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Multiplicity distributions exhibit, after closer inspection, peculiarly enhanced void probability and
oscillatory behavior of the modified combinants. We discuss the possible sources of these oscillations and
their impact on our understanding of the multiparticle production mechanism. Theoretical understanding of
both phenomena within the class of compound distributions is presented.
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I. INTRODUCTION

Multiplicity distributions, PðNÞ, are among the first
observables measured in any multiparticle production
experiment and are among the most thoroughly investi-
gated and discussed sources of information on the mecha-
nism of the production process [1]. Nevertheless, it seems
that some of their properties remain unnoticed or unused as
a possible source of such information. In this work we
analyze the nonsingle diffractive (NSD) charged multiplic-
ity distributions concentrating on two features: (i) on the
observation that, after closer inspection, they show a
peculiarly enhanced void probability, Pð0Þ > Pð1Þ [2,3],
and (ii) on the oscillatory behavior of the so-called
modified combinants, Cj, introduced by us in [4,5].
We demonstrate how these modified combinants can be
extracted experimentally from the measured PðNÞ by
means of some recurrence relation involving all
PðN < jÞ, and argue that they contain information (located
mainly in the small N region) that has so far not been
disclosed and used. This information is hidden in the
specific distinct oscillatory behavior of the Cj, which, in
most cases, is not observed in the Cj obtained from the
PðNÞ commonly used to fit experimental results. We
discuss the possible sources of such behavior and the
connection of the Cj with the enhancement of void
probabilities, and their impact on our understanding of
the multiparticle production mechanism with the emphasis

on the theoretical understanding of both phenomena within
the class of compound distributions.

II. MODIFIED COMBINANTS, COMBINANTS,
AND VOID PROBABILITIES

The dynamics of the multiparticle production process
is hidden in the way in which the consecutive measured
multiplicities N are connected. In the simplest case one
assumes that the multiplicity N is directly influenced only
by its neighboring multiplicities ðN � 1Þ in the way
dictated by the simple recurrence relation,

ðNþ1ÞPðNþ1Þ¼gðNÞPðNÞ; gðNÞ¼αþβN: ð1Þ

The most popular forms of PðNÞ emerging from this
recurrence relation are the binomial distribution (BD)
[for which α ¼ Kp=ð1 − pÞ and β ¼ −α=K�,

PBDðNÞ ¼ K!

N!ðK − NÞ!p
Nð1 − pÞK−N; ð2Þ

the Poisson distribution (PD) (for which α ¼ λ and β ¼ 0),

PPDðNÞ ¼ λN

N!
expð−λÞ; ð3Þ

and the negative binomial distribution (NBD) (for which
α ¼ kp and β ¼ α=k, where p denotes the probability of
particle emission),

PNBDðNÞ ¼ ΓðN þ kÞ
ΓðN þ 1ÞΓðkÞp

Nð1 − pÞk: ð4Þ

Usually the first choice of PðNÞ in fitting data is a single
NBD [6]. However, with growing energy and number
of produced secondaries the NBD increasingly deviates
from data for large N (see [4]) and is replaced either by
combinations of two [7,8], three [9], or multicomponent
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NBDs [10], or by some other form of PðNÞ [1,6,11–13].
However, such a procedure only improves the agreement at
large N, whereas the ratio R ¼ data=fit deviates dramati-
cally from unity at small N for all fits [4,5]. This
observation, when taken seriously, suggests that there is
some additional information in the measured PðNÞ not
covered by the recurrence relation (1), which is too
restrictive. In [4] we proposed a more general form of
the recurrence relation, used in counting statistics when
dealing with multiplication effects in point processes [14].
Contrary to Eq. (1), it now connects all multiplicities by
means of some coefficients Cj, which define the corre-
sponding PðNÞ in the following way:

ðN þ 1ÞPðN þ 1Þ ¼ hNi
XN

j¼0

CjPðN − jÞ: ð5Þ

The coefficients Cj contain the memory of particle N þ 1

about all the N − j previously produced particles. They can
be directly calculated from the experimentally measured
PðNÞ by reversing Eq. (5) and putting it in the form of the
following recurrence formula for Cj [4],

hNiCj ¼ ðjþ 1Þ
�
Pðjþ 1Þ
Pð0Þ

�
− hNi

Xj−1

i¼0

Ci

�
Pðj − iÞ
Pð0Þ

�
: ð6Þ

In Fig. 1 we show the results of attempts to fit both the
experimentally measured (in the CMS experiment [15])
multiplicity distributions, and the corresponding modified
combinants Cj calculated from these data. Note that these
Cj show very distinct oscillatory behavior (with a period
roughly equal to 16 in this case), which gradually dis-
appears with N. It turns out that this oscillatory pattern
cannot be reproduced by the Cj calculated from a single
NBD; we observe no trace of oscillations in this case.
They begin gradually to appear for the Cj calculated from
2-NBD fits (with parameters from [7]) and become clearly
visible when using three component NBD (with parameters
from [9]). In fact, in this case one can fit Cj obtained from
data [16].
As shown in [4,5] such oscillations of Cj are seen for

different pseudorapidity windows, in data from all LHC
experiments and at all energies. The only condition is that
the statistics of the experiment must be high enough; in
cases of small statistics the oscillations become too fuzzy to
be recognized [5]. For clarity of presentation we do not
show errors on the figures with modified combinants Cj,
leaving their discussion to the Appendix (where we
investigate the sensitivity of Cj ’s to the uncertainties of
the measurements). Actually, a single NBD is not able to
reproduce data because in this case the corresponding Cj

behave as

Cj ¼
k

hNip
jþ1; ð7Þ

i.e., all Cj > 0 [4,5]. Quite contrary to the NBD, the
modified combinants for the BD, cf., Eq. (2), oscillate
rapidly,

Cj ¼ ð−1Þj K
hNi

�
p

1 − p

�
jþ1

; ð8Þ

with a period equal to 2. However, their general shape lacks
the distinctive fading down feature of the Cj observed
experimentally. This means that BD used alone cannot
explain data.
The modified combinants Cj defined by the recurrence

relation (6) are closely related to the combinants C⋆
j

introduced a long time ago in [17,18] by means of the
generating function, GðzÞ ¼ P∞

N¼0 PðNÞzN , as
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FIG. 1. (a) Charged hadron multiplicity distributions for the
pseudorapidity range jηj < 2 at

ffiffiffi
s

p ¼ 7 TeV, as given by the
CMS experiment [15] (squares), compared with a NBD for
parameters hNi ¼ 25.5 and k ¼ 1.45 (full blue line), with the
two-component NBD with parameters from [7] (red dashed line)
and with a three-component NBD with parameters from [9]
(dotted green line). (b) The corresponding modified combinants
Cj emerging from the CMS data (squares) compared with the
same choices of NBD as used in (a).
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C⋆
j ¼ 1

j!
dj lnGðzÞ

dzj

����
z¼0

ð9Þ

or lnGðzÞ ¼ lnPð0Þ þ
X∞

j¼1

C⋆
j z

j ð10Þ

(see also [1,19–28]). Namely,

Cj ¼
jþ 1

hNi C⋆
jþ1: ð11Þ

Therefore, the Cj can also be expressed by the generating
function GðzÞ of PðNÞ as

hNiCj ¼
1

j!
djþ1 lnGðzÞ

dzjþ1

����
z¼0

: ð12Þ

This relation is particularly useful later for calculation of
the Cj from the compound multiplicity distributions
defined by some generating function GðzÞ. Note that,
although the combinants, C�

j , were already known for a
long time, and their possible oscillatory behavior was also
known, they have so far scarcely been used and were not
directly extracted from the experimental data [2,20–28].
As in the case of the combinants, C⋆

j , the set of modified
combinants, Cj, provides a similar measure of fluctuations
as the set of cumulant factorial moments, Kq, which are
very sensitive to the details of the multiplicity distribution
and were frequently used in phenomenological analyses of
data (cf., [1,19]),

Kq ¼ Fq −
Xq−1

i¼1

�
q − 1

i − 1

�
Kq−iFi; ð13Þ

where

Fq ¼
X∞

N¼q

NðN − 1ÞðN − 2Þ…ðN − qþ 1ÞPðNÞ ð14Þ

are the factorial moments. The Kq can be expressed as an
infinite series of the Cj,

Kq ¼
X∞

j¼q

ðj − 1Þ!
ðj − qÞ! hNiCj−1; ð15Þ

and, conversely, the Cj can be expressed in terms of the Kq

[1,19],

Cj ¼
1

hNi
1

ðj − 1Þ!
X∞

p¼0

ð−1Þp
p!

Kpþj: ð16Þ

Modified combinants also share with cumulants the prop-
erty of additivity. For a random variable composed of
independent random variables, with its generating function

given by the product of their generating functions,
GðxÞ ¼ Q

jGjðxÞ, the corresponding modified combinants
are given by the sum of the independent components. On
the other hand, while cumulants are best suited to the study
of the densely populated region of phase space, combinants
are better suited for the study of sparsely populated regions
because, according to Eq. (6), calculation of Cj requires
only a finite number of probabilities PðN < jÞ (which may
be advantageous in applications).
Concerning the void probabilities, the problem also to be

addressed in this work is that, as can be seen in Fig. 1(a), in
the data on PðNÞ discussed in this work one observes that
Pð0Þ > Pð1Þ. As can be seen in Fig. 2(a), such behavior
occurs at all energies of interest. The interesting point is
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FIG. 2. (a) Experimental smooth multiplicity distributions
PðNÞ displayed for low multiplicities and for energies ranging
from 0.2 TeV (p̄p collisions at UA5 experiment [29]) up to 8 TeV
(pp collisions at ALICE experiment [30]). Note the peculiar
enhancement of the void probability Pð0Þ (rather small at 0.2 TeV
but quite substantial at 8 TeV). (b) The same as in (a) but limited
to small multiplicities to expose the void enhancement seen in (a);
it can be reproduced only by using two-component compound
binomial distributions (CBD, composed of NB and NBD)
introduced and discussed below in Secs. III and IV.
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that it cannot be fitted either by a single NBD or by the
compositions of two or three NBD used to fit the data
presented in Fig. 1. However, as shown in Fig. 2(b), this
feature of the void probability can be nicely reproduced by
a two-component compound distribution based on the BD
and NBD, which we discuss in Secs. III and IV.
Note that the void probability, Pð0Þ, is strongly con-

nected with the modified combinants. Using Eqs. (10)
and (11) it can be written as

Pð0Þ ¼ exp

�
−
X∞

j¼0

hNi
jþ 1

Cj

�
: ð17Þ

Using further Eq. (6) one can show that the Pð0Þ > Pð1Þ
property is possible only when

hNiC0 < 1: ð18Þ

For most multiplicity distributions we also have that
Pð2Þ > Pð1Þ, which results in the additional condition

C1 > C0ð2 − hNiC0Þ; ð19Þ

which together with Eq. (18) leads to the requirement that
in this case

C1 > C0: ð20Þ

However, this initial increase of Cj cannot continue for all
ranks j; rather, because of the normalization condition,P∞

j¼0 Cj ¼ 1, we should observe some kind of nonmono-
tonic behaviour of Cj with rank j in this case. Therefore, all
multiplicity distributions for which the modified combi-
nants Cj decrease monotonically with rank j [like, for
example, the NBD, cf., Eq. (7)] do not exhibit the enhanced
void probability.

III. COMPOUND DISTRIBUTIONS

Because a single distribution of the NBD or BD type
cannot describe data we check the idea of compound
distributions. They are applicable when the production
process consists of a number M of some objects (clusters/
fireballs/etc.) produced according to some distribution
fðMÞ [defined by a generating function FðzÞ], which
subsequently decay independently into a number of sec-
ondaries, ni¼1;…;M, following some other (always the same
for all M) distribution, gðnÞ [defined by a generating
function GðzÞ]. The resultant multiplicity distribution,

h

�
N ¼

XM

i¼0

ni

�
¼ fðMÞ ⊗ gðnÞ; ð21Þ

is a compound distribution of f and g with generating
function

HðzÞ ¼ F½GðzÞ�: ð22Þ

The immediate consequence of Eq. (22) is that in the case
where fðMÞ is a Poisson distribution [PPD from Eq. (3)]
with generating function

FðzÞ ¼ exp½λðz − 1Þ�; ð23Þ
then, for any other distribution gðnÞ with generating
function GðzÞ, the combinants obtained from the com-
pound distribution hðNÞ ¼ PPD ⊗ gðnÞ and calculated
using Eq. (12) do not oscillate and are equal to

Cj ¼
λðjþ 1Þ
hNi gðjþ 1Þ: ð24Þ

In particular, in the case when gðnÞ is a logarithmic
distribution, gðnÞ ¼ −pn=½n lnð1 − pÞ�, for which hðNÞ
is the NBD with k ¼ −λ= lnð1 − pÞ, one gets that the
above Cj coincide with those derived before from the
recurrence relation (6) and given by Eq. (7). This reasoning
can be further generalized to all more complicated
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compound distributions, with any distribution itself
being a compound Poisson distribution. This limits the
set of distributions PðNÞ leading to oscillating Cj only to,
essentially, a BD and to all compound distributions based
on it.
It is interesting to note that this result explains the

evident success of the multi-NBD type of PðNÞ in fitting
data on the Cj [16]. Such a distribution has freely selected
weights and parameters ðp; kÞ of NBDs and apparently
looks similar to the compound distribution of the BD with
the NBD discussed in the next section, ðBD& NBDÞ,
which is also a multi-NBD distribution but this time its
weights are precisely given by the BD, and parameters
ðp; kÞ of each NBD component are also fixed. Note that the
sum of M variables (with M ¼ 0; 1; 2;…), each from the
NBD characterized by parameters ðp; kÞ, is described by a
NBD characterized by ðp;MkÞ. In the case where
M ¼ 0; 1;…; K is distributed according to a BD, we have
a K-component NBD (where consecutive NBD have
precisely defined parameters k),

PðNÞ ¼
XK

M¼0

PBDðMÞPNBDðN;p;MkÞ; ð25Þ

which naturally leads to the appearance of oscillations.
Note that in this case one has also the M ¼ 0 component,
which is lacking in the usual multi-NBD approach. This is
the reason why the compound ðBD& NBDÞ distribution
reproduces the void probability, Pð0Þ, while the single
NBD, or any combination of NBDs, does not. As for the
modified combinants it only changes their amplitude and
periods of oscillations.

IV. RESULTS

As mentioned above, the modified combinants Cj for the
BD with generating function

FðzÞ ¼ ðpzþ 1 − pÞK ð26Þ
oscillate with a period of 2, whereas, as shown in Fig. 3(a),
the amplitudes of these oscillations depend on the
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probability emission p. To control the period of the
oscillations one has to compound this BD with some other
distribution. Figure 3(b) shows an example of using for this
purpose a Poisson distribution with a generating function
given by Eq. (23) (for which C0 ¼ 1 and Cj>0 ¼ 0). The
generating function of the resulting CBD is

HðzÞ ¼ fp exp½λðz − 1Þ� þ 1 − pgK: ð27Þ

Figure 3(b) shows theCj obtained from such a CBDwith
K ¼ 3 and λ ¼ 10 and calculated for three different values
of p in the BD: p ¼ 0.54, 0.62, 0.66. Note that, in general,
the period of oscillation is now equal to 2λ (i.e., here, where
λ ¼ 10, it is equal to 20). However, such a CBD lacks the
fading down feature of its Cj and therefore cannot fit the
results presented here. The situation improves substantially
when one uses a multi-CBD based on Eq. (27), but still the
agreement is not satisfactory. The situation improves
dramatically if one replaces the Poisson distribution by a
NBD and, additionally, allows a two-component version of
such a CBD in order to gain better control over both the
period and the amplitudes and on their behavior as a
function of the rank j, and

PðNÞ ¼
X

i¼1;2

wihðN;pi; Ki; ki; miÞ;
X

1¼1;2

wi ¼ 1: ð28Þ

The generating function of such a CBD is

HðzÞ¼
�
p

�
1−p0

1−p0z

�
k
þ1−p

�
K
; p0 ¼ m

mþk
: ð29Þ

As one can see in Fig. 4 in this case (with K1 ¼ K2 ¼ 3,
p1 ¼ 0.7, p2 ¼ 0.67, k1 ¼ 4, k2 ¼ 2.3, m1 ¼ 6,
m2 ¼ 19.0, and w1 ¼ w2 ¼ 0.5) one can nicely fit both
the PðNÞ and Cj. Of special importance is the fact that
the enhancement Pð0Þ > Pð1Þ is also reproduced in this
approach. This is best visible in Fig. 2(b), which concen-
trates on the region of small N only. This result is presented
there in comparison with the results of a number of other,
seemingly very good, fits based only on some combina-
tions of NBD (and not using the BD), which are not able to
reproduce this feature of the data.
Summarizing this part: it turns out that to describe all

aspects of the data on multiparticle distributions one has to
use a multicomponent compound distribution based on the
BD (which is responsible for the oscillations in Cj), which
is compounded with some other distribution providing
damping of the oscillations for large N (in this example it
is a NBD). In Fig. 5(a) we show the results of such an
approach applied to data taken at different energies (in
rapidity window jηj < 3).
Figure 5(b) shows another intriguing property of the

modified combinants, namely, that both their periods and
amplitudes increasewith thewidth of the rapidity window in
which the data on the resultingPðNÞwere collected. Amore
detailed picture of this phenomenon is presented in Fig. 6
showing the description of the multiplicity distributions

(a) (b) (c)

(d) (e) (f )

FIG. 6. [(a)–(c)] Multiplicity distributions PðNÞ measured by ALICE [30]. [(d)–(f)] The corresponding modified combinants Cj
emerging from them fitted using a two-compound distribution (BDþ NBD) given by Eqs. (29) and (28) with parameters listed in
Table I.
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(NSD events at 7 TeV) measured by ALICE [30] for
three different rapidity windows: jηj < 2, jηj < 3 and
−3.4 < η < 5. The most intriguing feature observed is
the rather dramatic increase of both the period of the
oscillations and their amplitudewith thewidth of the rapidity
window used to collect the data and, most noticeably, the
previously observed fading down of their amplitude is now
replaced by an (almost) constant behavior (for jηj < 3) or
by a rather dramatic increase (for −3.4 < η < 5). Because
hNi ∼ Δη, some part of this increase could be caused by the
increase of hNi with Δη; the rest expects an explanation.
However, in general, with increasing Δη both probabilities,
p and p0, are increasing, which results in an increase in the
amplitudes of the Cj with rank j.
So far both components are based on the same BD with

K1;2 ¼ 3. We have checked that one can safely increase the
parameter K2 in the second component while keeping
practically all the parameters of the first component the
same and, for appropriately selected other parameters of the
second component, we get results essentially indistinguish-
able from those presented in Fig. 6 [for example, for the
ALICE data at 7 TeV and jηj < 2, this can be done for
K2 ¼ 3, 6, 9, 12, 20 and ðp2; m2Þ such that K2p2m2 ¼
const ≃ 32, which means that for the second component
hNBDihNNBDi ≃ 32]. So far we cannot offer any convinc-
ing explanation of our findings. At the moment the rough
idea could be, for example, that the two components
correspond to a quark-quark interaction (therefore,
K ¼ 3) and to a gluon-gluon interaction (in this case K
could be different, as mentioned above).1

V. SUMMARY AND CONCLUSIONS

We presented an approach in which one can simulta-
neously reproduce such features of the observed multiplic-
ity distributions as their shape as a function of the
multiplicity, PðNÞ, the peculiar properties of the observed
void probabilities, Pð0Þ > Pð1Þ, and, finally, the behavior
of the modified combinants, Cj, which can be deduced
from the measured PðNÞ. In particular, we have shown that
the most popular type of multiplicity distribution, the NBD,

cannot alone describe the data on PðNÞ. The two-compo-
nent NBD can describe the data on PðNÞ but fails to
describe the observed oscillatory pattern of the Cj obtained
from them. These two features can be fully reproduced by
multicomponent NBD models (like, for example, the
3-NBD proposed in [16]), but such models do not repro-
duce the property that Pð0Þ > Pð1Þ. In fact, none of this
class of models reproduces it (as long as it does not take
into account also contributions from the single-diffractive
and double-diffractive events [32]). On the other hand, the
compound distributions discussed in [2,3], which were
specially designed and tuned to describe the Pð0Þ > Pð1Þ
property, do not reproduce the oscillatory behavior of the
corresponding modified combinants, Cj. This is because
they belong to the group of infinitely divisible distributions
(for which Cj are positive for all ranks j [19]).
Our approach is based on the compound distribution,

CBD, with the main role played by the BD. It is responsible
for the oscillatory behavior of the modified combinants, Cj,
and is compounded with a NBD that is responsible for the
amplitudes and periods of these oscillations. In the frame-
work of clusters description such compound distribution
corresponds to the use of the binomial distribution for the
cluster distribution and the negative binomial distribution
as the distribution for the fragmentation of the clusters
(the mean multiplicity of NBD determines the period of
oscillations).
The lack of oscillatory behavior of the Cj deduced from

the NBD can then be attributed to the fact that the NBD is
itself a compound distribution of the Poisson and loga-
rithmic distributions, and compound distribution of a
Poisson with any other distribution always results in
nonoscillating (in fact, exponentially fading down) Cj.
On the other hand, the emergence of the oscillatory
behavior of the multi-NBD can be attributed to the fact
that a sum of NBDs is, under some conditions, equivalent
to a compound distribution of a BD with a NBD.
Of course, we are aware that many other models are

used to describe multiplicity distributions, but 40 years
have already passed (counting from Ref. [18]) with no
detailed experimental study of the combinants and with
rather sporadic attempts of their phenomenological use
to describe the multiparticle production processes
(cf., Refs. [1,4,5,16,19–28,33]). Among them scenarios
with the fluctuation of hNi in the Poisson distribution
(formally correspond to the so-called Poisson transforms)

TABLE I. Parameters wi, pi, Ki, ki, and mi of the two-component PðNÞ, Eqs. (29) and (28), used to fit the data in Fig. 6. For
completeness the corresponding p0

i ¼ mi=ðmi þ kiÞ from Eq. (29) are also included.

w1 p1 K1 k1 m1 p0
1 w2 p2 K2 k2 m2 p0

2

−2hηh2 0.30 0.75 3 3.8 4.75 0.56 0.70 0.70 3 1.30 15.9 0.924
−3hηh3 0.24 0.90 3 2.8 5.75 0.67 0.76 0.645 3 1.34 23.5 0.946
−3.4hηh5 0.20 0.965 3 2.7 8.00 0.75 0.80 0.72 3 1.18 27.0 0.955

1To be more specific, one can try to estimate the number
of “hard" gluons participating in the interaction (which is
equivalent to K2). For example, in [31] it was estimated as
NG ¼ 2.84 lnð ffiffiffi

s
p Þ − 11.45, which for an energy of 7 TeV gives

N ∼ 14.
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seem to be very promising. It is remarkable that fluctuation
of hNi in the Poisson distribution, with fðhNiÞ given by the
generalized gamma distribution, leads to fractional negative
binomial distribution (known also as HNBD, because such
extension of NBD can be expressed in terms of the Fox
H-function), which demonstrates oscillatory behavior of
the corresponding combinants [33–36]. Despite that in the
HNBD we have Pð0Þ < Pð1Þ, such extension of NBD (with
only one additional parameter) is worth future detailed study.
In summary, we believe that the modified combinants, Cj,

deduced from the measured multiplicity distributions, PðNÞ,
together with the already measured void probabilities, could
provide additional information on the dynamics of the
particle production. This, in turn, could allow us to reduce
the number of possible interpretations presented so far and,
perhaps, answer some of the many still open fundamental
questions. Experimental measurements of Cj [or, rather,
presenting them together with the already measured PðNÞ]
appear in this context as a new important necessity.
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APPENDIX: ESTIMATION OF ERRORS

A detailed discussion of the sensitivity of the modified
combinants Cj to the measurement uncertainties is given in
[16]. Here we present only some remarks on the estimation
of the errors in Cj based on the published data and
Monte Carlo simulations.
To summarize, as shown in Fig. 7, one observes that

statistical errors cause only some chaotic spread of the
measuredCj but do not result in periodic oscillations. In the
case of monotonic behavior of Cj as a function of the rank j
(for example, when one uses the NBD) one gets no
oscillations from errors. However, in the case when one
observes oscillations, systematic errors can actually blur the
whole picture of oscillation (making them invisible). The
most important point is that the oscillations of Cj are highly
correlated, cf., Eq. (A1) (they are not chaotically scattered).
Statistical errors do not give such oscillations.

(a) (b) (c)

(d) (e) (f )

FIG. 7. (a) Monte Carlo evaluated coefficients Cj emerging from NBD with parameters: hNi ¼ 25.5 and k ¼ 1.45. With increasing
statistics points are merging to a continuous line. (b) Errors of hNiCj evaluated using the systematic and statistical uncertainties of PðNÞ
given by ALICE [30]. (c) Monte Carlo evaluated coefficients hNiCj emerging from the systematic and statistical errors of PðNÞ. The
curve presented here denotes the fit to the original coefficients Cj obtained from the measured PðNÞ; it is not the fit to the points shown.
(d) For the same data as before the errors were evaluated assuming only statistical uncertainties of the measured PðNÞ with a Poissonian
distribution of events in each bin, i.e., Var½PðNÞ� ¼ PðNÞ=Nstat. Note that in this case statistical errors do not give any noticeable errors
of Cj. (e) Monte Carlo evaluated coefficients hNiCj with only statistical errors of PðNÞ accounted for. The continuous curve represents
the fit to the original coefficients Cj obtained from the measured PðNÞ. (f) The modified combinants Cj emerging from the ALICE data
on PðNÞ [30] (continuous curve) in the envelope corresponding to the systematic uncertainties of data, PðNÞ � δ½PðNÞ�.
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Figure 7(a) shows values of the Cj for a NBD. Note that
for large statistics (comparable to these in ALICE for 7 TeV
where we have 3.437 × 108 selected events [30]) we obtain
a very smooth dependence on the rank j. On the other hand,
making analytical estimates of the size of the error one
finds that

Var½hNiCj� ¼
�
jþ 1

Pð0Þ
�
2

Var½Pðjþ 1Þ�

þ
�

1

Pð0Þ
�

2 Xj−1

i¼0

ðhNiCiÞ2Var½Pðj − iÞ�

þ
Xj−1

i¼0

�
Pðj − iÞ
Pð0Þ

�
2

Var½hNiCi�: ðA1Þ

Note that the last term of Eq. (A1) introduces dependence
of the error in Cj on the errors of all previous coefficients
Ci<j. This results in an error cumulation effect leading to a
significant increase of errors with increasing rank j, as can
be observed in Fig. 7(b). However, despite such big errors,
the values of hNiCj lie practically on the curve (i.e., the
points do not jump in the limits of errors). For such errors a
Monte Carlo simulation would give the result presented in
Fig. 7(c). Note that, as shown in Figs. 7(d) and 7(e), using
only statistical errors of the measured PðNÞ results in a
well-defined curve. Finally, as demonstrated in Fig. 7(f),
systematic errors provide limitations on the measured
oscillations of Cj in the form of some characteristic
envelope (provided by the systematic uncertainties of
PðNÞ, PðNÞ � δ½PðNÞ�), around the mean values of
hNiCj, which follows the fine structure of the oscillations
of the residual mean values quite accurately.
We end with an estimation of the statistical significance

of the oscillating behavior of the modified combinants Cj.
This can be done using the periodogram-based Fisher g-
statistic test [37,38]. This test determines whether a peak in
the periodogram is significant or not and it proceeds as
follows. Given a series yðjÞ ¼ hNiCj of length L, the
periodogram IðωÞ is first computed as

IðωÞ ¼ 1

L

����
XL

j¼1

yðjÞ expð−iωjÞ
����
2

; ω ∈ ½0; π�: ðA2Þ

It is evaluated at the discrete normalized frequencies

ωl ¼
2πl
L

; l ¼ 0; 1;…; a; ðA3Þ

where a ¼ ½ðL − 1Þ=2� and [x] denotes the integer part of x.
If a series has a significant sinusoidal component with
frequency ωk, then the periodogram exhibits a peak at that
frequency. Fisher derived an exact test of the significance of
the spectral peak by introducing the Fisher g statistic [37]
defined as

g ¼ max IðωlÞP
a
l¼1 IððωlÞ

: ðA4Þ

In Fisher’s test, one is testing the null hypothesis, H0,
that the spectral peak is statistically insignificant against
the alternative hypothesis, H1, that there is a periodic
component in the signal yðjÞ. Under the Gaussian noise
assumption, the exact distribution of the g statistic under the
null hypothesis H0 is given by

Pðg⋆ > gÞ ¼
X½1=g�

k¼1

ð−1Þk−1 a!
k!ða − kÞ! ð1 − kgÞa−1: ðA5Þ

In Fig. 8 we present the normalized periodogram IðωÞ
for hNiCj calculated from ALICE data discussed here [30].
Note the large observed value of g, a peak in the periodo-
gram, which indicates the existence of a strong periodic
component and leads us to reject the null hypothesis. The
probability that the spectral peak is statistically insignifi-
cant is 10−16. Therefore, similarly as in [16], we conclude
that notwithstanding the large sensitivity of the oscillations
of the modified combinants to systematic uncertainties in
the measurements of PðNÞ, they show enough power to
disclose the fine details of experimentally measured multi-
plicity distributions, and can shed new light on the
dynamics of multiparticle production processes.

FIG. 8. Normalized periodogram IðωÞ for hNiCj calculated
from ALICE data for pp at 7 TeV and jηj < 3 [30].
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