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Abstract As shown recently, one can obtain additional
information from the measured charged particle multiplicity
distributions, P(N ), by investigating the so-called modified
combinants, C j , extracted from them. This information is
encoded in the observed specific oscillatory behaviour ofC j ,
which phenomenologically can be described only by some
combinations of compound distributions based on the Bino-
mial Distribution. So far this idea has been checked in pp
and e+e− processes (where observed oscillations are spec-
tacularly strong). In this paper we continue observation of
multiparticle production from the modified combinants per-
spective by investigating dependencies of the observed oscil-
latory patterns on type of colliding particles, their energies
and the phase space where they are observed. We also offer
some tentative explanation based on different types of com-
pound distributions and stochastic branching processes.

1 Introduction

Multiplicity distributions (MDs) of high energy collisions
have been extensively studied in the field of multiparticle
production. It is one of the first observables to be deter-
mined in new high-energy experiments. This is partly due to
the ease with which such information can be obtained, and
also because MDs contain useful information on the under-
lying production processes. Due to the inability of perturba-
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tive Quantum Chromodynamics (pQCD) to provide a com-
plete theoretical account for the observed MDs incorporating
both the hard and soft processes, various phenomenological
approaches had to be adopted. These can range from dynam-
ical approaches in the form of coloured string interactions [1]
and dual-parton model [2], to geometrical approaches [3,4]
resulting in the fireball model [5], stochastic approaches [6–
8] modelling high energy collision as branching [6–8] or
clans [9].

The myriad of stochastic models since proposed have
described the experimental data well with reasonableχ2/dof
values with the Negative Binomial Distribution (NBD) and
its variants being the most ubiquitous [10]. However, as has
been proposed recently [11–14], a good fit to the MD from a
statistical distribution is only one aspect of a full description
of the multi-faceted set of information derivable from the
MDs. A more stringent requirement before any phenomeno-
logical model is considered viable is to also reproduce the
oscillatory behaviour seen in the so called modified combi-
nants, C j , which can be derived from experimental data. In
fact, this phenomenon is observed not only in pp collisions
discussed in [11–14] but also, as demonstrated recently in
[15], in e+e− annihilation processes. Such oscillations may
be therefore indicative of additional information on the multi-
particle production process, so far undisclosed. Specifically,
the periodicity of the oscillations of modified combinants
derived from experimental data is suggestive.

It is in this spirit that this study sets forth to understand
the effects of the collision systems and various experimental
observables on the period and extent of oscillations in C j . In
Sect. 2, the concept of modified combinant will be reviewed
in light of its connection to the earlier concept of combinant
[16–18]. From this link, an attempt is made on the potential
interpretation of modified combinant applied in the context
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of multi-particle production. Section 3 discusses the problem
of dependence on collision system whereas Sect. 4 discusses
the effect various experimental variables have on the mod-
ified combinant oscillations and summarises the key points
observed.

Our concluding remarks are contained in Sect. 5 together
with a tentative proposal of employing the characteristics of
oscillations in experimental modified combinants to distin-
guish between different collision types. Some explanatory
material is presented in appendices: Appendix A presents
the relationship between C j and the Kq and Fq moments
that are more familiar to the particle physics community
whereas Appendix B shows the possible origin of the
observed oscillations of C j based on the stochastic approach
to the particle production processes.

2 Modified combinant and combinant

Statistical distributions describing charged particle multiplic-
ity are normally expressed in terms of their generating func-
tion, G(z) = ∑∞

N=0 P(N )zN , or in terms of their probability
function P(N ). One other way to characterise a statistical dis-
tribution is a recurrent form involving only adjacent values
of P(N ) for the production of N and (N + 1) particles,

(N + 1)P(N + 1) = g(N )P(N ). (1)

Cast in this form, every P(N ) value is assumed to be deter-
mined only by the next lower P(N−1) value. In other words,
the link to other P(N − j)’s for j > 1 is indirect. In addition,
the eventual algebraic form of the P(N ) is determined by the
function g(N ). In its simplest form, one can assume g(N ) to
be linear in N , such that

g(N ) = α + βN . (2)

Some prominent distributions have been defined in this form.
For example, when β = 0 one gets the Poisson Distribution
(PD). The Binomial Distribution (BD) arises for β < 0 and
β > 0 results in the Negative Binomial Distribution (NBD).
While conceptualising a phenomenological model, the form
of g(N ) can be modified accordingly to describe the experi-
mental data, cf., for example, [19,20].

However, the direct dependence of P(N + 1) on only
P(N ), as seen in Eq. 1, seems unnecessarily restrictive. This
constraint can be further relaxed, by writing the probability
function connecting all smaller values of P(N− j) as follows
[16],

(N + 1)P(N + 1) = 〈N 〉
N∑

j=0

C j P(N − j). (3)

The coefficients C j are known as the modified combinants
and forms the core of this study. They are related to the com-
binants C∗

j first defined for the study of boson production
models [17,18] by the following relation [11]:

C j = ( j + 1)

〈N 〉 C∗
j+1. (4)

Combinants were first introduced to quantify the extent any
distributions deviate from a Poisson distribution. For the
Poisson distribution C0 = 1 and C j>1 = 0. In this way,
any non-zero C j at higher orders indicate a deviation from
the Poisson distribution.

From Eq. (3), two obvious interpretations for C j follow.
First, there is a one-to-one map between C∗

j to C j via Eq.
(4). Modified combinants can be interpreted as a proxy to the
extent of deviation from a Poisson distribution at different
higher orders. Secondly, C j ’s are the normalized weights in
the series for the value of (N + 1)P(N + 1). This can be
interpreted as the “memory” which P(N + 1) has of the
P(N − j) term. In other words, the modified combinants are
the weights in which all earlier P(N − j) values has on the
current probability. In this interpretation the links between
P(N + 1) to all P(N − j) values are clearly established.

One further notes that since C j ’s are expressed in terms
of the probability function in Eq. (3), it may be reasonable to
attempt casting the modified combinant in terms of the gen-
erating function G(z) = ∑

N P(N )zN . Such an expression
is immensely useful should a theoretical distribution avail
itself to describe experimental data. In this case, C j can be
expressed as follows:

〈N 〉C j = 1

j !
d j+1 ln G(z)

dz j+1

∣
∣
∣
∣
z=0

. (5)

Modified combinants for some prominent distributions are
shown in Table 1. Note that the generating functions of NBD
and BD are in fact some quasi-power functions of z and as
such can be written in the form of the corresponding Tsallis
distribution [21],

G(z) = expq [〈N 〉(1−z)] = [1+(q−1)〈N 〉(1−z)] 1
1−q (6)

Table 1 Distributions P(n) used in this work: Poisson (PD), Negative
Binomial (NBD) and Binomial (BD), their generating functions G(z)
and modified combinants C j emerging from them

P(N ) G(z) C j

PD λN

N ! exp(−λ) exp[λ(z − 1)] δ j0

NBD
(N+k−1

N

)
pN (1 − p)k

(
1−p
1−pz

)k
k

〈N 〉 p
j+1

BD
(K
N

)
pN (1 − p)K−N (pz + 1 − p)K −K

〈N 〉
(

p
p−1

) j+1
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where

q − 1 = 1

k
= p

(1 − p)〈N 〉 for NBD, (7)

q − 1 = − 1

K
= − p

〈N 〉 for BD, (8)

whereas for q → 1 in both cases we obtain G(z) for PD.
Equations (7) and (8) allow to write C j for all three distribu-
tions differentiated by the above choice of the paramater q
in one formula,

C j = 1

(q − 1)〈N 〉 + 1

[
(q − 1)〈N 〉

(q − 1)〈N 〉 + 1

] j

. (9)

Note that while for the PD and NBD coefficients C j are
monotonic and positive functions of rank j , they strongly
oscillate for the BD. This feature will be very important in
all our further analysis here.

To understand the effects of various experimental vari-
ables on oscillations of modified combinants, a mathematical
expression is required for calculating the value of C j given
P(N ). From Eq. (3), it follows that

〈N 〉C j = ( j + 1)

[
P( j + 1)

P(0)

]

− 〈N 〉
j−1∑

i=0

Ci

[
P( j − i)

P(0)

]

.

(10)

Note that Eq. (10) will require P(0) > 0 which is often
the case as most experimental data on non-single diffraction
collision exhibits enhanced void probability [12,22]. In the
event that the void probability is not made available, it will
be inferred from the normalization of probability.

3 Dependence of C j oscillations on collision systems

We shall start with a reminder of two distinct observed pat-
terns of modified combinants, one observed in e+e− annihi-
lation [13,15] (cf. Fig. 1) and another observed in pp scat-
tering [12,13] (cf. Fig. 2). In the first case we use the addi-
tivity property of modified combinants, i.e. that for a random
variable composed of independent random variables, with its
generating function given by the product of their generating
functions, G(x) = ∏

j G j (x), the corresponding modified
combinants are given by the sum of the independent com-
ponents. For the e+e− data we shall use then the generating
function G(z) of the multiplicity distribution P(N ) in which
N consists of both the particles from the BD (NBD) and from
the NBD (NNBD):

N = NBD + NNBD . (11)

P
(N

)

N

e+ + e−,
√
s = 91 GeV

ALEPH, |y| < 2

〈N
〉·

C
j
/

6.
85

j

j

e+ + e−,
√
s = 91 GeV

ALEPH, |y| < 2

Fig. 1 Top panel: Data on P(N ) measured in e+e− collisions by the
ALEPH experiment at 91 GeV [23] are fitted by the distribution obtained
from the generating function given by Eq. (12) with parameters: K = 1
and p′ = 0.8725 for the BD and k = 4.2 and p = 0.75 for the NBD.
Bottom panel: the modified combinants C j deduced from these data
on P(N ). They can be fitted by C j obtained from the same generating
function with the same parameters as used for fitting P(N )

In this case generating function is

G(z) = GBD(z)GNBD(z) (12)

and multiplicity distribution can be written as

P(N ) =
min{N ,k}∑

i=0

PBD(i)PNBD(N − i), (13)

and the respective modified combinants are

〈N 〉C j = 〈NBD〉C (BD)
j + 〈NNBD〉C (N BD)

j . (14)

Figure 1 shows the results of fits to both the experimentally
measured [23] multiplicity distributions and the correspond-
ing modified combinants C j calculated from these data (cf.
[15] for details).

In the case of pp collision the satisfactory agreement in
fitting observed oscillatory pattern is obtained by using the
sum of two Compound Binomial Distributions of BD with
NBD type,

P(N ) =
∑

i=1,2

wi h (N ; pi , Ki , ki ,mi ) ;
∑

i=1,2

wi = 1 (15)
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P
(N

)

N

p+p,
√

s = 7 TeV
ALICE, |η| < 3

〈N
〉·

C
j

j

p+p,
√

s = 7 TeV
ALICE, |η| < 3

Fig. 2 Top panel: Multiplicity distributions P(N ) measured in pp col-
lisions by ALICE [24]. Bottom panel: The corresponding modified com-
binants C j . Data are fitted using sum of two compound distributions
(BD+NBD) given by Eqs. (16) and (15) with parameters: K1 = K2 = 3,
p1 = 0.9, p2 = 0.645, k1 = 2.8, k2 = 1.34, m1 = 5.75, m2 = 23.5,
w1 = 0.24 and w2 = 0.76

with the generating function of each component equal to

H(z) =
[

p

(
1 − p′

1 − p′z

)k

+ 1 − p

]K

; p′ = m

m + k
(16)

As seen in Fig. 2, one gains satisfactory control over both
the periods and amplitudes of the oscillations, as well as
their behavior as a function of the rank j . More importantly
one can reproduce the enhancement of void probability of
P(0) > P(1) in addition to fitting both the P(N ) and C j .

The results presented in Figs. 1 and 2 suggest the pos-
sibility that the enhanced oscillatory behavior is, perhaps,
a trait of the annihilation type of the process considered.
To check this we turned to p p̄ processes measured by UA5
[25]. Figure 3 demonstrates that the outcome is rather intrigu-
ing and brings in new questions. At 900 GeV one observes
oscillatory pattern which follows that observed in annihi-
lation process e+e−, and which can be fitted by the same
kind of P(N ). However, the observed oscillatory pattern
changes dramatically at 200 GeV and resembles that seen
before in the pp collisions. It can still be fitted using gen-
erating function G(z) given by Eq. (12) but with Bino-

mial Distribution replaced by compound distribution CBD
of the Binomial Distribution with Poisson distribution, i.e.,
by

G(z) = GCBD(z)GNBD(z) (17)

where generating function for Compound Binomial Distri-
bution (CBD) is given by

GCBD(z) = [
p exp[λ(z − 1)] + 1 − p

]K
. (18)

Such replacement allows to preserve oscillating power of BD
but, at the same time, to gain better control over the period
of oscillations which is detemined by the mean multiplicity
λ in the PD [12].

Note that the BD used at 900 GeV can be considered as
such compound distribution but with the PD replaced by δN ,1.
It means therefore that, in order to fit the annihilation data at
lower energies, one has to somehow smear out this delta-like
behavior. In fact, one could as well use instead of the PD a
NBD with large k and p such that λ = kp/(1 − p).

We close this Section by noting that the use of G(z) in the
form of Eq. (12) corresponds to a QCD-based approach based
on stochastic branching processes used in [15], the so-called
Generalized Multiplicity distribution (GMD), with initial
number of gluons given by a BD. The links between adopt-
ing a stochastic branching approach in the study of QCD
phenomena has its roots in [26]. In fact, similar approach
was also formulated on general grounds in [27] where it
was shown that the stochastic birth process with immigra-
tion and with initial conditions given by BD results in the
so-called Modified Negative Binomial Distribution (MNBD)
(both approaches are presented in more detail in Appendix
B). With more general choice of initial conditions, i.e., by
replacing BD by some compound distribution CD based on
BD, one can, as presented here, describe also p p̄ processes.
However, in the case of pp collisions this CD is more compli-
cated (we have now K = 3 in our BD, which could, perhaps,
correspond to 3 valence quarks; additionally, to describe
P(N ) we need in this case at least two such components).

4 Dependence of C j oscillations on phase space being
tested

In addition to dependence on the collision system discussed
above there are data [24,25,28–31] (see also [14]) which
allows to investigate the possible oscillatory behavior ofC j in
different pseudorapidity windows |η|, for different transverse
momentum cuts pT and for different collision energies

√
s.

We shall study them in this section.
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Fig. 3 Left panels: Multiplicity
distributions P(N ) measured in
p p̄ collisions by UA5
experiment [25]. Right panels:
The corresponding modified
combinants C j . Data at 900
GeV are fitted by the distribution
obtained from the generating
function given by the product
G(z) = GBD(z)GNBD(z) with
parameters: K = 1 and
p′ = 0.659 for the BD and
k = 2.4 and p = 0.905 for the
NBD. Data at 200 GeV are fitted
by the distribution obtained from
the generating function given by
G(z) = GCD(z)GNBD(z) with
parameters K = 1, p′ = 0.845
and λ = 4.6 for the compound
distribution CD (Binomial
Distribution compound with
Poisson, BD&PD) and
k = 1.7, p = 0.875 for the NBD
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j
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4.1 Dependence on pseudorapidity window

The dependence of the extent of oscillations on the pseu-
dorapidity window from which the experimental data was
obtained is the most obvious. Intuitively, one would expect
experimental data collected from a larger pseudorapidity
phase space to be more representative of the collective
behaviour of the underlying collision (e.g. e+e−, pp or p p̄)
and the associated secondary particles.

Figure 4 shows example of the observed differences
between the oscillations in C j derived from different rapid-
ity windows by ALICE Collaboration [24]. The first obser-
vation is that oscillations, which are almost non-existent at
small pseudorapidity window (|η| < 1.5) are becoming very
strong at the maximal pseudorapidity window (|η| < 3.4.

There is also a change in the period of oscillations (where
present) with a change in pseudorapidity window. In gen-
eral, the period decreases from around 18 for |η| < 2.4, to
approximately 11 for |η| < 1.5. The amplitude of oscilla-
tions for any smaller pseudorapidity window is too weak to
discern the period. Nevertheless, the oscillations for the data
from the ALICE Collaboration are relatively smooth within
the pseudorapidity phase space.

Data from the ALICE Collaboration had been taken over a
larger pseudorapidity window, up to η < 3.4. This allows the
investigation of behaviour of C j oscillations beyond the lim-
ited window |η| ≤ 2.4 available in by CMS data (this is due
to challenges surrounding the drastic drop in reconstruction
efficiencies at |η| > 2.4 [28]). The bottom panel of Fig. 4
has been plotted using ALICE data from η < 2.4 to η < 3.4

for better clarity. The trend of increasing period with larger
pseudorapidity window continues beyond |η| < 2.4. How-
ever, the rate of amplitude decay slows significantly between
|η| < 2.4 and |η| < 3.0 and reverses at |η| < 3.4. From this
observation, it is inferred that the amplitude stops its decay
and reversed somewhere between 3.0 < |η| < 3.4.

4.2 Dependence on pT

In earlier study presented in [14] it was noted that the C j

obtained from data obtained for pT > 100 MeV/c cut by
ATLAS [29] exhibit minimal oscillation for |η| < 2.5, which
are completely absent for data with pT > 500 MeV/c cut.
This observation suggests that the pT phase space plays a
role in the extent of C j oscillations as well. For this subsec-
tion, we will consider pp collision data obtained from the
ATLAS and CMS collaborations across different pT cuts at√
s = 7 TeV. The CMS collaboration performs an extrapola-

tion down to pT = 0 MeV/c for their MD data. This allows
further exploration of the behaviour of the C j oscillations
over the complete pT phase space. The resulting uncertainty
due to the extrapolation is less than 1%, inclusive of system-
atic uncertainty [28].

Top panel of Fig. 5 presents results for data at
√
s = 7 TeV,

from CMS at |η| < 2.4 and from ATLAS at |η| < 2.5. The
small difference in the pseudorapidity window over which
they are obtained is considered insignificant, as can be seen
in the close tracking of the data points from CMS and ATLAS
for pT > 500 MeV/c. Note that the C j oscillations are
the strongest at pT > 0 MeV/c (from CMS) while having
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Fig. 4 Top panel: The plots of C j oscillations using pp experimental
data at

√
s = 7 TeV derived from ALICE Collaboration over a pseudo-

rapidity range up to |η| < 2.4 [24]. The magnitude and period is com-
parable to C j derived from the CMS Collaboration at the same energy
and pseudorapidity. Bottom panel: C j plots from ALICE Collaboration
[31] obtained for pseudorapidity up to |η| < 3.4 plotted separately for
clarity. Note the increase in oscillatory magnitude at |η| < 3.4

minimal oscillations at pT > 500 MeV/c (both CMS and
ATLAS). Due to the lack of availability of data points with
consecutive integral N from ATLAS at pT > 500 MeV/c, the
plot has to be truncated at j = 30. Unfortunately, no pT data
is available from earlier experiments. The dearth of such data
prohibits further investigation into the effects on oscillations
between various pT cuts in p p̄ collisions. Nevertheless, even
these limited results can be very helpful in understanding the
message of C j . They are very similar to what is presented in
the bottom panel of Fig. 5 which shows schematic view of
modified combinants C j for separate components from the
two component compound distribution given by Eqs. (15)
and (16) with parameters fitting experimental P(N ) shown
in Fig. 2. This comparison seems to suggest that particles

−1

−0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

〈N
〉·

C
j

j

|η| < 2.4,
√
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pT,CMS > 0 MeV/c

pT,CMS > 500 MeV/c
pT,ATLAS > 500 MeV/c

〈N
〉·

C
j

j

p+p,
√

s = 7 TeV
ALICE, |η| < 3

First component
Second component
Both components

Fig. 5 Top panel: The plot of C j vs j with CMS data at 7 TeV with
|η| < 2.4 [28] and ATLAS data [30] with η < 2.5. CMS has extrap-
olated its data all the way to pT > 0 MeV/c in the cited reference.
This allows us to compare it with the data obtained experimentally with
pT > 500 MeV/c, also from CMS. The C j derived from ATLAS data
tracks that of CMS closely. Bottom panel: Schematic view of modified
combinants C j for separate components from the two component com-
pound distribution given by Eqs. (15) and (16) with parameters fitting
experimental P(N ) shown in Fig. 2

with large transverse momenta mainly come from the first
component (with smaller mean multiplicity) in our two com-
ponent compound distribution. In other words, top panel of
Fig. 5 seems to show that reducing the pT phase space elim-
inates (at least to some extent) one of the components.

4.3 Dependence on
√
s

The reason why data from
√
s = 7 TeV has been extensively

exploited in the earlier parts of this work is due to the fact
that oscillatory behaviour are more apparent at higher colli-
sion energies. Hints of this potential dependence on collision
energy can first be observed in Fig. 3 between p p̄ collisions at
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Fig. 6 Plots of C j vs j across various centre-of-mass collision ener-
gies. Top panel: The plots ofC j vs j using data form CMS up to

√
s = 7

TeV. It shows that the effect of an increase in centre-of-mass collision
energies has minimal effect on the amplitude and the period of the
resulting oscillations. Bottom panel: Plots of C j vs j made using data
from ALICE up to

√
s = 8 TeV. The amplitude seemed to undergo a

much faster decay with an increase in collision energy, together with an
increase of the oscillation period

√
s = 200 GeV vs

√
s = 900 GeV in similar pseudorapidity

windows.
The modified combinants derived form CMS [28] and

ALICE [31] across centre-of-mass energies are plotted in
Fig. 6 on the top and bottom panel respectively. The differ-
ence between the data sources is that ALICE provides data
up to

√
s = 8 TeV while that from CMS is up to

√
s = 7

TeV. To facilitate comparison, only data at |η| < 2.4 is used,
on considerations that it shows the most distinct oscillatory
behaviour without the amplitude blowing up. Note that CMS
does not provide data obtained from wider pseudorapidity
windows, which makes comparison difficult.

For theC j from CMS, there is no clear effect on the ampli-
tude with increasing collision energies. The C j made with
data from lower collision energy of

√
s = 0.9 TeV appeared

to have a slightly higher initial amplitude but decayed at sim-
ilar rates to that from

√
s = 7 TeV. There is also an increase

in the period of oscillation at higher energies. On the other
hand, the graph derived from ALICE data seemed to show a
more distinct difference in the amplitude between data from√
s = 0.9 TeV and that from

√
s = 7 TeV with a slower rate

of decay. The shorter period at lower energy is also observed
here, and is consistent up to

√
s = 8 TeV.

However, there are some observed differences in the
details between both plots in Fig. 6. Some examples include
the higher amplitudes of the oscillating C j for ALICE than
than CMS at the same

√
s, the location of the amplitudes with

respect to q etc. These discrepancies can be traced back to
different P(N ) values obtained between the two experiments
due to slightly different methods in which measured data is
being treated between the two experiments. A more detailed
comparison can be found in [31]. However, this difference
should not mask the trend in C j oscillations with increasing
energies, which is the main point behind the plot.

4.4 Summary and discussion of results

The pseudorapidity window within which the data has been
obtained appears to have the most significant effect on the
oscillatory period for the corresponding derived value of C j .
This feature can be clearly observed in the plot across various
pseudorapidity windows from ALICE data in Fig. 4. There is
direct correspondence between the size of the pseudorapidity
window to the oscillation period. While C j up to |η| < 1.0
barely exhibits any oscillations, the Top panel of Fig. 4 shows
an increase in period from 11 at |η| < 1.5 to 18 for |η| <

2.4. With reference to the bottom panel in Fig. 4 for large
pseudorapidity windows, we see that increasing the size of
the window results in a corresponding increase in oscillatory
period, from 18 at |η| < 2.4 up to 23 at |η| < 3.4. Data from
UA5 paints a different story. The C j oscillates with period
2 at

√
s = 900 GeV at |η| < 3.0 and above. Coupled with

the modified combinants derived from e+e− [15], this seems
to suggest that C j from matter-antimatter (p p̄ and e+e−)
collisions oscillates more violently at comparatively lower
energies than their pp counterparts. This may be a feature
useful in distinguishing between the two types of collision
data.

The second effect of larger pseudorapidity window is on
the amplitude of the oscillations of C j . Referring to Fig. 4,
the amplitude of oscillation increases from just below 1.5
for data from η < 1.5, to around 1.8 for C j derived form
η < 2.4.

In Fig. 7 it is observed that both in UA5 and ALICE data
the amplitudes of oscillations increase as a power-law from
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η < 3.0 onwards. The increase is more prominent for higher
energies and for p p̄ data from UA5. Note that when we use
G(z) as given by Eq. (12) then amplitude of oscillations is
given by [p/(1− p)] j . If the modified combinants were to be
interpreted as weights of the various P(N )’s, as discussed in
Sect. 2, the oscillations in the weights are more pronounced
and periodic in a larger pseudorapidity phase space.

Another aspect which the oscillatory behaviour can be dis-
cussed is in terms of the pT phase space. In the top panel of
Fig. 5, results from both CMS and ATLAS data shows an
unambiguous relation between pT phase space and oscilla-
tory extent of C j . The extrapolation of the CMS data from
pT > 0 MeV/c for

√
s ≤ 7 TeV allows us access to full

pT phase space for LHC Run 1 energies. By comparing the
derived C j from both CMS, ALICE and ATLAS, it is clear

1
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9× 1.9

3
x

y(x) = 2.26 × 1.07x
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〉·

C
j

j

UA5 p + p̄, |η| < 3.0√
s = 200 GeV√
s = 900 GeV

1
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0 10 20 30 40 50 60 70 80 90 100

y(x)
= 2.09

× 1.01
x

〈N
〉·

C
j

j

ALICE p + p, |η| < 3.0√
s = 900 GeV

Fig. 7 Top panel: The amplitude of the absolute values of C j are plot-
ted against j and fitted to a line y(x) = 2.26 × 1.07x for

√
s = 200

GeV data, and to y(x) = 1.99×1.93x for
√
s = 900 GeV data. Bottom

panel: The same for ALICE data at
√
s = 900 GeV and for |η| < 3.0. In

this case the data points are fitted against a line y(x) = 2.09×1.01x . In
both cases, the oscillation amplitude increases in a power-law fashion
as function of x = j

that like pseudorapidity, the larger the pT phase space, the
larger the extent of oscillations. The comparison of these
results with view of C j from separate components of distri-
bution used to fit experimental P(N ) shown in Fig. 2 which
seems to suggest that particles with large transverse momenta
mainly come from the first component is very instructive and
suggest further investigations which, however, go beyond the
goals of this work.

On the other hand, varying the collision energies does not
produce such drastic changes in the extent of oscillations as
compared to pseudorapidity and pT cuts. In Fig. 6, we see
that the effects of an increase in collision energy has minimal
effects to the amplitude decay and the period of oscillatory
behaviour. Both the amplitude and period of oscillations do
not change significantly from

√
s = 0.9 to 7 TeV for CMS,

and up to
√
s = 8 TeV for ALICE.

Note that usually the oscillatory behavior of C j (as well
as the lack of oscillations) is observed in the ideal cases, i.e.,
for P(N ) described by analytical formulas. Experimentally
C j ’s are obtained from the measured multiplicity distribu-
tions, which are recorded with some acceptance in limited
phase space and which contain both the systematic and sta-
tistical uncertainties. However, as was shown in [15], exper-
imental acceptance do not generate oscillations of C j . For
example, acceptance procedure applied to NBD gives again
the NBD with the same k but with the modified p, which
is now equal to p′ = pα/(1 − p + pα), where α denotes
the probability of the detection of a particle in the selected
phase space. For a distribution described by NBD the accep-
tance does not alter the smooth decrease of C j . In addition,
the influence of statistical and systematic uncertainties on
C j was discussed in details in earlier works [12,14]. It was
found that at sufficiently-high statistics, modified combinants
C j become relatively insensitive to statistical uncertainties,
although the effects of systematic uncertainties of the mea-
surements still remain.

However, it turns out that, notwithstanding this sensitivity,
the oscillatory signal observed in the modified combinants
derived from ATLAS, ALICE, CMS and UA5 data remains
statistically significant. Therefore, the regularity and period-
icity of the observed oscillations cannot be results of random
fluctuations but instead, justify detailed and careful analysis
of oscillations in modified combinants in the study of multi-
plicity distributions.

5 Conclusion

The utility of a phenomenological approach to analysis of
multiplicity distributions stems from the lack of a compre-
hensive theoretical explanation transcending the hard and
soft regimes of QCD. If enlarging the pseudorapidity phase
space results in more distinct oscillatory behaviour, then the
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C j oscillations could find their origins in soft hadronic col-
lisions.

This paper discusses dependence of C j oscillations on
collision systems and the impact of varying pseudorapidity,
pT cuts and collision energies on the oscillatory behaviour
of C j . It is clear that pseudorapidity has the greatest impact
on the oscillatory behaviour among the experimental vari-
ables considered. The general trend inherent in the data
shows increased oscillatory behaviour with an increase in
the extent of phase space under considerations. Sampling
within a larger extent of experimental phase space allows the
collection of information from a larger domain. This in turn
implies more representative data to be collected when the
extent of phase space is large.

The way theC j oscillates between pp and p p̄ collisions is
clearly different, in terms of the order of magnitude as well as
the period. For pp data from ALICE, the C j oscillates with a
period of 20. This is close to the earlier discussion in Sect. 4.1
withC j oscillating at a period of 18 at

√
s = 7 TeV, |η| < 2.4.

In the case of p p̄,C j oscillates with a period of 2. Such a short
period is reminiscent of our earlier work [15] exploring C j

oscillations derived from e+e− collisions at
√
s = 91 GeV.

Based on these two observations, it seemed that at sufficiently
wide pseudorapidity window, C j from particle-antiparticle
collisions at different energies oscillates with period 2, while
that from particle-particle collisions do not exhibit such regu-
larity. Such power-law increase in amplitude may potentially
be a characteristic of matter-antimatter collision, including
that from e+e−.

Another distinguishing feature between pp and p p̄ colli-
sions is the order of magnitude over which the oscillations
take place. At

√
s = 900 GeV, C j from p p̄ goes up to a

magnitude of 1020 while that for pp stays below 10. Should
more data between the two types of collisions become avail-
able in the future, such figures can be tabulated to explore the
dependence of the scaling coefficients on energy and pseu-
dorapidity.

The relationship between C j and Fq and Kq moments
as discussed in the Appendix A may offer some clues as
to why C j derived from experimental MD data oscillates.
The Hq = Kq/Fq moments, with its roots in gluodynamics
[32,33], were conceived of and observed to undergo oscil-
lations in earlier studies. On the other hand, Fq has shown
to be a valuable a tool in the study of intermittent behaviour
[34] in multiparticle production. Any attempts at a physical
interpretation of C j can be considered in analogy to the rela-
tionship between Hq and Fq . However, before that, the exact
physical interpretation ofC j still remains open and is subject
for further investigation.

Finally, we will refer to the imposing question: what lesson
can be learned from the behavior of modified combinants C j

deduced from the measured multiplicity distributions P(N )

in what concerns the the dynamics of the multiparticle pro-

duction process. First, it seems that the oscillations of the
C j are closely related to the need to use some specific form
of multiplicity distribution (MD) in the description of these
processes. It must be a compound distribution based on BD
(CBD), which gives oscillations, with some other MD, which
controls their period and amplitudes. In fact, as shown in [12]
the successful use of simple sum of 3 NBDs presented in [14]
is possible only because such sum acts effectively as a kind of
BD. In our investigations we were usually using MD which
were either compound distributions of BD with NBD (either
the sum of two such compound distributions to get perfect
agreement with data) or MD for the sum of multiplicities
from BD (or CBD) and NBD. In all cases BD is crucial to
describe the oscillatory behaviour of modified combinants.
This result, if taken seriously, imposes certain restrictions
on the selection of the appropriate multi-particle production
model. In Appendix B we present a summary of two poten-
tial candidates for such model, both based on some specific
stochastic approach, one of which was used in this work.
A broader discussion on this topic, in particular what other
classes of models can meet the criteria required here, would
require a separate work.
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Appendix A: Relationship between C j , Kq and Fq
moments

A closely related quantities to modified combinants C j used
to describe fluctuations in phenomenological studies [35,36]
is the set of factorial moments, Fq , and cumulant factorial
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moments Kq . Both can be defined by the multiplicity dis-
tributions, P(N ), and modified cumulants, C j . The basic
quantity to start with is the generating function

G(z) =
∑

N

P(N )zN (A.1)

from which P(N ) emerges as

P(N ) = 1

N !
dNG(z)(N )

dzN

∣
∣
∣
∣
z=0

(A.2)

and combinants C∗
j are defined as

C∗
j = 1

j !
d j ln G(z)

dz j

∣
∣
∣
∣
z=0

, (A.3)

note that according to Eq. (4) 〈N 〉C j = ( j + 1)C∗
j+1. Simi-

larly, the respective derivatives taken at z = 1 define factorial
moments, Fq ,

Fq = dqG(z)

dzq

∣
∣
∣
∣
z=1

(A.4)

and cumulant factorial moments, Kq ,

Kq = dq ln G(z)

dzq

∣
∣
∣
∣
z=1

. (A.5)

Continuing this presentation, note that similarly as P(N )

defines Fq ,

Fq =
∞∑

N=q

N !
(N − q)! P(N ) (A.6)

the C∗
j defines Kq ,

Kq =
∞∑

j=q

j !
( j − q)!C

∗
j . (A.7)

Note that Kq , share the additive property of C j . As an exam-
ple, for a random variable made up of a sum of other random
variables each described by a generating function G j (z), the
generating function of the sum is given byG(z) = ∏

j G j (z).
In this case, the value of Kq of the sum is the sum of the Kq

values of the individual components, similar to how the modi-
fied combinants behave. While culmulants are suited to study
the densely populated region of phase space, modified com-
binants are better suited for the sparsely populated regions.
This can be seen from Eq. (10), which only requires a finite
sum of P(N − j) terms in the calculation of C j .

Recurrence relation given by Eq. (10) follows naturally
from definition of C j . Using Leibniz’s formula for the j th

derivative of the quotient of two functions, x = G ′(z)
G(z) ,

x ( j) = 1

G

[

G( j+1) − j !
j∑

k=1

G( j−k+1)

( j − k + 1)!
x (k−1)

(k − 1)!
]

, (A.8)

where G ′(z)/G(z) = d ln G(z)/dz. Comparing Eq. (A.5)
and Eq. (A.8), it is clear that Kq+1 = x (q)|z=1. Using Eq.
(A.8) for modified combinants defined by Eq. (5), one arrives
at

〈N 〉C j = ( j + 1)

[
P( j + 1)

P(0)

]

− 〈N 〉
j−1∑

i=0

Ci

[
P( j − i)

P(0)

]

,

(A.9)

which is just Eq. (10) used before.
On a separate note, a variant of the unnormalized facto-

rial moment Fq has proved useful in the study of intermit-
tent behaviours in high energy collisions [34]. It has been
shown that if intermittent behaviours do indeed persist in
the detected multiplicity spectra, the multiparticle produc-
tion mechanism takes the form of a cascading process [37]
via relations in the scaled factorial moments.

Appendix B: The possible origin of observed oscillations
of C j

In [27] as a model for the particle production was consid-
ered the so called birth process with immigration. The pro-
duction process proceeds via emission of particles from an
incident colliding particle (by a kind of bremsstrahlung pro-
cess) which can further produce another particles (via the
birth process). This specific branching process is defined by
the following evolution equation:

∂P(n; t)
∂t

= λ0[−P(n; t) + P(n − 1; t)]
+λ2[−nP(n; t) + (n − 1)P(n − 1; t)],

(B.1)

where P(n; t) is the distribution of the number of particles at
t (the parameter describing the evolution of a particle system
from the initial state, t = 0 to the final state corresponding to
the maximum value t = T , with T being some energy depen-
dent parameter chosen to reproduce the energy dependence
of the observed mean multiplicity), λ0 is the immigration rate
in an infinitesimal interval (t, t+dt) and λ2 is the production
rate of the birth process in the interval (t, t + dt).

In [15] we have used specific, QCD based, realization
of such approach based on the stochastic branching equa-
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tion (describing the total multiplicity distribution of partons
inside a jet, [6]),

dP(n)

dt
= −

(
An + Ãm

)
P(n) + A(n − 1)P(n − 1)

+ ÃmP(n − 1)

= Ãm[−P(n) + P(n − 1)]
+A[−nP(n) + (n − 1)P(n − 1)], (B.2)

where t is now the QCD evolution parameter,

t = 1

2πb
ln

[

1 + ab ln

(
Q2

μ2

)]

, (B.3)

with Q being the initial parton invariant mass, μ a QCD mass
scale (in GeV), Nc = 3 (number of colors), and N f = 4
(number of flavors) and 2πb = (

11Nc − 2N f
)
. Now P(n)

is the probability distribution of n gluons and m quarks (to
be fixed) at QCD evolution, with A and Ã referring to the
average probabilities of the branching process: g → gg, and
q → qg respectively. The parameter ξ = m Ã/A is related
to the initial number of quarks in average sense. Comparing
Eqs. (B.1) and (B.2) we can identify evolution parameters in
both approaches:

Ãm = λ0 and A = λ2. (B.4)

In both approaches, defined by Eqs. (B.1) and (B.2), one
has to define initial condition. For a set number of initial
particles, P(n; t = 0) = δn,k′ , one gets G(z; t = 0) = zk

′

(this is the case of the GMD discussed in [15]). For initial
condition for P(n; t = 0) chosen in a form of binomial
distribution, with two new parameters, α representing the
production rate of additional particles present at t = 0, and K
denoting their maximal number, one gets boundary condition

G(z; t = 0) =
∞∑

n=0

P(n; t = 0)zn = [1+α(z−1)]K . (B.5)

(used in [27]), which leads to the following generating func-
tion:

G(z) = [1 − κ(z − 1)]−(K+ξ){1 −[κ(1 −α)− 1](z − 1)}K ,

(B.6)

where κ = exp (λ2T ) − 1 and ξ = λ0/λ2. Note that this is
simply just a product of generating functions for the BD and
NBD,

G(z) = GBD
[
z; p′ = 1 − κ(1 − α); K ]

·GNBD

[

z; p = κ

1 + κ
; k = K + ξ

]

, (B.7)

and the respective modified combinants are given by Eq. (14).
In the case when initially some complex objects (firebals,

cluster, jets and so on) are produced and subsequently each of
them produces secondary particles, the corresponding multi-
plicity distribution is described by an appropriate compound
distribution. If initial objects (sources) are produced accord-
ing to a BD and subsequeny production process is defined by
Eqs. (B.1) or (B.2) with initial condition P(n; t = 0) = δn,0

(i.e., multiplicity distribution from sources is given by the
NBD), we have final compound distribution defined by the
generating function

H(z) = GBD
[
GNBD(z; p = κ, k = ξ); p′ = α, K

]
(B.8)

as given by Eq. (16). In this case combinants C j oscillate
with period equal to ∼ 2m, where m = κξ/(1 − κ) denote
mean multiplicity from single source.
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