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Gibbs classical statistical mechanics II

Applications of canonical ensemble

Up to now the Gibbs statistical mechanics has been applied only to the ideal gas. Let us now
discuss two simple though nontrivial applications.

Real gases

� Since the Hamilton function reads

H(r,p) =
N∑
i=1

p2
i

2m
+

N∑
i,j=1
i<j

vij(ri − rj), (1)

where vij is the potential energy due to interaction i−th and j−th particles. The partition
function equals

QN(T, V ) ≡ 1

N !

∫
d3Nr

d3Np

(2π~)3N
exp

[
− H(r,p)

kBT

]
=

1

N !

(mkBT
2π~2

) 3N
2
ZN . (2)

The momentum integrals are performed as in case of the ideal gas and the configuration
integral ZN is

ZN ≡
∫
d3r1d

3r2 . . . d
3rN exp

[
− β

N∑
i,j=1
i<j

vij(ri − rj)
]
, (3)

where β ≡ 1
kBT

.

� Using the notation
e−βvij(ri−rj) ≡ 1 + fij(ri − rj), (4)

we write down

exp
[
− β

N∑
i,j=1
i<j

vij(ri − rj)
]

=
N∏

i,j=1
i<j

(
1 + fij(ri − rj)

)
. (5)

� The gas under consideration is assumed to be weakly non-ideal that is it is sufficiently hot
and dilute. Consequently, the average potential energy of a molecule is much smaller than
the kinetic energy

kBT � 〈vij〉. (6)

Therefore

exp
[
− β

N∑
i,j=1
i<j

vij(ri − rj)
]
≈ 1 +

N∑
i,j=1
i<j

fij(ri − rj). (7)
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� The expression (7) substituted into (3) gives

ZN =

∫
d3r1d

3r2 . . . d
3rN
(
1 +

N∑
i,j=1
i<j

fij(ri − rj)
)

= V N + V N−2
N∑

i,j=1
i<j

∫
d3rid

3rjfij(ri − rj)

= V N +
N(N − 1)

2
V N−2

∫
d3r1d

3r2f12(r1 − r2). (8)

� One introduces the center-of-mass and relative coordinates of the molecules 1 and 2

R ≡ r1 + r2
2

, r ≡ r1 − r2 (9)

and obtains

ZN = V N +
N2

2
V N−1

∫
d3r f(r), (10)

where N(N − 1) ≈ N2 and the indices 1 and 2 are dropped.

� The partition function (2) thus equals

QN(T, V ) = Q0
N(T, V )

(
1 +

N2

2V

∫
d3r f(r)

)
, (11)

where

Q0
N(T, V ) =

V N

N !

(mkBT
2π~2

) 3N
2

(12)

is the ideal-gas partition function.

� The potential is assumed to be spherically symmetric and then∫
d3r f(r) = 4π

∫ ∞
0

dr r2
(
e−β v(r) − 1

)
. (13)

� Fig 1 shows a typical inter-molecular potential which is strongly repulsive at small distances
and attractive at bigger ones. We assume that β v(r) � 1 for r < rc and |β v(r)| � 1 for
r > rc. Then,

e−β v(r) − 1 ≈

{
−1 for r < rc,

−β v(r) for r > rc,
(14)

and ∫
d3r f(r) = −4π

3
r3c + 4πβα, (15)

where the (positive) parameter α equals

α ≡
∫ ∞
rc

dr r2|v(r)|. (16)
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Figure 1: Typical shape of inter-molecular potential

� With the result (15) the partition function (11) becomes

QN(T, V ) = Q0
N(T, V )

[
1 +

N2

V

(
− 2πr3c

3
+

2πα

kBT

)]
. (17)

The second term in the square bracket is only a small correction – it is much smaller then
unity.

� The free energy is

F (T, V ) ≡ −kBT lnQN(T, V ) = F 0(T, V ) +
2πr3c

3

kBTN
2

V
− 2πα

N2

V
, (18)

where F 0(T, V ) is the free energy of the ideal gas. We have used here the approximation
ln(1 + x) ≈ x which holds for |x| � 1.

� The gas internal energy is found in the following way. The definition of F ≡ U − TS gives
U = F +TS. Since dF = dU −TdS−SdT = dQ− pdV −TdS−SdT = −pdV −SdT and

S = −T
(∂F
∂T

)
V
, (19)

and

U = F − T
(∂F
∂T

)
V
. (20)

� Using the result (18) we get

U =
3

2
NkBT − 2πα

N2

V
. (21)

The repulsive interaction plays no role here.

� The pressure is

p = −
(∂F
∂V

)
T

=
NkBT

V
+

2πr3c
3

kBTN
2

V 2
− 2πα

N2

V 2
. (22)

As seen, the repulsive (attractive) interaction increases (decreases) the pressure.

� Let us confront the result (22) with the well-known van der Waals equation of state(
p+ a

N2

V 2

)
(V −Nb) = NkBT, (23)
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where the parameters a & b characterize the gas. The van der Waals pressure is

p =
NkBT

V −Nb
− a N

2

V 2
≈ NkBT

V
− a N

2

V 2
+ b

kBTN
2

V 2
, (24)

where the approximate equality holds under the assumption that the ‘excluded volume
effect’ is only a small correction.

� Comparing the pressures (22) and (24) we get

a = 2πα, b =
2π

3
r3c . (25)

We have achieved the goal of statistical mechanics – the phenomenological parameters a
and b are expressed through the microscopic quantities α and rc.

� The method to obtain the partition function of a real gas can be systematically improved
by going beyond the linear terms in f in Eq. (7). Then we get the cluster expansion with
the gas denisty ρ ≡ N/V as a small parameter.

Classical model of a crystal

� A crystal is treated as a system of N independent harmonic oscillators of the Hamiltonian
function

H(r,p) =
N∑
i=1

( p2
i

2m
+
χ

2
(ai − ri)

2
)
, (26)

where χ is the Young or elasticity modulus and ai the equilibrium position of the i−th
atom.

� The partition function is

QN(T, V ) =

∫
d3Nr

d3Np

(2π~)3N
exp

[
− H(r,p)

kBT

]
=
(mkBT

2π~2
) 3N

2
ZN , (27)

where the factor 1/N ! is not included as the atoms are distinguishable due to their positions
in a crystal lattice. The momentum integrals are computed as in the case of ideal gas and
the configuration integral equals

ZN =
N∏
i=1

∫
d3ri exp

(
− βχ

2
(ai − ri)

2
)
. (28)

� Using the coordinates qi ≡ ri − ai, one finds

ZN =
[ ∫ ∞
−∞

dq exp
(
− βχ

2
q2
)]3N

=
(2πkBT

χ

) 3N
2
, (29)

and

QN(T, V ) =
(mkBT

2π~2
) 3N

2
(2πkBT

χ

) 3N
2

=
(kBT

~

√
m

χ

)3N
. (30)
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� The crystal’s energy equals

U = − ∂

∂β
lnQN(T, V ) = 3NkBT, (31)

which gives the heat capacity as

CV =
(∂U
∂T

)
V

= 3NkB. (32)

One sees that the heat capacity of a given amount of substance is two times bigger when it
is in the crystalline than in the gas form. This is the well-known Dulong-Petit law


