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Relaxation and correlation times are two parameters used frequently in approximate descriptions of the
time development of hadronizing system from some initial state toward distributions observed exper-
imentally. Chosen to reproduce the experimental results they represent, in a sense, the history of the
hadronization process. The analysis of their changes with energy is the subject of our work.
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I. INTRODUCTION

In many descriptions of multiparticle production proc-
esses we are interested in their temporal development from
a certain initial state to the final state recorded in the
experiment. In such descriptions, we usually deal with
certain multistage processes, each with its own character-
istic timescale. The concept of their hierarchy is one of the
fundamental properties in statistical physics [1]. These
phenomena can be understood correctly only if the dynam-
ics of one-particle and two-particle properties characterized
by, respectively, relaxation time τrel and correlation time
τcor, are known. In most situations first, in the initial stage,
i.e., for t < τcor the correlations relax, it is followed in
τcor < t < τrel by the kinetic stage when the one-particle
relax, and finally, for t > τrel system enters into stationary
(hydrodynamic) stage. In this way the relaxation and
correlation times (chosen to reproduce the experimental
results for, respectively, transverse distributions of pro-
duced secondaries and multiplicity distributions) occur as
two parameters which represent the dynamical history of
the hadronization process. As such they must depend on
energy and the form and details of this dependence is the
subject of this work.
The evolution of the particle distribution can be studied

through the Boltzmann transport equation (BTE),

dfðr; p; tÞ
dt

¼ ∂f
∂t þ u⃗ ·∇rf þ F⃗ ·∇pf ¼ C½f�; ð1Þ

where fðr; p; tÞ is the distribution of particles which
depends on position r, momentum p, and time t, F⃗ is
the external force, u⃗ is the velocity, and C½f� is the collision
term. Assuming in what follows homogeneity of the system
(∇rf ¼ 0) and absence of external forces (F⃗ ¼ 0) Eq. (1)
reduces to

dfðr; p; tÞ
dt

¼ ∂f
∂t ¼ C½f�: ð2Þ

In the relaxation time approximation (RTA) [2–5] the
collision term is assumed to be equal to

C½f� ¼ feq − f

τrel
; ð3Þ

where feq is the local equilibrium distribution and τrel is the
relaxation time, understood as the time taken by the
nonequilibrium system to reach equilibrium. In this
approximation BTE simplifies to

∂f
∂t ¼

feq − f

τrel
: ð4Þ

Solving this equation for the initial conditions such that at
t ¼ 0 one has initial distribution, f ¼ fin, and at freeze-out
time, t ¼ tf one has final distribution, f ¼ ffin (to be
identified with the actually measured distribution) one gets
that

ffin ¼ feq þ ðfin − feqÞ exp
�
−

tf
τrel

�
: ð5Þ

The Boltzmann transport equation in the RTA approxima-
tion is a very popular approach recently used to analyze
the various observables from nucleus-nucleus collisions
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measured in experiments at RHIC and LHC, cf., for
example, [6–11].1

II. DEDUCING ENERGY DEPENDENCE OF tf=τrel
FROM DATA ON pT DISTRIBUTIONS

We shall analyze in this work transverse momentum
distributions, fðpTÞ, from proton-proton and proton-anti-
proton collisions in a wide range of energies. To start let us
note that we need ffin which can be identified with the
experimentally distribution. Therefore we need as good as
possible formula fitting pT at all energies available. We
argue that such a formula is the Tsallis power-law dis-
tribution [12–14]

fðpTÞ ¼
2 − q
T

�
1þ ðq − 1ÞpT

T

� 1
1−q ð6Þ

characterized by the energy dependent Tsallis q parameter
and the temperature parameter T. Here q ≥ 1, for q → 1
Tsallis distribution becomes usual Boltzmann-Gibbs
distribution,

fBGðpTÞ ¼
1

T
exp

�
−
pT

T

�
: ð7Þ

As shown in [13] this formula nicely describes wide range
of the measured transverse momenta (0.1<pT <100GeV)
in which cross section spans a range of ∼14 orders of
magnitude. Parameter q represents the degree of the
nonextensivity or, in other words, the degree of deviation
of the system from the thermalized or equilibrated system,
which is usually described by the well-known Boltzmann-
Gibbs statistical mechanics. In our case, it is a limiting form
of the considered system for tf → ∞. Therefore our feq in
Eq. (5) is assumed to have form of Eq. (7).
The above-mentioned features of the Tsallis distribution

(see also [14]) mean that also fin can be selected in this
form, but with q characteristic for hard scattering. Its value
can be estimated by assuming the basic quark model as
responsible for the initial state. In this case the high pT
differential cross section can be inferred from the counting
rules [15–17] stating that for such processes the invari-
ant cross section for the exclusive process at high pT
behaves as the power law, with power index γ ¼
2 × ½ðnumber of active participantsÞ − 2�. Assuming that
the dominant processes of this type are 2 → 2 processes
(like qq → qq) one gets that dσ=dpT ∝ p−γ

T with γ ¼ 4,
what translates to qin − 1 ¼ 1=γ.
To find the dependence of the tf=τrel ratio on energy we

calculate the relation between temperatures deduced from

different components of Eq. (5) using the fact that for
Tsallis distribution

hpTi ¼
T

3 − 2q
: ð8Þ

Using this in Eq. (5) one obtains that

hpTið3 − 2qÞ

¼ hpTi þ ½hpTið3 − 2qinÞ − hpTi� · exp
�
−

tf
τrel

�
ð9Þ

and assuming that hpTi ¼ const during the time evolution
one gets that

tf
τrel

¼ ln

�
qin − 1

q − 1

�
: ð10Þ

Using for q ¼ qðsÞ values obtained from the experimental
data on transverse momentum distributions for different
energies [13,18,19] we obtain the ratio tf=τrel as shown in
Fig. 1. Closing this section, let us note that assuming that all
distributions used here are Tsallis distributions, we are
actually going beyond the RTA scheme (see Appendix for
details).

III. DEDUCING ENERGY DEPENDENCE OF tf=τcor
FROM DATA ON MULTIPLICITY

We will now move on to correlation time τcor which
determines multiplicity distribution PðNÞ [4]. Its scaled
variance is given by the correlation function ν2ðt1; t2Þ ¼
ν2ðt ¼ jt1 − t2jÞ by the relation [20]

VarðNÞ
hNi ¼ 1þ hNihν2i; ð11Þ

where

FIG. 1. Energy dependence of tf=τrel obtained from the
experimental data using Eq. (10). Based on data from: [13]
(triangle), [18] (circles) and [19] (diamonds).

1BTE in RTA approximation has been used to study the
time evolution of temperature fluctuations in a nonequilibrated
system [8], elliptic flow [10] and also for study nuclear modi-
fication [6,7,11] factor at RHIC and LHC energies.
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hν2i ¼
ZZ

ν2ðt1; t2Þdt1dt2 ¼
2

t2f

Z
tf

0

ðtf − tÞν2ðtÞdt: ð12Þ

For the correlation function of the form

ν2ðtÞ ¼ exp

�
−

2t
τcor

�
ð13Þ

one gets

hν2i ¼
�
τcor
tf

�
2
�
exp

�
−

tf
τcor

�
− 1þ 2

tf
τcor

�
ð14Þ

and the scaled variance is equal to2

VarðNÞ
hNi ¼ 1þ hNi

2

�
τcor
tf

�
2
�
exp

�
−

tf
τcor

�
− 1þ 2

tf
τcor

�
:

ð15Þ

Using VarðNÞ and hNi values evaluated from the charged-
particle multiplicity distributions for nonsingle-diffractive
proton-proton (antiproton) collisions [21,22] we obtain the
ratio tf=τcor shown in Fig. 2. Combining the results of both
approaches, we present in Fig. 3 the ratio τrel=τcor in the
energy range from 10 GeV to 7 TeV analyzed here.

IV. INTERPRETATION OF THE RESULTS

Let us now try to organize these results and draw some
conclusions from them. The quasipower distribution can be
interpreted as a trace of temperature fluctuations [23] and
the nonextensive Tsallis statistics, usually called super-
statistics [24,25]. If we approximate the production process
with an irreducible Markov chain, then the dependence of

fluctuations on time will be very sensitive to the reciprocal
of the relaxation time, ω ¼ 1=τrel, that is, the stochastic
collision frequency for the particle [26]. It is therefore
reasonable to choose τ so that the fluctuation decay time
along the particle’s trajectory is the same as the decay time
of a small section (small volume) of real matter surrounded
by a much larger volume of its remnants. Now suppose that
this small sample has a temperature variation such that its
temperature is T þ ΔT. The sample will therefore gain or
lose energy at a rate proportional to the temperature
difference δT and the thermal conductivity κ.
By dimensional analysis, it is easy to show that the rate

of heat gain (in energy per time unit) is ∼κΔT. Because
each stochastic collision changes the system energy by
amount ∼κΔT and the total stochastic collision frequency
is Nω, hence the rate of energy gain is ∝ NωκΔTcP, where
cP is the specific heat for constant pressure. By identifying
the above increase in heat with the increase in energy, we
obtain that the stochastic collision frequency for the particle
(reciprocal of the relaxation time) is equal to3

1

τrel
¼ ω ¼ κ

cP

V
N
: ð16Þ

If the stochastic collisions are to simulate the effects of the
surroundings of a set of N particles, the frequency of the
collisions should be as given in this formula. Note that ω is
of the order 1=N and the total collision coefficient for the
sample is of the order 1. For a sufficiently large multiplicity
N, the frequency of stochastic collisions will be much less
than the frequency of interparticle collisions. Therefore,
most of the time most particles will move according to the
conservative equations of motion for a closed system. The
stochastic interruptions will be rare, but they will cause
the system energy to relax to a value appropriate for

FIG. 2. Energy dependence of tf=τcor obtained from exper-
imental data using Eq. (15).

FIG. 3. Energy dependence of τrel=τcor obtained from exper-
imental data.

2Notice that for multiplicity distribution expressed via neg-
ative binomial form is characterized by the parameter 1

k ¼
VarðNÞ
hNi − 1

hNi ¼ hν2i.

3This can be compared to the result we get from the Fourier
equation for heat transfer. ∂T∂t ¼ κ

ρcP
ΔT, where ρ is the density of

the particles [27].
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temperature T at a rate appropriate to the N particle system,
and will cause the energy to fluctuate around its equilib-
rium value with the magnitude appropriate for the canonical
ensemble.
From Eq. (16) it can be expected that the multiplicity N

is related linearly to the relaxation time τrel, N ∼ τrel.
Assuming additionally that the freezeout time tf is inde-
pendent of energy, i.e., that the energy dependence shown
in Figure 1 comes only from the dependence of the
relaxation time, τrel ¼ τrelðsÞ (which in turn comes from
the energy dependence of the transverse momentum dis-
tributions), one can expect that for θðsÞ ¼ tf

τrel
shown in

Fig. 1 one gets

hNðsÞi ¼ aþ b=θðsÞ: ð17Þ

As can be seen in Fig. 4 comparison with data shows that
this is indeed the case confirming the arguments presented
above. Note, however, that our result does not exclude the
nonlinear dependence of τrel on hNi. We show that
1=θ ∼ hNi ∼ ð ffiffiffi

s
p Þb. For τrel ∼ hNia we have energy de-

pendent tf, tf ∼ ð ffiffiffi
s

p Þbða−1Þ. For a > 1 tf increases with
energy, while for a < 1 it decreases with energy.
Interpretation of the results obtained from the analysis of

multiplicity fluctuations is not so simple. The reason is that
the fluctuations here come not only from the fluctuations of
temperature T but also from the fluctuations of the available
energy U (i.e., the fluctuations of inelasticity K). To
illustrate this we consider conditional Poisson distribution
PðNjnÞ with fluctuating mean value n̄ according some
distribution wðn̄Þ. The resulting multiplicity distribution
PðNÞ is given by4

PðNÞ ¼
Z

PðNjn̄Þwðn̄Þn̄ ¼
Z

n̄N

N!
e−n̄wðn̄Þdn̄: ð18Þ

The fluctuations caused by wðn̄Þ define the moments of the
distribution:

hNi ¼ hn̄i; ð19Þ

VarðNÞ ¼hNi þ Varðn̄Þ; ð20Þ

and correspond to the correlation function by the relation

hν2i ¼
Varðn̄Þ
hn̄i2 : ð21Þ

The mean value of the distribution wðn̄Þ is

hn̄i ¼ U
T
¼ K

ffiffiffi
s

p
T

; ð22Þ

where both T and K can fluctuate, in fact we have that [28]:

Varðn̄Þ
hn̄i2 ¼ VarðKÞ

hKi2 þ Varð1=TÞ
h1=Ti2 : ð23Þ

Because Varð1=TÞ=h1=Ti2 ¼ q − 1 (where q is the non-
extensivity parameter [28]) we have that

VarðKÞ
hKi2 ¼ hν2i − ðq − 1Þ: ð24Þ

Taking qðsÞ used in Fig. 1 and hν2ðsÞi such as in Fig. 2 we
get the dependence on the energy of the relative fluctuations
K shown in Fig. 5. Because, approximately, q − 1 ≅ 1

3
hν2i

[28], therefore VarðKÞ=hKi2 ≃ 2
3
hν2i. For the uniform dis-

tribution of K, we have VarðKÞ=hKi2 ¼ 1=3 whereas for
the symmetric triangle distribution VarðKÞ=hKi2 ¼ 1=6.

FIG. 4. Energy dependence of mean multiplicity as given by
Eq. (17). Data points are from [21].

FIG. 5. Relative fluctuations of the inelasticity coefficient
emerging from the Eq. (24) (solid curve) and Eq. (26) with
parameter p ¼ 0.7 (dotted curve).

4Note that the exponential form of the distribution wðn̄Þ results
in a geometrical (Bose-Einstein) distribution of PðNÞ, while for
wðn̄Þ given by the gamma distribution we have the negative
binomial distribution of PðNÞ.

RYBCZYŃSKI, WILK, and WŁODARCZYK PHYS. REV. D 103, 114026 (2021)

114026-4



Inelasticity distribution at low energies
ffiffiffi
s

p ¼ 16.5 GeV
show more or less triangle form [29,30].5

However, the above results are for independent fluctua-
tions of K and T, and they can be correlated. In such a case
the result can be quite different depending on the coef-
ficient of correlations. Also, due to conservation rules, the
initial distribution does not have to be Poisson distribution
as in Eq. (18) but binomial distribution (BD). Then instead
Eq. (20) we would have

VarðNÞ ¼ hNi − hNipþ Varðn̄Þ ð25Þ

where p is the emission probability which enters into the
BD. In such a case we have

VarðKÞ
hKi2 ¼ hν2i − ðq − 1Þ þ p

hNi ð26Þ

which is shown in Fig. 5.

V. SUMMARY AND CONCLUSIONS

To summarize, let us first note that fromFigs. 1, 2 and3one
can deduce the relative positions of tf, τrel and τcor relative to
each other depending on the energy: for

ffiffiffi
s

p
< 570 GeV tf >

τrel > τcor whereas for 570 GeV <
ffiffiffi
s

p
< 5.3 TeV we have

that τrel > tf > τcor and for
ffiffiffi
s

p
> 5.3 TeV τrel > τcor > tf.

Relaxation time and correlation time are roughly related by
the relation τcor · t

1=2
f ¼ 0.3ðτrelÞ3=2.

The relaxation time τrel discussed in this paper does
not describe the evolution of the distribution function f as it
is written in Eq. (4). In our case, it characterizes the
time evolution of the nonextensivity parameter q as
shown in Eq. (A3). It therefore describes the temporal
evolution of the temperature fluctuation, Varð1=TÞ ¼
1
4
h1=Ti2 exp ð−t=τrelÞ. Nevertheless, presented by Eq. (9)

method chosen in the Sec. II to determine the ratio trel=τ,
leads to the result given by Eq. (10), which is identical to
what we get from Eq. (A4) resulting from Eq. (A3).
The dependence of τrel on energy mainly comes from

the energy dependence of multiplicity (cf. Eq. (17) and
Fig. 4). Note that the collision time τcoll, defined as
1=τcoll ¼ huσiN=V, where u is the thermal (relative) energy
(relative) and σ is the total cross section for collisions
between particles after averaging over the momentum,
decreases with a multiplicity. Both of these times, τrel
and τcoll, are related to each other by the relation
τcollτrel ¼ cP=ðhuσiκÞ, which very weakly depends on

energy. This suggests that collisions between particles play
the role of a stochastic force causing temperature changes.
And the temperature (T) fluctuations in combination with
the inelasticity (K) fluctuations lead to multiplicity fluctu-
ations. Thus, both of these fluctuations (T andK) determine
the correlation function hν2i which is described by τcor.
Finally, we note that in the fluctuating temperature

scenario, the relaxation and correlation times are related
to each other through the relationship of the transverse
momentum distributions with the multiplicity distributions.
As shown in [23], the fluctuation of inverse temperature
given by the gamma distribution wð1=TÞ leads to the
replacement of the exponential distribution (7) by
the Tsallis distribution of transverse momenta (6) with
the parameter q ¼ 1þ Varð1=TÞ=h1=Ti2. In the simplest
case of a fixed available energy U ¼ const, the fluctuation
of n̄ ¼ U=T is given by the gamma distribution wðn̄Þ and
leads, according to Eq. (18), to the NBD distribution for
PðNÞ described by the shape parameter k such that 1=k ¼
q − 1 [28]. In this case hν2i ¼ 1=k ¼ q − 1. Moreover, in a
single statistical ensemble, the relaxation time depends
linearly on the mean multiplicity [cf. Eq. (16)].6 However,
this does not apply to nuclear collisions. For example,
in superposition models where secondary particles are
emitted by independent NS sources generated by interact-
ing nucleons we have that NAA ¼ NSNpp and hν2iAA ¼
hν2ipp=hNSi þ VarðNSÞ=hNSi2. Many other scenarios are
possible here as well (cf., for example, clustering processes
[31,33]) leading to a different predictions.
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APPENDIX: RTA AND BEYOND

Notice that Eq. (5) defining RTA can be rewritten as a
two-component final distribution

ffin ¼ fin exp

�
−

tf
τrel

�
þ feq

�
1 − exp

�
−

tf
τrel

��
: ðA1Þ

Using fin and feq in the form of Tsallis distribution (with,
respectively, qin and qeq) we get ffin for different values of
tf=τrel as presented in Fig. 6.

5The Feynmann x-spectrum of leading protons is close to a flat
uniform distribution almost for all range, from x ¼ 0 to x ¼ 1.
The distribution of K ¼ 1 − ðx1 þ x2ÞÞ=2 depends on the degree
of correlation of the fractional energy contents x1 and x2 of the
leading particles. If x1 and x2 are totally correlated, then K is
uniformly distributed, whereas if Covðx1; x2Þ ¼ 0 the distribu-
tion of K is triangular.

6It is worth mentioning that if a similar relationship was also
observed in the rare events associated with hard collisions, that
have an multiplicity larger than minimum bias, this observation
(corresponding to a longer relaxation time, even in the case of a
strong collision occurring earlier) has to do with the proposal that
the hard scale of the collision is related to the thermal scale due to
the entanglement of the proton wave function [31,32].
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However, if we would require that all distributions fðtÞ
in Eq. (5) have the form of Tsallis distributions depending
on time entirely via the time dependence of the corre-
sponding nonextensivity parameters, fðtÞ ¼ f½qðtÞ�, then
the time evolution would be given by

∂fðtÞ
∂t ¼ F½qðtÞ� ðA2Þ

(with quite involved form of F7). Assuming further that the
dependence of q on time is given by

∂q
∂t ¼

qeq − q

τrel
; ðA3Þ

and remembering that we always assume that qeq ¼ 1, we
have that

q − 1 ¼ ðqin − 1Þ exp
�
−

tf
τrel

�
ðA4Þ

which corresponds to Eq. (10). Figure 7 shows the resultant
schematic distributions ffin for different tf=τrel; they all
have form of Tsallis distribution with q ¼ qðt ¼ tfÞ
as given by Eq. (A4). As one can see the result now is
different from that from the RTA approximation shown
in Fig. 6.
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