Programowanie dynamiczne,
a problemy optymalizacyjne

W procesie opracowywania algorytmu programowania dynamicznego
dla problemu optymalizacji wyr6zniamy etapy:

Etap1. Okreslenie wlasciwosci rekurencyjnej, ktora daje rozwiazanie
optymalne dla realizacji problemu.

Etap2. Obliczenie wartosci rozwigzania optymalnego w porzadku
wstepujacym.

Etap3. Skonstruowanie rozwigzania optymalnego w porzadku
wstepujacym

Nie jest prawda, ze problem optymalizacji moze zawsze zostac
rozwiazany przy uzyciu programowania dynamicznego. Aby tak byto
w problemie musi mie¢ zastosowanie zasada optymalnosci.

Zasada optymalnosci.

Zasada optymalnosci ma zastosowanie w problemie wowczas, gdy
rozwiazanie optymalne realizacji problemu zawsze zawiera
rozwiazania optymalne dla wszystkich podrealizacji.

Zasada optymalno$ci w problemie najkrotszej drogi: jezeli vy jest
wierzchotkiem nalezacym do drogi optymalnej z v; do v; , to poddrogi
z v; do vy oraz z v do v; rOwniez musza by¢ optymalne. Optymalne
rozwiazanie realizacji zawiera rozwiazania optymalne wszystkich
podrealizacji.

Jezeli zasada optymalnosci ma zastosowanie w przypadku danego
problemu, to mozna okresli¢ wlasciwos¢ rekurencyjna, ktora bedzie
dawac optymalne rozwiazanie realizacji w kontekscie optymalnych
rozwiazan podrealizacji.



W praktyce zanim jeszcze zalozy sie, ze rozwiazanie optymalne moze
zosta€ otrzymane dzigki programowaniu dynamicznemu trzeba
wykazac, ze zasada optymalnosci ma zastosowanie.

Przyklad.

Rozwazmy problem znalezienia najdtuzszych! prostych drog
wiodacych od kazdego wierzchotka do wszystkich innych
wierzchotkéw. Ograniczamy si¢ do prostych drog, poniewaz w
przypadku cykli zawsze mozemy utworzy¢ dowolnie dtuga poprzez
powtorne przechodzenie przez cykl.

Optymalna (najdtuzsza) prosta droga z v do va to [vi, vi, V2, V4].
Poddroga [vi, vs] nie jest optymalna droga z v, do v; poniewaz

dlugosé[vi, vi]=1 <  dlugosé[vi, v, ,v;] =4

Zatem zasada optymalnos$ci nie ma zastosowania. Wynika to z faktu,
ze optymalne drogi v, do v; oraz z v; do v4 nie moga zosta¢ powiazane,
aby utworzy¢ optymalna droge z v do v4 . W ten sposéb utworzymy
cykl, nie optymalna drogg.



Lancuchowe mnozenie macierzy

Zalézmy, ze chcemy pomnozy¢ macierze o wymiarach 2x3 1 3x4 w
nastepujacy sposob:

123 7891 29 35 41 38

456 x |2345 | =174 8 104 83 | =C(2,4)
6789
L

Macierz wynikowa ma rozmiary 2x4.

Kazdy element mozna uzyska¢ poprzez 3 mnozenia,

przyktadowo C(1,1) = 1x7 + 2x2 + 3x6

W iloczynie macierzy wystgpuje 2x4=8 pozycji wiec catkowita liczba
elementarnych operacji mnozenia wynosi 2x4x3 = 24.

Ogo6lnie w celu pomnozenia macierzy o wymiarach i X j przez
macierz o wymiarach j x k standardowo musimy wykona¢ i X j X k
elementarnych operacji mnozenia.
WezZzmy mnozenie:
A X B x C x D
20x2 2x30 30x12  12x8

Mnozenie macierzy jest taczne. Moze by¢ realizowane przyktadowo:
Ax(Bx(CxD)) lub (AxB)x(CxD).

Istnieje 5 r6znych kolejnosci w ktorych mozna pomnozy¢ 4 macierze :
Ax(Bx(CxD)) = 30x12x8 + 2x30x8 +20x2x8 = 3680

(AxB)x(CxD) = 20x2x30 + 30x12x8 +20x30x8 = 8880
Ax((BxC)xD) = 2x30x12 + 2x12x8 + 20x2x8 = 1232
((AxB)xC)xD = 20x2x30 + 20x30x12 + 20x12x8 = 10320

(Ax(BxC))xD =2x30x12 + 20x2x12 + 20x12x8 =3120.



Kazde mnozenie 4 macierzy wymaga innej liczby elementarnych
operacji mnozenia. Trzecia kolejnos$¢ jest optymalna.

Zadanie:

Opracowac algorytm okreslajacy optymalna kolejno$¢ mnozenia n
macierzy.

Kolejnos¢ mnozenia macierzy zalezy tylko od rozmiarOw macierzy.
Dane:

[lo$¢ macierzy »n oraz rozmiary macierzy.

Algorytm metodg sitowq - rozwazenie wszystkich kolejnosci 1
wybranie minimum.

Czas wykonania algorytmu sitfowego.
Niech ¢, bedzie liczba roznych kolejnosci mnozenia n macierzy:
ALA, ..., An
Wezmy podzbior kolejnosci dla ktorych macierz 4, jest ostatnig
mnozong macierza. W podzbiorze tym mnozymy macierze od 4, do
A,, liczba roznych kolejnosci w tym podzbiorze wynosi ¢, :

A[X (AgAn)

1 t,.; r0znych mozliwosci

Drugi podzbidr jest zbiorem kolejnosci, w przypadkach w ktorych
macierz 4, jest ostatnia mnozona macierza. Liczba kolejnosci w tym
podzbiorze rowniez wynosi t,.;.

Zatem dla n macierzy: >ttt =2ty

Natomiast dla 2 macierzy: =1

Korzystajac z rozwiazania roOwnania rekurencyjnego: t, > 2"



Dla tego problemu ma zastosowanie zasada optymalnosci, tzn.
optymalna kolejno$¢ mnozenia n macierzy zawiera optymalna
kolejno$¢ mnozenia dowolnego podzbioru zbioru n macierzy.

Przyktadowo, jezeli optymalna kolejno$¢ mnozenia 6 macierzy jest:

Ai((((A245)A4)A5)As)
to

(A2A43)A4
Musi by¢ optymalna kolejnoscia mnozenia macierzy od A, do A, .

Poniewaz mnozymy (k-1)-sza macierz, Ay, przez k-ta macierz, Ay,
liczba kolumn w A;.; musi by¢ rowna liczbie wierszy w Ay .
Przyjmujac, ze d, jest liczba wierszy w A, za$ d; jest liczba kolumn w
Ar dla I <k <n, to wymiary 4, beda wynosi¢ di; x d;.

--I—d’—h
AT =
-—d,  —=
ir -
1| As
Ox-2 Ax_y
Y L N " L i

Do rozwiazania problemu wykorzystamy sekwencje tablic dla
[<i<j<n:

M[i][j] = minimalna liczba mnozen wymaganych do pomnozenia
macierzy od A; do 4, , jezelii <j
M[i][i]=0




Przyktad (6 macierzy):

A[ X Ag X A3 X A4 X A5 X Ag
5x2 2x3 3x4 4x6 6x7 7x8
dod, d; d; d> ds ds; d, d, ds ds ds

Dla pomnozenia macierzy A4, As, As mozemy okresli¢ dwie
kolejnosci oraz liczby elementarnych operacji mnozenia:

(A4+As)As Liczba operacji mnozenia = d; X dyX ds+ ds; X ds X ds
=4x6x7+4x7x8=392

Ay (As As) Liczba operacji mnozenia =d, X ds X ds +ds; X dy X ds
=6x7x8+4x6x8=528

Stad: M[4][6] = minimum(392,528) = 392

Optymalna kolejnos¢ mnozenia 6 macierzy musi mie¢ jeden z
rozktadow:

L Ai(A:A:A.4545)
2. (A1A42)(A3A4A546)
3. (A142A43)(A4A546)
4. (A1A454,)(AsA)
5. (A14:434445)As

gdzie iloczyn w nawiasie jest uzyskiwany zgodnie z optymalna
kolejnoscia.

Liczba operacji mnozenia dla k-tego rozktadu jest minimalna liczba
potrzebna do otrzymania kazdego czynnika, powigkszong o liczbg
potrzebna do pomnozenia dwoch czynnikow:



M[1][k] + M[k+1][6] + dy di ds
Zatem:
M[1][6] = minimumM[1][k] + M[k+1][6] + dy di ds )
I<k<5

Uogolniajac ten rezultat w celu uzyskania wiasciwosci rekurencyjnej,
zwiagzanej z mnozeniem macierzy dostajemy (dla /I<i< j<n):

M([i][j] = minimumM[i][k] + M[k+1][j] +d.; di d;)
i<k<j-I

M[i][i] =0

Algorytm typu dziel i zwyciezaj oparty na tej wlasciwosci jest
wykonywany w czasie wyktadniczym.

Mozna jednak przedstawi¢ wydajniejszy algorytm dynamiczny liczacy
M[{][j] w kolejnych etapach.

Uzywamy siatk¢ podobna do trojkata Pascala.

Element M[{][/] jest obliczany:

- na podstawie wszystkich wpisow ze swojego wiersza znajdujacych
si¢ po jego lewej stronie

- wpisow ze swojej kolumny, znajdujacych si¢ ponizej niego

Algorytm:
- ustawiamy warto$¢ elementow na gtownej przekatnej na 0

- obliczamy wszystkie elementy na przekatnej powyzej (przekatna 1)
- obliczamy wszystkie warto$ci na przekatnej 2

- kontynuujemy obliczenia az do uzyskania jedynej warto$ci na
przekatnej 5, ktora jest odpowiedzia koncowa M[ /][ 6]



Przyklad (6 macierzy)

Przekatna2 Przekatna 4

Przekatna 1 Yeka‘ma 3 Yekqlna 5

1 348 —+— Odpowiedz
1 J koricowa

2 0 24 72 156 268

$
3 0 72 198 366

}
4 0 168 392

(I
5 0 336
6 0
Obliczamy przekatna 0:

M[i][i]=0 dla I<i<6
Obliczamy przekatna 1:

M[1][2] = minimum( M[1][k] + M[k+1][2] + do di d>)

1=sk=s1

=M[I][1]+M[2][2] +dy d, d:
=0+0+5x2x3=30

Wartosci M[2][3], M[3][4], M[4][5] , M[5][6] liczymy podobnie.



Obliczamy przekatna 2:

M[1][3] = minimum( M[1][k] + M[k+1][3] + dy di d5)
= minimum( M[1][1] +M[2][3] +dvd, d; ,
M[I][2] + M[3][3] + dvd:> d5)
=minimum(0+24+5x2x4,30+0+5x3x4)=64

Wartosci M[2][4], M[3][5], M[4][6] liczymy podobnie.
Obliczamy przekatna 3:

M[1][4] = minimum( M[I][k] + M[k+1][4] + do di d,)
= minimum( M[1][1] +M][2][4] +dvd, d,,
M[1][2] + M[3][4] +dy d- d.,
M[I][3]+M[4][4] +dyd;d, )

=minimum(0+72+5x2x6,30+72+5x3x6,
64+0+5x4x6)=132

Wartosci M[2][5], M[3][6] liczymy podobnie.

Przekatna 4 liczymy podobnie : M[/][5] =226, M[2][6] = 268
Przekatna 5 liczymy podobnie : M[/][6] = 348

Algorytm: minimalna liczba operacji mnozenia

Problem : okresli¢ minimalng liczbe elementarnych operacji
mnozenia, wymaganych w celu pomnozenia n macierzy oraz
kolejnos¢ wykonywania mnozen, ktéra zapewnia minimalna liczbe
operacji.

Dane: liczba macierzy » oraz tablica liczb catkowitych d,
indeksowana od 0 do n, gdzie d[i-1] x d[i] jest rozmiarem i-tej
macierzy.



Wynik : minmult — minimalna liczba elementarnych operacji
mnozenia, wymaganych w celu pomnozenia n macierzy;
dwuwymiarowa tablica P, na podstawie ktorej mozna okresli¢
optymalna kolejnos¢. P[i][/] jest punktem, w ktorym macierze od i do
Jj zostana rozdzielone w kolejnosci optymalnej dla mnozenia macierzy.

int minmult(int n, const int d[], index P[][])

{
index 1i,7,k,diagonal;
int M[1..n][1l..n];

for (i=1; 1 £ n,; 1i++)

M[i][1]=0;
for (diagonal = 1; diagonal < n-1; diagonal++)

for (i=1,; i £ n - diagonal; 1i++)

{

j=i+diagonal;,
M[i][j]= minimum (M[1i][k]+M[k+1][F]+
PERSI dli-1]1*d[k]1*d[F] )

wartosé¢ k, ktdéra data minimum

V|

e
(.
I

Z}ozonos¢ czasowa — minimalna liczba operacji mnozenia.

Operacja podstawowa s instrukcje wykonywane dla kazdej wartosci
k, w tym sprawdzenie czy wartos$¢ jest minimalna.

Rozmiar danych: n- liczba macierzy do pomnozenia.

Mamy do czynienia z pgtla w petli. Poniewaz j =i + diagonal dla
danych diagonal oraz i.

Liczba przebiegow petli £ wynosi



j—1—-i+1 = i+diagonal—1—-1i+ 1= diagonal

Dla danej wartos$ci diagonal liczba przebiegow petli for-i wynosi n-
diagonal.

Diagonal moze przyjmowac wartosci od 1 do n - 1, catkowita liczba
powtorzen operacji podstawowej] wynosi

n-1
> [(n — diagonal) x diagonall= n(n-1)(n+1)/6 0 O®n°)

diagonal=1
Przyklad:
P[2][5]=4 oznacza optymalna kolejno$¢ mnozenia (4. As A4) As

Punkt 4 jest punktem rozdzielenia macierzy w celu otrzymania
czynnikow.

Majac tablicg P:
1 2 3 4

1 1 1 1 1 1
2} 2 3 4 5
3} 3 4 5
4} 4 5
5} 5

mozemy odczytac:
P[]][6]=1 -> A] (A2A3A4A5A6)
P[2][6]=5 -> A, (4243 A4 A5) Ay)
PI2][5]=4 -> A, ((424544) A5) As)
P[2][4]1=3 > A; (((A4: A5) A4) As) As)



Algorytm: wyswietlanie optymalnej kolejnosci

Problem: wyswietli¢ optymalng kolejnos¢ dla mnozenia » macierzy.
Dane: dodatnia liczba catkowita » oraz tablica P
Wynik: optymalna kolejnos¢ mnozenia macierzy

void order(index i, index 7)
{
if (i==7)
cout << “A” << 1;
else {
k = P[i][3];
cout << W (%,
order (i, k);
order (k+1,7);
cout << “)7”;



Optymalne drzewa
wyszukiwania binarnego

Opracowujemy  algorytm  okreslania  optymalnego  sposobu
zorganizowania zbioru elementow w postaci drzewa wyszukiwania
binarnego.

Dla kazdego wierzchotka w drzewie binarnym poddrzewo, ktorego
korzeniem jest lewy (prawy) potomek tego wierzchotka, nosi nazwe

lewego (prawego) poddrzewa wierzcholka.

Lewe (prawe) poddrzewo korzenia drzewa nazywamy lewym
(prawym) poddrzewem drzewa.

Drzewo wyszukiwania binarnego.

Drzewo wyszukiwania binarnego jest binarnym drzewem elementow
(nazywanych kluczami) pochodzacych ze zbioru uporzadkowanego.
Musi spetnia¢ warunki:

1. Kazdy wierzchotek zawiera jeden klucz.

2. Kazdy klucz w lewym poddrzewie danego wierzchotka jest
mniejszy lub rowny kluczowi tego wierzcholka.

3. Klucze znajdujace si¢ w prawym poddrzewie danego
wierzchotka sa wigksze lub rowne kluczowi tego wierzchotka.



Przyklad.

Dwa drzewa o tych samych kluczach. W lewym drzewie prawe
poddrzewo wierzchotka Rudolf zawiera klucze (imiona) Tomasz,
Urszula, Waldemar wszystkie wigksze od Rudolf  zgodnie z
porzadkiem alfabetycznym.

Zaktadamy, ze klucze sa unikatowe.

Glebokosé wierzchotka w drzewie jest liczba krawedzi w unikatowe;
drodze, wiodacej od korzenia do tego wierzcholka, inaczej zwana
poziomem wierzchotka w drzewie.

Glebokos¢  drzewa to maksymalna  glgboko$s¢  wszystkich
wierzchotkdw (w przykltadzie - drzewo po lewej glebokos$¢ 3, po
prawej gtebokosc 2)

Drzewo nazywane jest zrownowaZonym, jezeli glebokos¢ dwoch
poddrzew kazdego wierzchotka nigdy nie r6zni si¢ o wigcej niz 1 (w
przyktadzie — lewe drzewo nie jest zréwnowazone, prawe jest
zrOwnowazone).



Zwykle drzewo wyszukiwania binarnego zawiera pozycje, ktore sa
pobierane zgodnie z wartosciami kluczy. Celem jest takie
zorganizowanie kluczy w drzewie wyszukiwania binarnego, aby
sredni czas zlokalizowania klucza byt minimalny. Drzewo
zorganizowane w ten sposob jest nazywane optymalnym.

Jezeli wszystkie klucze charakteryzuje to samo prawdopodobienstwo
zostania kluczem wyszukiwania, to drzewo z przykladu (prawe) jest
optymalne.

Wezmy przypadek, w ktorym wiadomo, ze klucz wyszukiwania
wystepuje w drzewie. Aby zminimalizowa¢ $redni czas wyszukiwania
musimy okresli¢ ztozono$¢ czasowa operacji lokalizowania klucza.

Algorytm wyszukiwania klucza w drzewie wyszukiwania
binarnego

Wykorzystujemy struktur¢ danych:
struct nodetype

{
keytype key;
nodetype* left;
nodetype* right;
I
typedef nodetype* node pointer;

Zmienna typu node pointer jest wskaznikiem do rekordu typu
nodetype.

Problem: okresli¢ wierzchotek zawierajacy klucz w drzewie
wyszukiwania binarnego, zaktadajac ze taki wystepuje

w drzewie.

Dane: wskaznik tree do drzewa wyszukiwania binarnego oraz
klucz keyin.

Wynik: wskaznik p do wierzchotka zawierajacego klucz.



voild search (node pointer tree,
keytype keyin,
node pointer p)

bool found;

p = tree;
found = false;
while (! found)
if (p—->key == keyin)
found = true;

else 1f (keyin < p->key)
p = p—>left;
else
p = p->right;

Liczbe poréwnan wykonywanych przez procedure search w celu
zlokalizowania klucza mozemy nazwaé czasem wyszukiwania.
Chcemy znalez¢ drzewo, dla ktorego Sredni czas wyszukiwania jest
najmniejszy.

Zaktadajac, ze w kazdym przebiegu petli while wykonywane jest tylko
jedno poréwnanie mozemy napisac :

czas wyszukiwania = glebokosc(key) + 1
Przyktadowo (lewe poddrzewo):

czas wyszukiwania = gtebokos¢(Urszula) + 1 =2+1 =3

Niech Key,, Key», ..., Key, begda n uporzadkowanymi kluczami oraz p;
bedzie prawdopodobienstwem tego, ze Key; jest kluczem
wyszukiwania. Jezeli ¢; oznacza liczbg poréwnan koniecznych do
znalezienia klucza Key; w danym drzewie, to:

n

sredni czas wyszukiwania = 2.¢; p;
i=1

Jest to warto$¢ ktora trzeba zminimalizowad.



Przyklad.

Mamy 5 r6znych drzew dla n = 3. Wartos$ci kluczy nie sg istotne.

Jezeli:
pi=07 , p,=02 oraz p;=0.1

to srednie czasy wyszukiwania dla drzew wynosza :

1. 3(0.7) +2(0.2) + 1(0.1) = 2.6
2. 2(0.7) + 3(0.2) + 1(0.1) = 2.1
3. 2(0.7) + 1(0.2) + 2(0.1) = 1.8
4. 1(0.7) + 3(0.2) + 2(0.1) = 1.5
5. 1(0.7) +2(0.2) + 3(0.1) = 1.4

Piate drzewo jest optymalne.



Oczywiscie znalezienie optymalnego drzewa wyszukiwania binarnego
poprzez rozpatrzenie wszystkich drzew wiaze si¢ z iloscia drzew co
najmniej wyktadnicza w stosunku do 7.

W drzewie o glgbokosci n-1 wierzchotek na kazdym z n-1 poziomoéw
(oprocz korzenia) moze si¢ znajdowaé na prawo lub lewo. Zatem
liczba rdéznych drzew o glebokosci n-1 wynosi 2"/

Zatozmy, ze klucze od Key: do Key;, sa utozone w drzewie, ktore
minimalizuje wielko$¢:

j

2 Cim P
gdzie ¢, jest liczba porownan wymaganych do zlokalizowania klucza
Key,, w drzewie. Drzewo to nazywamy optymalnym.

Warto$¢ optymalna oznaczymy jako A[i][j] oraz A[i][i]=p: (Jeden
klucz wymaga jednego porownania).

Korzystajac z przykladu mozna pokaza¢, ze w problemie tym
zachowana jest zasada optymalnosci.

Mozemy sobie wyobrazi¢ n réznych drzew optymalnych: drzewo 1 w
ktorym Key, jest w korzeniu, drzewo 2 w ktorym Key, jest w
korzeniu, ... , drzewo n w ktorym Key, jest w korzeniu. Dla 1 £ k< n
poddrzewa drzewa k musza by¢ optymalne, wigc czasy wyszukiwania
w tych poddrzewach mozna opisac:



Dla kazdego klucza
wystepuje jedno dodatkowe
porébwnanie w korzeniu

Sredni czas Sredni czas
wyszukiwania wyszukiwania
w tym poddrzewie w tym poddrzewie

wynosi A[1][k - 1] wynosi Alk + 1][n]

.....

Dla kazdego m # k wymagana jest o jeden wigksza liczba porownan w
celu zlokalizowania klucza Key, w drzewie k niz w celu
zlokalizowania tego klucza w poddrzewie w ktorym si¢ znajduje.
Dodatkowe porownanie jest zwiazane z korzeniem 1 daje 1 x p. do
sredniego czasu wyszukiwania.

Sredni czas wyszukiwania dla drzewa k£ wynosi

ANK=1] +  po+oepy + p + Ak+1ln] +  p+op,
— —— —— —_— —————
Sredm czas Dodatkowy czas zwigzany Sredni czas Sredni czas Dodatkowy czas zwigzany

w lewym poddrzewie  z porownamion w korzenis  wyszukania korzenia  w prawym poddrzewie  z porownaniom w korzeniu

lub inaczej
A[[k-1] + A[k+11[n] + 2 pm
m=1
Jedno z k drzew musi by¢ optymalne wigc Sredni czas wyszukiwania
optymalnego drzewa okresla zaleznos$¢:

n

A[11[n] = minimum(A[1[k-1] + A[k+1][n]) + 2 P

m=1

gdzie A[1][0] 1 A[n+1][n] sa z definicji réwne O.

Uogolniamy definicje na klucze od Keyi do Key; , gdzie i < j
1 otrzymujemy:



J

A[[] = minimum(A[i|[k-1] + A[k+11[]) + 2 pm i <j

iSks) m=i
A[i][i] = pi
Ali][i-1] oraz A[j+1][j] sa z definicji rowne 0.

Wyliczenia prowadzimy podobnie jak w algorytmie tancuchowego
mnozenia macierzy.

Algorytm znajdowania optymalnego drzewa przeszukiwania
binarnego.

Problem: okreslenie optymalnego drzewa wyszukiwania binarnego
dla zbioru kluczy, z ktorych kazdy posiada przypisane
prawdopodobienstwo zostania kluczem wyszukiwania.

Dane: n-liczba kluczy oraz tablica liczb rzeczywistych p indeksowana
od 1 do n, gdzie p[i] jest prawdopodobienstwem wyszukiwania
i-tego klucza

Wyniki: zmienna minavg, ktorej wartoscia jest sredni czas
wyszukiwania optymalnego drzewa wyszukiwania
binarnego oraz tablica R, z ktorej mozna skonstruowacé
drzewo optymalne. R[7][j] jest indeksem klucza
znajdujacego si¢ w korzeniu drzewa optymalnego,
zawierajacego klucze od i-tego do j-tego.



void optsearch(int n, const float pl],
float minavg, index R[] [])

{
index i, j, k, diagonal;,
float A[l..n+1]1[0..n];

for i++) o

A[n+1][n] = 0;
for (diagonal = 1; diagonal <= n-1; diagonal++)
for(i = 1; 1 <= n - diagonal; 1i++) //Przekatna 1
{ //tuz nad glowna przek
j = 1 + diagonal;,
j
Ali][Fl=minimum(A[i] [k-11+A[k+1][F] + 2 pu ;
i S k<S5 m=1i
R[i][j]l= wartos$¢ k, ktdra data minimum;

}

minavg = A[l][n];

}

Ztozonos¢ czasowa mozna okreslic podobnie jak dla mnozenia
tancuchowego macierzy:

T(n) =n(n-1)(n+1)/6 0 O(n?)

Algorytm budowania optymalnego drzewa przeszukiwania
binarnego.

Problem: zbudowa¢ optymalne drzewo wyszukiwania binarnego.

Dane: n — liczba kluczy, tablica Key zawierajaca n uporzadkowa-
nych kluczy oraz tablica R, utworzona w poprzednim
algorytmie. R[i][j] jest indeksem klucza w korzeniu drzewa
optymalnego, zawierajacego klucze od i-tego do j-tego



Wynik: wskaznik tree do optymalnego drzewa wyszukiwania
binarnego, zawierajacego n kluczy.

node pointer tree(index 1, 7j)

{
index k;
node pointer p;

k = R[i]1[j];
if(k == 0)

return NULL;
else

{
p = new nodetype;

p—->key = Keylk];
p—->left = tree(i,k-1);
p->right = tree(k+1,7);
return p;

}
}

Przyktad.

Zatozmy, ze mamy nastepujace wartosci w tablicy Key:
Damian Izabela Rudolf = Waldemar
Key[1] Key[2]  Key[3]  Key[4]

oraz
p1=3/8 p2:3/8 p3:1/8 p4:1/8

Tablice 4 1 R beda wowczas wygladac:

0 1 2 3 4 0 1 2 3 4
110 3/8 9/8 11/8 7/4 1Mo 1 1 2
2I 0 3/8 58 1 2|| 0o 2 2
3I 0 1/8 38 3|| 0 3
4I 0 1/8 4‘| 0
sl 0 SI



lzabela

Damian

Waldemar



Problem komiwojazera.

Komiwojazer planuje podroz, ktora uwzglednia odwiedzenie 20 miast.
Kazde miasto jest potaczone z niektorymi innymi miastami. Chcemy
zminimalizowac¢ czas czyli musimy okresli¢ najkrotsza trase, ktora
rozpoczyna si¢ w miescie poczatkowym, przebiega przez wszystkie
miasta 1 konczy w punkcie startu.

Problem okreslania najkrotszej trasy nosi nazwe problemu
komiwojazera.

Problem moze by¢ reprezentowany przez graf wazony, z
wierzchotkami-miastami.

Trasa (droga Hamiltona) w grafie skierowanym jest droga wiodaca z
wierzchotka do niego samego, przechodzaca przez wszystkie

wierzcholki doktadnie raz.

Optymalna trasa w wazonym grafie skierownym jest taka droga,
ktora posiada najmniejsza dtugosc.

Problem polega na na znalezieniu optymalnej trasy w wazonym grafie
skierowanym, kiedy instnieje przynajmniej jedna trasa.

Wierzchotek poczatkowy to V.




Mozemy przyktadowo opisac trzy trasy:
length[V1, V2, V3, V4, V1| = 22
Zength[vl, V3, Vo, Vg4, V1] =26
length[Vi, V3, Va4, Vo, V1] = 21

Ostatnia trasa jest optymalna.

Najprostsza realizacja polega na rozwazeniu wszystkich tras.

W og6lnym przypadku moze istnie¢ krawedz taczaca kazdy
wierzchotek z kazdym innym wierzchotkiem. Drugi wierzcholek na
trasie moze by¢ jednym z n-1 wierzchotkow, trzeci wierzchotek —
jednym sposrod n-2 wierzchotkow, n-ty wierzcholek — ostatnim
wierzchotkiem.

Zatem catkowita liczba tras wynosi - (n-1)(n-2)...1 = (n-1)!
co oznacza wartos$¢ gorszg od wyktadnicze;j.

Czy mozna zastosowac programowanie dynamiczne ?

Jezeli vy jest pierwszym wierzchotkiem po v, na trasie optymalne;j,
to droga podrzedna tej trasy z Vi do V; musi by¢ droga najkrétsza,
przechodzaca przez wszystkie pozostate wierzchotki doktadnie raz.
Zatem zasada optymalnos$ci dziata 1 mozna stosowac programowanie
dynamiczne.

Graf reprezentuje macierz przylegtosci W:

1 2 3 4
110 2 9 o
|
211 0 6 4
|
3]0 7 0 8



W rozwigzaniu:

V = zbidr wszystkich wierzchotkow

A = podzbior zbioru V

D[Vi][A] = dlugos¢ najkrotszej drogi z Vi do v, przechodzacej przez
kazdy wierzchotek A doktadnie raz

Zatem w przyktadzie: 'V = {v,, V,, V3, V4} — reprezentuje zbior,
[ ] — reprezentuje droge

Jezeli A= {vi},  to
D[V2][A] = length[Vs, Vs, V1] = o
Jezeli A = {vs, va}, to

D[V.][A] = minimum(length[V., V3, Va4, V1],length[V,, V4, V3,V1])
= minimum(20, o) = 20

Zbior V — {v,, v;} zawiera wszystkie wierzcholki oprocz v, oraz vj 1
ma zastosowanie zasada optymalno$ci, mozemy stwierdzic:

Dtugosé trasy minimalnej = minimum(W[1][j1+D[V;][V-{V1, Vi}])
25j<n
1 ogodlnie dla i # loraz V; nie nalezacego do A
D[Vi][A] = minimum(W[1][j]+D[V;][A-{V;}]) jezeli A # [
iviOA

Dlvi][D] = W]

Okreslmy optymalna tras¢ dla grafu z przyktadu.
Dla zbioru pustego:

D[v:][0] =1
D[vs][L] = oo
D[v4][LJ] =6



Teraz rozwazamy wszystkie zbiory zawierajace jeden element:

D[Vs][{V2}] = minimum(W[3][j] +D[Vil[{V2}-{Vi}])
= W[3][2] + D[V ][O]=7+1=8

Podobnie:
D[V4][{V2}] =3+1=4
D[V:][{v3}] =6 + 0 =0
D[V4][{V3}] =00 + 00 = 00
D[Vz][{\)4}] =4 +6 =10
D[vs][{v4}]=8 +6 =14

Teraz rozwazamy wszystkie zbiory zawierajace dwa elementy:

D[V4l[{V2, V3}] = minimum(W[4][j]1 +D[Vil[{V2,Vs} - {Vij])

jvi B {v2,v3 )

= minimum(W[4][2]+D[V-][{Vs}], W[4]1[3]+D[vs][{V2}])

= minimum(3+oo0, c0+8) = co
Podobnie:

D[V3][{V2, Va}] = minimum(7+10, 8+4) =12
D[V2][{V3, Va} ] = minimum(6+14, 4+00 ) =20

Na koncu liczymy dtugos¢ optymalnej trasy:
DIVi][{V2, Vs, Va}] = minimum(W1][j] +D[Vi][{V2,Vs, Va} - {Vj}])

= minimum(W[1][2] +D[V2][ {V3,V4}],
WI1]1[3] +D[Vs][{V2,V4} ],

WIL][4] +D[Va][{V2,Vs}])
= minimum(2+20, 9+12, 26/00) =21



Algorytm programowania dynamicznego dla problemu
komiwojazera

Problem: okresli¢ optymalna tras¢ w wazonym grafie skierowanym.
Wagi sa liczbami nieujemnymi.

Dane wejsciowe: wazony graf skierowany oraz n, liczba
wierzchotkéw w grafie. Graf reprezentujemy macierza przylegtosci W
W[i][j] reprezentuje wage krawedzi od wierzchotka i-tego do j-tego.

Wynik: zmienna minlength, ktdérej wartoscia jest dlugos$¢ optymalne;j
trasy oraz macierz P, na podstawie ktorej konstruujemy optymalna
tras¢. Wiersze tablicy P sa indeksowane od 1 do n, zas jej kolumny sa
indeksowane przez wszystkie podzbiory zbioru V-{v,}. Element P[i]
[A] jest indeksem pierwszego wierzcholtka, znajdujacego si¢ po {Vvi}
na najkrotszej drodze z vi do v, , ktora przechodzi przez wszystkie
wierzchotki A doktadnie raz.

void komiwojazer (int n,
const number W[][],
index P[]1[],
number minlength)

{
index 1i,73,k;
number D[1l..n] [podzbior zbioru V-{v:}];

for (1=2;i<=n;i++)
DIi1[( 0] = W[il[1]1;

for (k=1;k<=n-2;k++)
for (wszystkie podzbiory ALV-{v:} z k wierzch)
for(i,takie ze 1#1 oraz V; nie nalezy do A) {

DIi] [A]l=minimum (W[i] [JI+D[J] [A-{Vs}]);
ivioa

P[i] [A] = wartos$¢ j, ktdra daje minimum;

}



D[1][V={Vi}] = minimum (W[1] [J]I+D[J] [V={Vi,V5]);
2 <93 =<n

P[1] [V-{Vv:}] = wartos¢ j, ktdéra daje minimum;

minlength = D[1] [V=-{V:}];

}

Elementy tablicy P, wymagane do okreslenia optymalnej trasy dla
grafu z przyktadu to:

P[l,{\)z, Vs, V4}] P[33{V27 V4}] P[4> {Vz}]
Optymalna tras¢ mozna uzyskac:

Indeks pierwszego wierzchotka = P[1][{V2, V3, V4}] =3

|
Indeks drugiego wierzchotka = P[3][{V2, V4}] =4
|

!
Indeks trzeciego wierzchotka = P[4][{V.}] =2

Optymalna trasa ma postac:
{Vl, V3, V4, V2, Vl}

Dotychczas nie opracowano algorytmu dla problemu komiwojazera,
ktorego ztozonos$¢ w najgorszym przypadku bytaby lepsza niz
wyktadnicza.



