Instabilities Driven Equilibration of the Quark-Gluon Plasma

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

1

- why Mark's favorite formula e^{-E/T} is so good -

Happy Birthday Mark!

Relativistic heavy-ion collision – *Little Bang*

Relativistic heavy-ion collisions

Au–Au collisions @ $\sqrt{s} = 100 + 100 \text{ GeV/NN}$

Evidence of the early stage equilibration

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$v_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

$$\varepsilon \searrow \Rightarrow v_2 \checkmark \longrightarrow t_{eq} \le 1 \text{ fm/}c$$

time of equilibration

U. Heinz, AIP Conf. Proc.739, 163 (2004)

Collisions are too slow

R. Baier, A.H. Mueller, D. Schiff & D.T. Son, Phys. Lett. B539, 46 (2002)

Plasma manifests collective behavior

10

Kinetic instabilities

longitudinal modes –
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

• transverse modes –
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Logitudinal modes

Energy is transferred from particles to fields

Logitudinal modes

Transverse modes

Unstable modes occur due to anisotropy of the momentum distribution

Momentum distribution distribution can monotonously decrease in every direction

Transverse modes are relevant for relativistic nuclear collisions!

Momentum Space Anisotropy in Nuclear Collisions

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{8} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Instabilities vs. collisions

Time scale of parton-parton scattering

The instabilities are fast!

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Instabilities – solutions with Im\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory

fundamental
$$\begin{cases} p_{\mu}D^{\mu}Q - \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}Q\} = C \\ p_{\mu}D^{\mu}\overline{Q} + \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}\overline{Q}\} = \overline{C} \\ adjoint \\ p_{\mu}D^{\mu}G - \frac{g}{2} p^{\mu} \{F_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} \\ gluons \\ free streaming \\ D^{\mu} \equiv \partial^{\mu} - ig[A^{\mu}, ...], F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}] \\ D_{\mu}F^{\mu\nu} = j^{\nu}[Q, \overline{Q}, \overline{G}] \\ mean-field generation \\ \hline collisionless limit: C = \overline{C} = C_{g} = 0 \end{cases}$$

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & p \\ & & & & & \\ p + k & & & & \\ p + k & & & & \\ \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\mu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

 $\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$

Chromo-hydrodynamic approach

$$D_{\mu}n^{\mu}(x) = 0$$
$$D_{\mu}T^{\mu\nu}(x) - \frac{g}{2} \{F^{\mu\nu}, n_{\mu}(x)\} = 0$$

Postulated form of $n^{\mu}(x)$ and $T^{\mu\nu}(x)$:

$$n^{\mu}(x) = n(x)u^{\mu}(x)$$
$$T^{\mu\nu}(x) = \frac{1}{2} (\varepsilon(x) + p(x)) \{ u^{\mu}(x), u^{\mu}(x) \} - p(x) g^{\mu\nu}$$

 $n(x), \epsilon(x), p(x), u^{\mu}(x)$ matrices! $u^{\mu}(x)u_{\mu}(x) = 1$

To close the system of equations:

$$\nabla p = 0$$
 or $\varepsilon = 3p \iff T_{\mu}^{\mu} = 0$

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k)$$

chromodielectric tensor

$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2\delta^{ij} - k^ik^j - \omega^2\varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} / E \qquad 24$

Dispersion equation – configuration of interest

Dispersion equation

$$k^2 - \omega^2 \varepsilon^{zz}(\omega, k) = 0$$

Existence of unstable modes – Penrose criterion

$$H(\omega) \equiv k^{2} - \omega^{2} \varepsilon^{zz}(\omega, k)$$

$$\oint_{C} \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint_{C} \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{-}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigoplus_{\omega = \infty} \bigoplus_{\omega = 0} \bigoplus_{\alpha = 0} \bigoplus_{$$

Unstable solutions

J. Randrup & St. M., Phys. Rev. C 68, 034909 (2003)

Hard-Loop dynamics

Soft fields in the passive background of hard particles

Braaten-Pisarski action generalized to anisotropic momentum distribution:

$$\begin{split} L_{\rm eff} &= \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \Big[f(\mathbf{p}) F^a_{\mu\nu}(x) \Big(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \Big)_{ab} F^{b\mu}_{\rho}(x) \\ &+ i \frac{C_F}{3} \widetilde{f}(\mathbf{p}) \Psi(x) \frac{p \cdot \gamma}{p \cdot D} \Psi(x) \Big] \\ k_{\mu} \Pi^{\mu\nu}(k) &= 0, \qquad k_{\mu} \Lambda^{\mu}(p,q,k) = \Sigma(p) + \Sigma(q) \end{split}$$

St. M., A. Rebhan & M. Strickland, Phys. Rev. D 74, 025004 (2004)

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ²⁹

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

10²

$$T_{ij} = \int \frac{d^3 p}{\left(2\pi\right)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

 $T_{xx} = (T_{vv} + T_{zz})/2$

Isotropy:

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Conclusion

The scenario of instabilities driven equilibration provides a plausible solution of the fast equilibration problem

