][V-{ν1}] = minimum(W[1][j]+D[j][V-{ν1,νj]);
 2 ≤ j ≤ n

P[1][V-{ν1}] = wartość j, która daje minimum;
minlength = D[1][V-{ν1}];
}

Elementy tablicy P, wymagane do określenia optymalnej trasy dla
grafu z przykładu to:

 P[1,{ν2, ν3, ν4}] P[3,{ν2, ν4}] P[4,{ν2}]

Optymalną trasę można uzyskać:

 Indeks pierwszego wierzchołka = P[1][{ν2, ν3, ν4}] = 3
 ______________|
 ↓
 Indeks drugiego wierzchołka = P[3][{ν2, ν4}] = 4
 ________|
 ↓
 Indeks trzeciego wierzchołka = P[4][{ν2}] = 2

Optymalna trasa ma postać:
 {ν1, ν3, ν4, ν2, ν1}

Dotychczas nie opracowano algorytmu dla problemu komiwojażera,
którego złożoność w najgorszym przypadku byłaby lepsza niż
wykładnicza.

