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Boson gas

In this lecture the method of thermal field theory will be applied to a weakly interacting
boson gas.

Partition function

We consider a boson gas described the Lagrangian density

A
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where ¢(z) is the real scalar, m is the mass parameter and A is the coupling constant.

As we remember from the Lecture II, the partition function defined as

Z=Y (o™ |a), (2)

where 8 = T~ is the inverse temperature and H is the system’s Hamiltonian.

The partition function of non-interacting boson gas derived in Lecture II is

Zo=exp[— V/ (;ljrk);?’ In(1 — e*ﬁwk)]’ (3)

where V' is the system’s volume and wy = /p? + m?2.

One computes the partition function as
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Performing the partial integration, one finds
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Further on, we will be mostly interested in the hot gas such that T > m. Then, the bosons
can be treated as massless and for m = 0 we will deal with simple analytical formulas. The
partition function equals
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The system’s energy U, free energy F' = U — T'S and pressure p are
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The partition function (6) gives
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First order correction to partition function

e As we remember from the Lecture III, the partition function, which is of the form appro-
priate for perturbative expansion, is
I
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e The zeroth order contribution to 7 [e™ 5 dr Hilnt(*”)] is unity and the first order contribution,
which corresponds to the diagram shown in Fig. 1, equals
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e As we remember, the function A(0) is identified with the function A~ (0). Since the function
A~ (7,x) is, see Eq. (24) of Lecture III,
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where the boson distribution function equals
1

the function A~(0) is
dgk Zf(wk) +1
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e After performing the trivial angular integral, Eq. (13) becomes
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e Since for k> m and k > T the integrand linearly grows with k, the integral in Eq. (14) is
quadratically divergent. One observes that the divergence remains in the zero temperature
limit that is when § — oco. Therefore, it is the ultraviolet divergence which is well known
in vacuum QFT.

A~(0) (14)

e To get a finite result one should subtract the vacuum contribution from the formula (13).
Since f(wk) = 0 in vacuum, the subtraction is done as follows
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Figure 1: The first order contribution to the partition function (9)
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and the renormalized Green’s function, which is finite, equals
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e Assuming that m = 0, one finds
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e The four-dimensional integral over x is

/Oﬁd‘lxz/oﬁdT/dgx:ﬁV, (18)

where V' is the system’s volume.

e The first order correction to the partition function is
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e Using the expression (6) of Zj, the partition function is found as
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e Since the second term in the square bracket in Eq. (20) should be, as a perturbative cor-
rection, much smaller than unity, the expression in the bracket can be approximated as
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which allows one to rewrite the partition function (20) in the following form
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e The energy, free energy and pressure, which include the first order corrections, are
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e Using the apparatus of thermal field theory, we have manged to go beyond the ideal gas
approximation.

e Needless to say, the procedure of perturbative expansion can be systematically extended to
higher orders.



