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Origin of Quantum Chromodynamics
The quantum chromodynamics (QCD) – a contemporary theory of strong interactions – emerged as a fusion

of ideas formulated in studies of hadron spectroscopy and of deep inelastic scattering of electrons on protons.
The key idea of the first research area is the SU(3) symmetry.

SU(3) symmetry
• In 1930s it was observed that nuclear forces are universal, they do not distinguish protons and neutrons.

There emerged an idea of isospin and SU(2) symmetry of strong interactions.

• There was a doublet of nucleons of isospin I = 1/2, the triplet of pions of isospin I = 1, etc. The third
component of isospin, which is related to electric charge, distinguishes protons from neutrons and pions of
different electric charge.

• In 1960s many hadrons, in particular strange ones, were discovered and the SU(2) symmetry was extended
to the SU(3) symmetry which includes strange hadrons. It was found that hadrons of the same spin and
parity and similar masses can be grouped in multiplets corresponding to irreducible representations of the
SU(3) group.

• The SU(2) group is a subgroup of the SU(3) group and thus the SU(3) symmetry implies the SU(2) isospin
symmetry. Actually, the SU(2) is more accurate symmetry.

• Starting with the fundamental three-dimensional representation, one constructs irreducible representations
of higher dimensions

3⊗ 3̄ = 1⊕ 8, (1)
3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10, (2)

where 3 and 3̄ denote the fundamental representation and its conjugate, while 8 and 10 denote the eight
and ten dimensional representations.

• The lightest mesons of zero spin indeed form an octet shown in Fig. 1

Figure 1: Octet of spinless mesons and their quark composition

• The lightest baryons of spin 1/2 form an octet and those of spin 3/2 a decouplet both shown in Fig. 2.

• Quarks u, d, s of spin 1/2 were proposed to correspond to a fundamental representation of the SU(3) group
illustrated in Fig. 3.

• Once quarks are postulated to exist quark composition of hadrons belonging to the multiplets is determined
as shown in Figs. 1 and 2.
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Figure 2: Octet and decouplet of spin 1/2 and 3/2 baryons and their quark composition

Figure 3: Triplet of quarks of spin 1/2

• Each quark carries 1/3 of a baryon number of a nucleon and the electric charges of u, d, s are 2/3,−1/3,−1/3
of the elementary (positive) charge e.

• Existence of baryons ∆++ = (u, u, u) and Ω− = (s, s, s) both of spin 3/2 suggests that there are internal
degrees of freedom of quarks identified with color charges.

Elastic electron scattering on a proton
• Let us first consider an elastic electron scattering on a proton with one-photon exchange illustrated in Fig. 4

where a kinematics of the process is also described. The scattering is considered in the proton rest frame.

• The wavelength of the exchanged photon is
λ = 2π~

|q| , (3)

where q is the momentum transfer.

• If the photon wavelength is much bigger than the proton radius of order 1 fm, which means |q| � 200 MeV,
the photon ‘sees’ the proton as a point-like (spin 1/2) object, the cross section is given by the formula

dσ

dΩ = 4α2E′2

Q4
E′

E

[
cos2(θ/2) + Q2

2M2 sin2(θ/2)
]
, (4)

where α ≡ e2

4π , M is the proton mass, Q2 ≡ −q2 = −q2
0 + q2 and E, E′ are initial and final proton energies.

Exercise: Derive the cross section (4) of electron scattering on a point like proton of spin 1/2. The process
is represented by a single Feynman diagram with a photon exchange. Perform averaging over initial spin
states and summing over final ones.
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Figure 4: Elastic scattering of electron on a proton

• For a purpose of the further discussion, the cross section is written as

dσ

dE′dΩ = 4α2E′2

Q4

[
cos2(θ/2) + Q2

2M2 sin2(θ/2)
]
δ
(
ν − Q2

2M

)
, (5)

where ν ≡ E − E′ = q0. In case of elastic scattering, E′ is uniquely determined by the scattering angle θ
due to the energy and momentum conservation. One check it computing the square of the proton final-state
four-momentum as

(M − q0)2 − q2 = (M + ν)2 − q2 = M2 + 2νM −Q2. (6)

Since the proton is on mass-shell and the four-momentum square equals M2, one finds ν = Q2

2M which
explains why the delta functions shows up in the cross section (5).

• To get the cross section (4) from (5) one takes the integral over E′. However, one should take into account
that at fixed θ the variable Q2 depends on E′. So, taking the integral one should remember about the
formula ∫

dx δ
(
f(x)

)
= 1
f ′(x0) , (7)

where x0 is the zeroth of the function f(x) that is f(x0) = 0.

Exercise: Derive the cross section (4) starting with the cross section (5).

• When the photon wavelength becomes comparable to the proton radius, the photon ‘sees’ a finite-size
proton. If the scattering is still elastic, the formula (5) is modified as

dσ

dE′dΩ = 4α2E′2

Q4

[
W2(Q2) cos2(θ/2) + 2W1(Q2) sin2(θ/2)

]
δ
(
ν − Q2

2M

)
, (8)

where the dimensionless functions W1(Q2) and W2(Q2) are called the form factors describing proton elec-
tromagnetic structure that is the electric charge and magnetic moments distributions.

• When W2(Q2) = 1 and W1(Q2) = Q2

4M2 , which occurs at small Q2, we return to the cross section (5).

• When Q2 � M2 the form factors are found experimentally to depend on Q2 as W2(Q2) ∼ Q−4 and
W1(Q2) ∼ Q−2. Consequently, the cross section decays with Q2 faster than Q−4.



Lecture II Introduction to Standard Model 4

Figure 5: Deep inelastic scattering of electron on a proton

Deep inelastic scattering
• At a sufficiently high Q2 the electron scattering, which is illustrated in Fig. 5, can be inelastic and the cross

section is written as

dσ

dE′dΩ = 4α2E′2

Q4

[
W2(ν,Q2) cos2(θ/2) + 2W1(ν,Q2) sin2(θ/2)

]
, (9)

where W1(ν,Q2) and W2(ν,Q2) are called the structure functions which depend not only on Q2 but on ν
as well.

• When
W1(ν,Q2) = W1(Q2) δ

(
ν − Q2

2M

)
, W2(ν,Q2) = W2(Q2) δ

(
ν − Q2

2M

)
, (10)

we have the elastic scattering.

• When
W1(ν,Q2) = Q2

4M2 δ
(
ν − Q2

2M

)
, W2(ν,Q2) = δ

(
ν − Q2

2M

)
, (11)

we have the elastic scattering on a point-like proton.

• The inelastic scattering at Q2 �M2 is called deeply inelastic.

• Since the functions W1(Q2) and W2(Q2) decay fast as Q2 → ∞, one could think that W1(ν,Q2) and
W2(ν,Q2) behave in a similar way. However, this is not the case.

• In 1968 James Bjorken formulated the hypothesis that when Q2 →∞ and ν →∞ at fixed variable

x ≡ Q2

2Mν
, (12)

which is called the Bjorken x, the functions W1(ν,Q2) and W2(ν,Q2) behave as

W1(ν,Q2) = 1
M

F (x), W2(ν,Q2) = 2x
ν
F (x), (13)

that is the functions W1(ν,Q2) and νW2(ν,Q2) depend not two variables ν and Q2 but only on their
combination x. This is the Bjorken scaling.

• The Bjorekn scaling means that the deep inelastic scattering of electron on a proton actually occurs on
point-like components of the proton.

• Measurements performed at the Stanford Linear Accelerator Center (SLAC) showed that the structure
functions indeed satisfy the Bjorken scaling though approximately only.
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Figure 6: Deep inelastic scattering of electron on a proton made up of partons

• The 1990 Nobel Prize was awarded to Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor
“for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound
neutrons, which have been of essential importance for the development of the quark model in particle
physics”.

Parton Model
• According to Richard Feynman, a proton is made up of point-like partons each carrying a fraction x of

proton’s momentum. Partons are of several types of different electric charges. The distribution of x of
partons of i-type, which is denoted as fi(x), obeys the condition

∑
i

∫ 1

0
dxxfi(x) = 1, (14)

which means that not the parton’s number but their total momentum is fixed.

• To simplify our considerations we assume that in a proton rest frame the partons are at rest as well.

• We further assume that the deeply inelastic scattering of electron on proton occurs through the elastic
scattering on point-like partons at rest which do not interact with surrounding partons. The process is
illustrated in Fig. 6.

• The assumption that the scattering on a parton is elastic means that the square of parton’s final-state
four-momentum equals the square of parton’s mass which is xM . Therefore,

(xM + ν)2 − q2 = x2M2 =⇒ x = Q2

2Mν
. (15)

In other words, the process kinematics determines the variable x. We also see that in the parton model the
Bjorken variable x has a meaning of the fraction of proton’s momentum carried by a parton.

• Assuming that the partons are spin 1/2 fermions of electric charge ±qie, the cross section is

dσ

dE′dΩ =
∑
i

∫ 1

0
dxxfi(x) 4α2q2

iE
′2

Q4

[
cos2(θ/2) + Q2

2x2M2 sin2(θ/2)
]
δ
(
ν − Q2

2xM

)
, (16)

which gives
dσ

dE′dΩ = 4α2E′2

Q4

[x
ν

cos2(θ/2) + 1
M

sin2(θ/2)
]∑

i

q2
i xfi(x), (17)

where x = Q2

2Mν .
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• Comparing the result (17) with the cross section (9), one finds

W1(ν,Q2) = 1
2M

∑
i

q2
i xfi(x), W2(ν,Q2) = x

ν

∑
i

q2
i xfi(x). (18)

• The cross section (17) satisfies the Bjorken scaling with

F (x) = 1
2
∑
i

q2
i xfi(x). (19)

Towards QCD
• In QCD partons, which carry electric charges, are identified with quarks.

• Except electric charges, quarks carry color charges and 1/3 of the baryon number of a nucleon.

• Inter-quark interactions are mediated by spin 1 gluons which are also constituents of hadrons.

• QCD is asymptotically free theory that is the interaction vanishes when Q2 → ∞ which explains the
Bjorken scaling.


