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Abstract. Multiplicity distributions, P(N), provide valuable information on the
mechanism of the production process. We argue that the observed P(N) con-
tain more information (located in the small N region) than expected and used
so far. We demonstrate that it can be retrieved by analysing specific combina-
tions of the experimentally measured values of P(N) which we call modified
combinants, C j, and which show distinct oscillatory behavior, not observed in
the usual phenomenological forms of the P(N) used to fit data. We discuss the
possible sources of these oscillations and their impact on our understanding of
the multiparticle production mechanism.

1 Introduction

The multiplicity distribution, P(N), is an important characteristic of the multiparticle produc-
tion process, one of the first observables measured in any multiparticle production experiment
[1]. The way in which the consecutive P(N) are connected reflects the dynamics of the mul-
tiparticle production process. In the simplest case one assumes that the multiplicity N is
directly influenced only by its neighbouring multiplicities (N ± 1) in the way dictated by the
simple recurrence relation:

(N + 1)P(N + 1) = g(N)P(N) where g(N) = α + βN, (1)

The most popular forms of P(N) emerging from this recurrence relation are (p denotes prob-
ability of particle emission):

P(N) =
K!

N!(K − N)!
pN(1 − p)K−N , α =

K p
1 − p

, β = −
α

K
; Binomial Distribution (BD); (2)

P(N) =
λN

N!
exp(−λ), α = λ, β = 0;

P(N) =
Γ(N + k)

Γ(N + 1)Γ(k)
pN(1 − p)k, α = kp, β =

α

k

Poisson Distribution (PD);              (3) 

; Negative Binomial Distribution (NBD) (4).

Usually the first choice of P(N) in fitting data is a single NBD. However, with growing
energy and number of produced secondaries it increasingly deviates from the data for large
N (see Fig. 1) and is therefore replaced either by combinations of two [2], three [3], or
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 Figure 1. (a) Charged hadron multiplicity distributions for the pseudorapidity range |η| < 2 at
√

s = 7
TeV, as given by the CMS experiment [10] (points), compared with the NBD for parameters 〈N〉 = 25.5
and k = 1.45 (dashed line) and with the 2-component NBD (solid line) with parameters from [11]. (b)
Multiplicity dependence of the ratio R = data/ f it for the NBD (circles) and for the 2-component NBD
for the same data as in panel (a) (squares). (c) The multiplicity dependence of the modified probability
of particle emission p in the MNBD as given by Eq. (5) resulting in flat R = R(N) = 1. (d) Coefficients
C j emerging from the CMS data used in panel (a) compared with the NB and 2-NBD fits shown there
and with the C j obtained from the MNB with modifications proposed in [9] and shown in panel (c).

multi-component NBDs [4], or by some other forms of P(N) [1, 5–8]. However, as seen
in Fig. 1 (a) − (b), such a procedure only improves the agreement at large N, the ratio
R = data/ f it deviates dramatically from unity at small N for all fits. This observation, when
taken seriously, suggests that there must be some additional information hidden in the small
N region, not investigated yet [9]. In [9] we retrieved it using a single NBD form of P(N) in
which we allowed for the multiplicity dependence of the particle emission ratio p = m/(m+k)
in Eq. (4). It turns out that for

m = m(N) = c exp
[
a1|N − b| + a2(N − b)4

]
(5)

with parameters c = 20.252, a1 = 0.044, a2 = 1.04 · 10−9 and b = 11, one gets the desired
flat behavior of R as a function of multiplicity N, now R = 1 for all N [9]. Such a choice
corresponds to a rather complicated, nonlinear and non monotonic spout-like form of g(N) in
the recurrence relation Eq. (1) and to a non monotonic, depending on multiplicity, probability
of particle emission, p = p(N), with a sharp minimum around N = 10, after which p(N)
grows steadily, see Fig. 1 (c).

2 Modified combinants C j

The above example shows that there is room for change in P(N) resulting in agreement with
data over the whole region of N. However, the recurrence relation (1) is too restricted to be
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helpful in this case and in [9] we proposed a more general form of the recurrence relation,
that used in counting statistics when dealing with cascade stochastic processes [12]. Contrary
to Eq. (1), it now connects all multiplicities by means of some coefficients C j which define
the corresponding P(N) in the following way:

(N + 1)P(N + 1) = 〈N〉
N∑

j=0

C jP(N − j). (6)

The coefficients C j contain the memory of particle N + 1 about all the N − j previously
produced particles. They can be directly calculated from the experimentally measured P(N)
by reversing Eq. (6) and putting it in the form of the following recurrence formula [9]:

〈N〉C j = ( j + 1)
[

P( j + 1)
P(0)

]
− 〈N〉

j−1∑
i=0

Ci

[
P( j − i)

P(0)

]
. (7)

The coefficients C j can therefore replace the ratio R = data/ f it in quality assessment of P(N)
used to fit data. The result was striking, as can be seen in Fig. 1 (d), where the coefficients C j

obtained from the data used in Fig. 1 (a) show very distinct oscillatory behavior (with a period
roughly equal to 16), gradually disappearing with N. It turns out that it can be reproduced
only by the MNB model [9] mentioned before, which makes R(N) = 1 for all N [9]. As
shown in [9, 13, 18] such oscillations of C j are seen for different pseudorapidity windows,
in data from all LHC experiments and energies. The only condition is that the statistics of
the experiment must be high enough, for with small statistics the oscillations become too
fuzzy to be recognized [13, 18] (the simplest way to obtain oscillatory behaviour of C j for an
otherwise smooth distribution P(N) is to distort P(N) slightly at some point, this distortion
then propagates further [9, 18]). The reason why the single NBD is not able to reproduce data
is that in this case all C j > 0 [9]:

C j =
k
〈N〉

p j+1 =
k

k + m
exp( j ln p). (8)

The oscillations can occur only for combinations of NBD [9, 13]. However, the parameters
of the 2-NBD fit used in Fig. 1 (a) result in a very small trace of oscillations of C j and we
were not able to find parameters of a 2-NBD allowing for a reasonable description of P(N)
and C j at the same time. The best result obtained so far is the 3-NBD fit proposed in [3]
and based on the claim that there is a place in data for a third component aiming to describe
the low N events (see [3] for details, it agrees with our observations mentioned before). Fig.
2 shows the results obtained for the parameters from [3]. Note that the agreement of P(N)
with data and the behavior of both the ratio R = data/ f it and the coefficients C j improved
substantially. However, as one can see in Fig. 2 (b), the low N region of P(N) still shows
some deviations, which, albeit rather small, result in R departing from unity (downwards) at
small N and in C j missing the data for large j. Contrary to the case of the NBD, the modified
combinants for the BD, cf. Eq. (2), oscillate rapidly,

C j = (−1) j K
〈N〉

(
〈N〉

K − 〈N〉

)( j+1)

=
(−1) j

1 − p

(
p

1 − p

) j

, (9)

with a period equal to 2. In Fig. 3 (a) one can see that the amplitude of these oscillations
depends on the emission probability p, in this case the C j increase with rank j for p > 0.5
and decrease for p < 0.5 (this is, however, not generally true as we shall see later, cf., for
example Fig. 3 (b)). However, their general shape lacks the distinctively fading down feature

3
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 Figure 2. Results for P(N), (a); its enlarged part for N < 50, (b); ratio R = data/ f it, (c), and for C j,
(d), obtained using a 3-component P(N) composed of 3 NBD as proposed in [3] (with parameters the
same as in [3]).
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 Figure 3. Examples of C j for: (a) Binomial Distributions (BD) (Eq. (9)) and (b) for the Compound
Binomial Distributions (CBD) defined by Eq. (16).

of the C j observed experimentally. This means that the BD used alone cannot explain the
data (see also [14])1.

It turns out that the coefficients C j defined by the recurrence relation (7) are closely
related to the so called combinants C?

j which are defined in terms of the generating function,
G(z) =

∑∞
N=0 P(N)zN , as

C?
j =

1
j!

d j ln G(z)
dz j

∣∣∣∣∣
z=0

or ln G(z) = ln P(0) +

∞∑
j=1

C?
j z j, (10)

1Some comments concerning the credibility of using C j and on their oscillations are necessary at this point.
In a recent review [15] the observed oscillations were attributed to the possible peculiarities of the experimental
unfolding procedure used while preparing the final data. However, such a statement has so far not been substantiated
by any known experimental analysis of the procedure used, furthermore, the peculiarities seen in the ratio R (tightly
connected with the oscillations of C j) were not addressed as well. Therefore we assumed that this is a real new effect,
connected with some dynamical features of the production mechanism (in fact in [16, 17] the cascade stochastic
processes leading to Eq. (7) were successfully applied to multiparticle phenomenology).
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and which were introduced in [19] (see also [1, 21–26]). Namely,

C j =
j + 1
〈N〉

C?
j+1. (11)

Therefore, henceforth we shall call the C j modified combinants. Note that the recurrence
relation, Eq. (6) can be written in terms of C?

j as:

(N + 1)P(N + 1) =

N∑
j=0

( j + 1)C?
j+1P(N − j), (12)

and that the C j can be expressed by the generating function G(z) of P(N) as

〈N〉C j =
1
j!

d j+1 ln G(z)
dz j+1

∣∣∣∣∣
z=0
. (13)

This relation will be used in what follows when calculating C j from multiplicity distributions
P(N) defined by some generating function G(z).

Because a single distribution of the NBD or BD type cannot describe data we shall check
the idea of compound distributions (CD) applicable when the production process consists of
a number M of some objects (clusters/fireballs/etc.) produced according to some distribu-
tion f (M) (defined by a generating function F(z)), which subsequently decay independently
into a number of secondaries, ni=1,...,M , following some other (always the same for all M)
distribution, g(n) (defined by a generating function G(z)) [27]2. The resultant multiplicity
distribution, h(N) = f ⊗ g, where N =

∑M
i=0 ni, is a compound distribution of f and g with

generating function3.
H(z) = F[G(z)] (14)

for which

〈N〉 = 〈M〉〈n〉 and Var(N) = 〈M〉Var(n) + Var(M)〈n〉2. (15)

Let us take, as an example, f as a Binomial Distribution with generating function F(z) =

(pz + 1 − p)K (for which the C j oscillate with a period of 2, cf. Fig. 3(a)), and g as a Poisson
distribution with generating function G(z) = exp[λ(z−1)] (for which C0 = 2 and C j>0 = 0, cf.
Eq. (13)). The generating function of the resulting Compound Binomial Distribution (CBD)
is then

H(z) =
{
p exp[λ(z − 1)] + 1 − p

}K . (16)

The analytical forms of the corresponding C j and P(N) are presented in [18] (as Eqs. (136)-
(138)). Fig. 3 (b) shows C j for the CBD with K = 3 and λ = 10 calculated for three

2In fact the NBD is a compound Poisson distribution with the number of clusters given by a Poissonian distribu-
tion and the particles inside the clusters distributed according to a logarithmic distribution [29]. In [28] we proposed
a specific compound distribution to explain the Bose-Einstein correlation phenomenon. It consisted of a combination
of k elementary emitting cells (EEC) producing particles according to a geometrical distribution. For k = const the
resultant P(N) was of the NBD type, for k distributed according to a BD it was a modified NBD. However, applying
it to the present situation we could not find a set of parameters providing both the observed P(N) and oscillating C j.

3Note that for the class of distributions of M that satisfy the recurrence relation Eq. (1) the compound distribution
h = f ⊗g is also given by the so-called Panjer’s recurrence relation [30], Nh(N) =

∑N
j=1[βN + (α−β) j]g( j)h(N− j) =∑N

j=1 C(P)
j (N)h(N − j), with initial value h(0) = f (0). It could be considered as a generalization of Eq. (6) used to

define modified combinants with coefficients C(P)
j depending additionally on N. However, Eq. (6) is not limited to

the class of distributions satisfying Eq.(1) but is valid for any distribution P(N), therefore this recursion relation is
not suitable for us.
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 Figure 4. (a) Charged hadron multiplicity distributions for |η| < 2 at
√

s = 7 TeV, as given by the
CMS experiment [10] (points), compared with a 3-component CBD, Eq. (17). (b) Coefficients C j

emerging from the CMS data used in panel (a) compared with the corresponding C j obtained from the
3-component compound binomial distribution (3-CBD). (c) Charged hadron multiplicity distributions
for |η| < 2 at

√
s = 7 TeV, as given by the CMS experiment [10] (points), compared with a 2-component

CBD, Eq. (19). (d) Coefficients C j emerging from the CMS data used in panel (c) compared with the
corresponding C j obtained from the 2-component compound binomial distribution (2-CBD).

different values of p in the BD: p = 0.54, 0.62, 0.66. Note that, in general, the period of
the oscillations is now equal to 2λ (i.e., in Fig. 3 (b) where λ = 10 it is equal to 20). This
example shows that the choice of a BD as the basis of the CD used is crucial to obtain the
oscillatory behavior of the C j (for example, a compound distribution formed from a NBD and
some other NBD provides smooth C j).

Unfortunately, such a single component CBD (with P(N) = h(N; p,K, λ) depending on
three parameters: p, K and λ), does not describe the experimental P(N) and C j. We return
therefore to the idea of using a multicomponent version of the CBD presenting two examples.
The first is 3-component CBD defined as:

P(N) =
∑

i=1,2,3

wih (N; pi,Ki, λi) ;
∑

i=1,2,3

wi = 1. (17)

The results of using Eq. (17) (with parameters: ω1 = 0.34, ω2 = 0.4, ω3 = 0.26; p1 = 0.22,
p2 = 0.22, p3 = 0.12; K1 = 10, K2 = 12, K3 = 30 and λ1 = 4, λ2 = 9, λ3 = 14)
are presented in Figs. 4 (a) and (b). As one can see, this time the fit to the P(N) is quite
good and the modified combinants C j follow the oscillatory pattern as far as the period of
the oscillations is concerned, albeit their amplitudes still decay too slowly. To improve this
deficiency we present, as a second example, a 2-component version of the CBD in which the
Poisson distribution has been replaced by a NBD. Its generating function is

H(z) =

p
(

1 − p′

1 − p′z

)k

+ 1 − p

K

, where p′ =
m

m + k
, (18)
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and
P(N) =

∑
i=1,2

wih (N; pi,Ki, ki,mi) ;
∑
1=1,2

wi = 1. (19)

As one can see in Figs. 4 (c) and (d), using Eq. (19) (with parameters: K1 = K2 = 3, p1 = 0.7,
p2 = 0.67, k1 = 4, k2 = 2.3, m1 = 6, m2 = 19.0 and w1 = w2 = 0.5) improves substantially
the behavior of C j. This means that to describe data one has to use some multicomponent
compound distributions based on the BD (as responsible for the oscillations in C j) and some
other distribution providing damping of the oscillations for large N (here the NBD).
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Figure 5. Comparison of 〈N〉C j and C j obtained from the P(N) measured by CMS [10] and ALICE
[31] for three different rapidity windows. See text for details.

With such knowledge we proceeded to a description of the recent ALICE data [31] for
multiplicity distributions (NSD events at 7 TeV), at three different rapidity windows: |η| < 2,
|η| < 3 and −3.4 < η < 5. In Fig. 5 we show on the left panel the results for 〈N〉C j obtained
from the measured P(N); for comparison the previously used CMS data [10] for |η| < 2 are
also shown (and they agree with the data from ALICE). The most intriguing features observed
is the rather dramatic increase of both the period of the oscillations and their amplitude with
the width of the rapidity window used to collect the data and, most noticeably, the previously
observed fading down of their amplitude is now replaced by an (almost) constant behavior
(for |η| < 3) and by a rather dramatic increase (for −3.4 < η < 5). Because, roughly,
〈N〉 ∼ ∆η, one would expect that at least part of the increase of amplitude could come from
the increase of 〈N〉 with ∆η. The right panel of Fig. 5 shows that this can only partially be
true, the previously observed effects remain, albeit they are perhaps not so dramatic as before.

We close our presentation by showing in Fig. 6 that the results presented in Fig. 5 can
be nicely fitted, including (not shown there) P(N) from [31], using the two component CBD
(BD+NBD) discussed above (Eqs. (18) and (19) with the parameters listed in Table 1. When
performing these fits we were only concerned to find such values of the parameters as would
reproduce the results in the best possible way (although no χ2 estimations were used). This
means that, at the moment, the values presented in Table 1 must be taken cum grano salis. In
general one observes a slow increase of p and p′ (but with some nonmonotonicity seen for

Table 1. Parameters wi, pi, Ki, ki and mi of the 2-component P(N), Eqs. (18) and (19), used to fit the
data in Fig. 6. For completeness p′i = mi/(m1 + ki) from Eq. (18) are also included.

w1 p1 K1 k1 m1 p′1 w2 p2 K2 k2 m2 p′2
−2〈 η 〈2 0.30 0.75 3 3.8 4.75 0.56 0.70 0.70 3 1.30 15.9 0.924
−3〈 η 〈3 0.24 0.90 3 2.8 5.75 0.67 0.76 0.645 3 1.34 23.5 0.946
−3.4〈 η 〈5 0.20 0.965 3 2.7 8.00 0.75 0.80 0.72 3 1.18 27.0 0.955
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Figure 6. Multiplicity distributions P(N) (left panels) measured by ALICE [31] and modified combi-
nants C j emerging from them (right panels) for three different rapidity windows fitted using the two
compound distribution (BD+NBD) given by Eqs. (18) and (19) with parameters listed in Table 1 (see
text for details).

p2), already observed in Fig. 3. A more detailed analysis would need much more involved
investigations than presented here at the moment and is currently under investigation. At the
moment we must admit that the problem of the physical meaning of these fits (in other words:
what information on the mechanism of production of particles they convey) remains still an
open one.

3 Some explanatory remarks

Note that in all the above discussions we always remained on the same phenomenological
level, either modifying the emission probability p in the NBD, or combining it with some
other distribution. So far we have not looked for physical justifications of the methods used
but concentrated on reproducing P(N) and the ratio R = data/ f it or the modified combinants
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C j. The only more theoretically oriented attempt is Ref. [32] describing the pion multiplicity
using the combinants C?

j and discussing two scenarios. The first one had N sources emitting
bosons without any restrictions on their number, and resulted in a NBD and smooth and
diminishing combinants. The second one had M sources, each emitting only a limited number
of bosons (one or two in [32]), and this resulted in a BD and oscillating combinants. We
expect therefore that our C j would follow the same behavior. Note also that the NBD belongs
to the class of the so-called infinite divisible distributions whereas the BD does not. In [26]
it is claimed that combinants of all ranks are all non-negative if and only if the probability
distribution is infinitely divisible, therefore we would expect that our C j share this property.
However, for a uniform distribution in the interval (0,K) which is not infinitely divisible, the
resulting C j are strictly positive, in fact C j = 2/(K +1), which invalidates the above statement
(or, at least, weakens it considerably). The true origin of the oscillations still remains not fully
specified.

Let us finally note that multiplicity distributions P(N) are usually studied by analyzing
factorial moments

Fq =

∞∑
N=q

N(N − 1)(N − 2) . . . (N − q + 1)P(N), (20)

cumulant factorial moments,

Kq = Fq −

q−1∑
i=1

(
q − 1
i − 1

)
Kq−iFi (21)

or their ratios [26, 33],

Hq =
Kq

Fq
, (22)

which are very sensitive to the details of the multiplicity distribution. The advantage of their
use is that they seem to be well described by perturbative QCD considerations, especially
their oscillations in sign as a function of the rank q [33]. On the other hand, Kq can be
expressed as an infinite series of the modified combinants, C j and, conversely, C j can be
expressed in terms of Kq [26],

Kq =

∞∑
j=q

( j − 1)!
( j − q)!

〈N〉C j−1 and C j =
1
〈N〉

1
( j − 1)!

∞∑
p=0

(−1)p

p!
Kp+ j. (23)

Note that the combinants can be, by analogy to factorial cumulants, understood as exclu-
sive correlation integrals [1, 20]. However, they differ in the region of phase space they
are most suitable to study: whereas cumulants are particularly well suited for the study of
densely populated phase-space bins, combinants are better suited for the study of sparsely
populated regions and their calculation requires only a finite number of P(N), with N < j,
which compensates the drawback caused by the requirement that one must have P(0) > 0.
Additionally, the advantage of combinants is that, being finite combinations of the probability
ratios P(N)/P(0), they do not suffer from a bias (empty-bin effect) present at high resolution
in factorial moments and cumulants [1]. Combinants share with cumulants the property of
additivity, i.e., for a random variable composed of independent random variables, with its
generating function given by the product of their generating functions, G(x) =

∏
j G j(x),

the corresponding combinants are given by the sum of the independent components [26].
Because the C j are directly connected with the C?

j (cf. Eq. (11)) they also share all their
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properties mentioned above. However, whether they share their oscillating pattern is still to
be checked.

To summarize, we argue that only compound distributions based on the BD (like) and the
NBD (like) components can fit adequately observed oscillations of modified combinants C j.
The question of which particular theoretical mechanism is at work remains, however, still
open and one may expect a number of particular models to emerge here.

Acknowledgements: This research was supported in part by the National Science Center
(NCN) under contracts 2016/23/B/ST2/00692 (MR) and 2016/22/M/ST2/00176 (GW). We
would like to thank Dr Nicholas Keeley for reading the manuscript.

References

[1] W. Kittel and E.A.De Wolf, Soft Multihadron Dynamics, (World Scientific, Singapore,
2005).

[2] A. Giovannini and R. Ugoccioni, Phys. Rev. D 68, 034009 (2003).
[3] I. J. Zborovsky, J. Phys. G 40, 055005 (2013).
[4] I. M. Dremin and V. A. Nechitailo, Phys. Rev. D 70, 034005 (2004).
[5] I. M. Dremin and J. W. Gary, Phys. Rep. 349, 301 (2001).
[6] J. F. Fiete Grosse-Oetringhaus and K. Reygers, J. Phys. G 37, 083001 (2010).
[7] S.V. Chekanov and V.I. Kuvshinow, J. Phys. G 22, 601 (1996).
[8] T.F. Hoang and B. Cork, Z. Phys. C 36, 323 (1987).
[9] G.Wilk and Z.Włodarczyk, J. Phys. G 44, 015002 (2017).
[10] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys.01, 079 (2011).
[11] P. Ghosh, Phys. Rev. D 85, 0541017 (2012).
[12] B.E.A. Saleh and M.K. Teich, Proc. IEEE 70, 229 (1982).
[13] G. Wilk and Z. Włodarczyk, EPJ Web of Conf. 141, 01005 (2017).
[14] M. Ghaffar, H.W. Ang and A.H. Chan, these proceedings.
[15] A. Alkin, Ukr. J. Phys. 62, 743 (2017).
[16] V.D. Rusov, T.N. Zelentsova, S.I. Kosenko, M.M. Ovsyanko and I.V. Sharf, Phys. Lett.

B 504, 213 (2001).
[17] V.D.Rusov and I.V.Sharf, Nucl. Phys. A 764, 460 (2006).
[18] G. Wilk and Z. Włodarczyk, Int. J. Mod. Phys. A 33, 1830008 (2018).
[19] S.K. Kauffmann and M. Gyulassy, J. Phys. A 11, 1715 (1978).
[20] R. Vasudevan, P.R. Vittal and K.V. Parthasarathy, J. Phys. A 17 989 (1984).
[21] A. B. Balantekin and J.E. Seger, Phys. Lett. B 266, 231 (1991).
[22] S. Hegyi, Phys. Lett. B 309, 443 (1996).
[23] S. Hegyi, Phys. Lett. B 318, 642 (1993).
[24] S. Hegyi, Phys. Lett. B 463, 126 (1999).
[25] I. Szapudi and A. S. Szalay, Astrophys. J. 408, 43 (1993)
[26] R. Botet and M. Płoszajczak, Universal fluctuations, The phenomenology of hadronic

matter, (World Scientific Publishing Co.Pte.Ltd., Singapore, 2002).
[27] B. Sundt and R. Vernic, Recursions for Convolutions and Compound Distributions with

Insurance Applications, (Springer-Verlag Berlin Heidelberg, 2009).
[28] M. Biyajima, N. Suzuki, G. Wilk and Z. Włodarczyk, Phys. Lett. B 386, 297 (1996).
[29] A. Giovannini and L. Van Hove, Z. Phys. C 30, 391 (1986).
[30] H. H. Panjer, ASTIN Bull. 12, 22 (1981).
[31] J. Adam et al. (ALICE Collaboration), Eur. Phys. J. C 77, 852 (2016).

10

EPJ Web of Conferences 206, 03002 (2019) https://doi.org/10.1051/epjconf/201920603002
ISMD 2018



[32] A. B. Balantekin and J. E. Seger, Phys. Lett. B 266, 231 (1991).
[33] I. M. Dremin and R. C. Hwa, Phys. Rev. D 49, 5805 (1994).

11

EPJ Web of Conferences 206, 03002 (2019) https://doi.org/10.1051/epjconf/201920603002
ISMD 2018


