Universality of hard-loop action

Stanisław Mrówczyński

Institute of Physics, Jan Kochanowski University, Kielce, Poland and National Centre for Nuclear Research, Warsaw, Poland

in collaboration with Alina Czajka

Outline

- 1. Motivation
- 2. Introduction
- 3. Keldysh-Schwinger formalism
- 4. Ghosts in Keldysh-Schwinger formalism
- 5. Self-energies
- 6. Universal hard-loop action
- 7. Limits of universality
- 8. Origin of universality
- 9. Summary

Motivation

- □ 1997 Maldacena AdS/CFT duality (gauge/gravity correspondence)
- \Box To what extent $\mathcal{N}_{=4}$ super YM is similar to QCD?
- \Box To what extent $\mathcal{N}_{=4}$ super YM plasma is similar to quark-gluon plasma?
- □ To what extent a supersymmetric plasma is similar to its nonsupersymmetric counterpart <u>in a weak coupling regime</u>?
 - Ph. D. thesis of Alina Czajka: arXiv:1601.08215

Two byproducts of the project:

- ghosts in the Keldysh-Schwinger formalism
- universality of the hard-loop action

Gauge theories under consideration

$$\begin{split} & \int_{\text{QED}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i\overline{\Psi}\gamma_{\mu} D^{\mu}\Psi & F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \\ & \int_{\text{ScQED}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - (D_{\mu}\Phi)^* D^{\mu}\Phi \\ & \int_{\text{SUSY QED}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i\overline{\Psi}\gamma_{\mu} D^{\mu}\Psi + \frac{i}{2} \overline{\Lambda}\gamma_{\mu}\partial^{\mu}\Lambda + (D_{\mu}\phi_{L})^* (D^{\mu}\phi_{L}) + (D_{\mu}^*\phi_{R})(D^{\mu}\phi_{R}^*) \\ & + \sqrt{2}e(\overline{\Psi}P_{R}\Lambda\phi_{L} - \overline{\Psi}P_{L}\Lambda\phi_{R}^* + \phi_{L}^*\overline{\Lambda}P_{L}\Psi - \phi_{R}\overline{\Lambda}P_{R}\Psi) - \frac{e^2}{2}(\phi_{L}^*\phi_{L} - \phi_{R}^*\phi_{R})^2 \\ & \int_{\text{YM}} = -\frac{1}{4} F_{a}^{\mu\nu}F_{\mu\nu}^a & F_{a}^{\mu\nu} + i\overline{\Psi}_{i}(\gamma_{\mu}D^{\mu})_{ij}\Psi_{j} \\ & \int_{\text{QCD}} = -\frac{1}{4} F_{a}^{\mu\nu}F_{\mu\nu}^a + i\overline{\Psi}_{i}(\gamma_{\mu}D^{\mu}\Psi_{i})^a + \frac{1}{2}(D_{\mu}\Phi_{A})_a(D^{\mu}\Phi_{A})_a \\ & -\frac{1}{4}g^2 f^{abe} f^{cde}\Phi_{A}^a\Phi_{B}^b\Phi_{A}^c\Phi_{B}^d - i\frac{g}{2}f^{abe}(\overline{\Psi}_{i}^a\alpha_{ij}^pX_{p}^b\Psi_{j}^c + i\overline{\Psi}_{i}^a\beta_{ij}^p\gamma_5Y_{p}^b\Psi_{j}^c) \end{split}$$

Effective action

A system's dynamics is encoded in an effective action.

How to find the effective action?

Self-energy constrains a form of the effective action

$$\Pi^{\mu\nu}(x,y) = \frac{\delta^2 S[A]}{\delta A_{\mu}(x) \delta A_{\nu}(y)} \qquad S = \int d^4 x \, \mathcal{L}(x)$$

$$\mathcal{L}_{2}^{(A)}(x) = \frac{1}{2} \int d^{4} y A_{\mu}(x) \Pi^{\mu\nu}(x-y) A_{\nu}(y)$$

Our strategy

self-energy is effective action is description of the system

Keldysh–Schwinger formalism

Description of non-equilibrium many-body systems

Contour Green function of gauge field

$$i\mathcal{D}_{ab}^{\mu\nu}(x,y) \stackrel{\text{def}}{=} \left\langle \widetilde{T}A_a^{\mu}(x)A_b^{\nu}(y) \right\rangle$$

$$\langle ... \rangle = \operatorname{Tr}[\hat{\rho}(t_0)...]$$

 $\widetilde{T}\,$ - ordering along the contour

 $\widetilde{T}A(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$

Keldysh–Schwinger formalism

Contour Green's function includes 4 Green's functions with real time arguments:

$$\begin{split} \left(\mathcal{D}_{ab}^{\mu\nu}\right)^{\diamond}(x,y) &= \left\langle A_{a}^{\mu}(x)A_{b}^{\nu}(y)\right\rangle & \overbrace{t_{o}}^{x_{o}} & \overbrace{y_{o}}^{x_{o}} & \overbrace{t_{max}}^{t} \\ \left(\mathcal{D}_{ab}^{\mu\nu}\right)^{\diamond}(x,y) &= \left\langle A_{b}^{\nu}(y)A_{a}^{\mu}(x)\right\rangle & \overbrace{t_{o}}^{y_{o}} & \overbrace{t_{max}}^{t} \\ \left(\mathcal{D}_{ab}^{\mu\nu}\right)^{c}(x,y) &= \left\langle T^{c}A_{a}^{\mu}(x)A_{b}^{\nu}(y)\right\rangle & \overbrace{t_{o}}^{x_{o}} & \overbrace{t_{max}}^{y_{o}} & \overbrace{t_{max}}^{t} \\ \left(\mathcal{D}_{ab}^{\mu\nu}\right)^{a}(x,y) &= \left\langle T^{a}A_{a}^{\mu}(x)A_{b}^{\nu}(y)\right\rangle & \overbrace{t_{o}}^{x_{o}} & \overbrace{y_{o}}^{y_{o}} & \overbrace{t_{max}}^{t} \\ \left(\mathcal{D}_{ab}^{\mu\nu}\right)^{a}(x,y) &= \left\langle T^{a}A_{a}^{\mu}(x)A_{b}^{\nu}(y)\right\rangle & \overbrace{t_{o}}^{x_{o}} & \overbrace{y_{o}}^{y_{o}} & \overbrace{t_{max}}^{t} \\ \end{array}$$

Retarded, advanced & symmetric Green's functions

$$\mathcal{D}^+(x,y) = \Theta(x_0 - y_0) \Big(\mathcal{D}^>(x,y) - \mathcal{D}^<(x,y) \Big)$$

$$\mathcal{D}^{-}(x,y) = \Theta(y_0 - x_0) \Big(\mathcal{D}^{<}(x,y) - \mathcal{D}^{>}(x,y) \Big)$$

$$\mathcal{D}^{sym}(x, y) = \mathcal{D}^{>}(x, y) + \mathcal{D}^{<}(x, y)$$

Meaning of the functions

 $\mathcal{D}^{<,>}(x, y) \qquad \stackrel{>}{\Rightarrow} \text{ mass-shell constraint} \\ \stackrel{>}{\Rightarrow} \text{ real particles} \\ \mathcal{D}^{\pm}(x, y) \qquad \stackrel{>}{\Rightarrow} \text{ retarded & advanced propagator} \\ \stackrel{>}{\Rightarrow} \text{ virtual particles} \\ \end{cases}$

The Green functions $\mathcal{D}(x, y)$ are gauge dependent

Physical results obtained from Green functions must be gauge independent

For example

The poles of $\mathcal{D}(x, y)$ - dispersion relations – are gauge independent

Green's functions of free gluon field

$$D(x, y) = D(x - y)$$

Feynman gauge

$$\left(D_{\mu\nu}^{ab} \right)^{\leq} (p) = \frac{i\pi}{E_{p}} g_{\mu\nu} \delta^{ab} \left[\delta(E_{p} - p_{0}) [n_{g}(\mathbf{p}) + 1] + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right]$$

$$\left(D_{\mu\nu}^{ab} \right)^{\leq} (p) = \frac{i\pi}{E_{p}} g_{\mu\nu} \delta^{ab} \left[\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) [n_{g}(-\mathbf{p}) + 1] \right]$$

$$\left(D_{\mu\nu}^{ab} \right)^{c}(p) = -g_{\mu\nu} \delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]$$

$$\left(D_{\mu\nu}^{ab} \right)^{a}(p) = g_{\mu\nu} \delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]$$

 $n_{g}(\mathbf{p})$ - gluon distribution function

Green's functions of free gluon field

$$D(x, y) = D(x - y)$$

Feynman gauge

$$\left(D_{\mu\nu}^{ab} \right)^{\leq} (p) = \frac{i\pi}{E_p} g_{\mu\nu} \delta^{ab} \left[\delta(E_p - p_0) [n_g(\mathbf{p}) + 1] + \delta(E_p + p_0) n_g(-\mathbf{p}) \right]$$

$$\left(D_{\mu\nu}^{ab} \right)^{\leq} (p) = \frac{i\pi}{E_p} g_{\mu\nu} \delta^{ab} \left[\delta(E_p - p_0) n_g(\mathbf{p}) + \delta(E_p + p_0) [n_g(-\mathbf{p}) + 1] \right]$$

$$(D_{\mu\nu}^{ab})^{+}(p) = -\frac{g_{\mu\nu}\delta^{ab}}{p^2 + i\operatorname{sgn}(p_0)0^{+}}$$

$$(D_{\mu\nu}^{ab})^{-}(p) = \frac{g_{\mu\nu}\delta^{ab}}{p^2 - i\,\mathrm{sgn}(p_0)0^+}$$

 $n_{g}(\mathbf{p})$ - gluon distribution function

Need for ghosts

- QCD computations in covariant gauges are usually much simpler than those in physical ones like the Coulomb gauge.
- Covariant gauges require ghosts to compensate unphysical degrees of freedom.

Gluon field: $A^{\mu}(x) = (A^{0}(x), \mathbf{A}(x)) - 4$ degrees of freedom

Physical gluon: 2 polarizations

How to introduce ghosts in the Keldysh-Schwinger formalism?

What is the Green function of free ghosts?

$$\Delta^{>}(p)$$

 $\Delta^{<}(p)$
 $\Delta^{c}(p)$ = ?
 $\Delta^{a}(p)$

How to get Green's function of free ghosts?

Ghost sector should be determined by the gauge symmetry of the theory!

$$A^a_{\mu} \rightarrow \left(A^a_{\mu}\right)^U = A^a_{\mu} + f^{abc} \omega^b A^c_{\mu} - \frac{1}{g} \partial_{\mu} \omega^c$$

gauge symmetry of the theory

Slavnov-Taylor identities

Generating functional

$$W_0[J, \chi, \chi^*] = N_0 \int_{BC} \mathcal{D}A \mathcal{D}C \mathcal{D}C^* e^{i\int_C d^4 x \mathcal{L}_{eff}(x)}$$

all fields are on the contour
the fields are fixed at $t = -\infty \pm i0^+$

 $\mathcal{L}_{\rm eff}(x) = -\frac{1}{4} F_{a}^{\mu\nu} F_{\mu\nu}^{a} - \frac{1}{2} (\partial^{\mu} A_{\mu}^{a})^{2} - c_{a}^{*} (\partial^{\mu} \partial_{\mu} \delta_{ab} - g \partial^{\mu} f^{abc} A_{\mu}^{c}) c_{b} + J_{\mu}^{a} A_{a}^{\mu} + \chi_{a}^{*} c_{a} + \chi_{a} c_{a}^{*}$

$$W[J, \chi, \chi^*] = N \int DA' DC' DC^*' DA'' DC'' DC^{*''} \times \rho[A', c', c^{*'}| A'', c'', c^{*''}] W_0[J, \chi, \chi^*]$$

density matrix

Generating functional

$$W[J, \chi, \chi^*] = N \int DA' DC' DC^{*'} DA'' DC'' DC^{*''}$$
$$\times \rho[A', c', c^{*'}| A'', c'', c^{*''}] W_0[J, \chi, \chi^*]$$

The full Green's function are generated as

$$i\mathcal{D}_{\mu\nu}^{ab}(x,y) = (-i)^2 \frac{\delta^2}{\delta J^a_{\mu}(x)\delta J^b_{\nu}(y)} W[J,\chi,\chi^*]\Big|_{J=\chi=\chi^*=0}$$

The density matrix $\rho[A', c', c^{*'}|A'', c'', c^{*''}]$ is not specified

The explicit forms of the functional and the Green's function are not known

The functional provides various relations among Green's functions

 $W[J, \chi, \chi^*] = N \int_{BC} \mathcal{D}A \,\Delta[A] e^{i\int_C d^4 x \,\mathcal{L}(x)}$ analog of the Fadeev-Popov determinant $\Delta[A] = \int_{BC} \mathcal{D}C \,\mathcal{D}C^* e^{-i\int_C d^4 x \left(-c_a^*(\partial^\mu \partial_\mu \delta_{ab} - g \partial^\mu f^{abc} A_\mu^c)c_b + \chi_a^*c_a + \chi_a c_a^*\right)}$

The invariance of $W[J, \chi, \chi^*]$ under the transformations

$$A^a_{\mu} \rightarrow \left(A^a_{\mu}\right)^U = A^a_{\mu} + f^{abc} \omega^b A^c_{\mu} - \frac{1}{g} \partial_{\mu} \omega^a$$

leads to

$$\left\{i\partial_{(y)}^{\mu}\frac{\delta}{\delta J_{d}^{\mu}(y)}-\int_{C}d^{4}x\,J_{a}^{\mu}(x)\left(\partial_{\mu}^{(x)}\delta^{ab}+igf^{abc}\,\frac{\delta}{\delta J_{c}^{\mu}(x)}\right)M_{bd}^{-1}\left[\frac{1}{i}\frac{\delta}{\delta J}\Big|x,y\right]\right\}W[J,\chi,\chi^{*}]=0$$

Slavnov-Taylor identity for gluon Green's function

$$\frac{\delta}{\delta J_{e}^{\nu}(z)} \left\{ i\partial_{(y)}^{\mu} \frac{\delta}{\delta J_{d}^{\mu}(y)} - \int_{c} d^{4}x J_{a}^{\mu}(x) \left(\partial_{\mu}^{(x)} \delta^{ab} + igf^{abc} \frac{\delta}{\delta J_{c}^{\mu}(x)} \right) M_{bd}^{-1} \left[\frac{1}{i} \frac{\delta}{\delta J} \middle| x, y \right] \right\} W[J, \chi, \chi^{*}] = 0$$

$$J = \chi = \chi^{*} = 0$$

$$free ghost Green's function$$

The longitudinal component of the gluon Green's function is free.

A. Czajka, St. Mrówczyński, PRD 89, 085035 (2014)

Ghost functions

$$-p^{\mu}D^{ab}_{\mu\nu}(p) = p_{\nu}\Delta_{ab}(-p)$$

$$\Delta^{\diamond}(p) = -\frac{i\pi}{E_p} \delta^{ab} \Big[\delta(E_p - p_0) [n_g(\mathbf{p}) + 1] + \delta(E_p + p_0) n_g(-\mathbf{p}) \Big]$$
$$\Delta^{\diamond}(p) = -\frac{i\pi}{E_p} \delta^{ab} \Big[\delta(E_p - p_0) n_g(\mathbf{p}) + \delta(E_p + p_0) [n_g(-\mathbf{p}) + 1] \Big]$$

$$\Delta^{c}(p) = \delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]$$

$$\Delta^{a}(p) = -\delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]$$

 $n_g(\mathbf{p})$ - gluon distribution function

Polarization tensors

Contributions to gluon polarization tensor in QGP

quark-loop contribution to <u>contour</u> polarization tensor

S(x, y) - fermion contour Green's function

Different loop contributions

$$k \sim \int d^{3}p \frac{f(\mathbf{p})}{E_{p}} \left[\frac{2p^{\mu}p^{\nu} + k^{\mu}p^{\nu} + p^{\mu}k^{\nu} - g^{\mu\nu}k \cdot p}{(p+k)^{2} + i\operatorname{sgn}((p+k)_{0})0^{+}} + \frac{2p^{\mu}p^{\nu} - k^{\mu}p^{\nu} - p^{\mu}k^{\nu} + g^{\mu\nu}k \cdot p}{(p-k)^{2} - i\operatorname{sgn}((p-k)_{0})0^{+}} \right]$$

different structures —— different behaviours

The only dimensional parameter in ultrarelativistic equilibrium plasma is temperature *T*, so:

momentum at which a plasma is probed

$$k^{\mu} << p^{\mu}$$

$$\rho \sim \frac{1}{d^3} \sim T^3 \sim |\mathbf{p}|^3$$

$$p \sim \frac{1}{d} \qquad k \sim \frac{1}{\lambda}$$

momentum of plasma constituent

Polarization tensor

HL: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = C_{\Pi} \int \frac{d^3p}{(2\pi)^3} \frac{f_{\Pi}(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^+)^2}$$

After applying the HL approximation the polarization tensor gets **the same structure** for the \mathcal{N} =4 SYM, YM, QCD, SUSY QED and usual QED plasma.

> symmetric	$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k)$	
transversal	$k_{\mu}\Pi^{\mu\nu}(k) = 0$	Gauge independence!

Plasma system	C_{Π}	$f_{\Pi}(\mathbf{p})$
QED	e^2	$2f_e(\mathbf{p}) + 2\bar{f}_e(\mathbf{p})$
Scalar QED	e^2	$f_s({f p})+ar f_s({f p})$
$\mathcal{N} = 1$ super QED	e^2	$2f_e(\mathbf{p}) + 2\bar{f}_e(\mathbf{p}) + 2f_s(\mathbf{p}) + 2\bar{f}_s(\mathbf{p})$
Yang-Mills	$g^2 N_c \delta^{ab}$	$2f_g(\mathbf{p})$
QCD	$g^2 N_c \delta^{ab}$	$2f_g(\mathbf{p}) + \frac{N_f}{N_c}(f_q(\mathbf{p}) + \bar{f}_q(\mathbf{p}))$
$\mathcal{N} = 4$ super Yang-Mills	$g^2 N_c \delta^{ab}$	$2f_g(\mathbf{p}) + 8f_f(\mathbf{p}) + 6f_s(\mathbf{p})$

Fermionic self-energies

Fermion self-energy

$$\Sigma(k) = C_{\Sigma} \int \frac{d^3 p}{(2\pi)^3} \frac{f_{\Sigma}(\mathbf{p})}{E_p} \frac{\hat{p}}{k \cdot p + i0^+}$$

HL: $k^{\mu} \ll p^{\mu}$

The fermion self-energy in HL approximation has **the same structure** for all considered systems.

Plasma system	$C_{\scriptscriptstyle \Sigma}$	$f_{\scriptscriptstyle{\Sigma}}(\mathbf{p})$
QED	$\frac{e^2}{2}$	$2f_{\gamma}(\mathbf{p}) + f_{e}(\mathbf{p}) + \bar{f}_{e}(\mathbf{p})$
Electron in $\mathcal{N} = 1$ super QED	$\frac{e^2}{2}$	$2f_{\gamma}(\mathbf{p}) + f_{e}(\mathbf{p}) + \bar{f}_{e}(\mathbf{p}) + 2f_{\tilde{\gamma}}(\mathbf{p}) + f_{s}(\mathbf{p}) + \bar{f}_{s}(\mathbf{p})$
Photino in $\mathcal{N} = 1$ super QED	$\frac{e^2}{2}$	$f_e(\mathbf{p}) + \bar{f}_e(\mathbf{p}) + f_s(\mathbf{p}) + \bar{f}_s(\mathbf{p})$
QCD	$\frac{g^2}{2} \frac{N_c^2 - 1}{2N_c} \delta^{mn} \delta^{ij}$	$2f_g(\mathbf{p}) + N_f(f_q(\mathbf{p}) + \bar{f}_q(\mathbf{p}))$
$\mathcal{N} = 4$ super Yang-Mills	$rac{g^2}{2}N_c\delta^{ab}\delta^{ij}$	$2f_g(\mathbf{p}) + 8f_f(\mathbf{p}) + 6f_s(\mathbf{p})$

A. Czajka, St. Mrówczyński, PRD 86, 025017 (2012)

Scalar self-energies				
scalar QED	$\langle \rangle$			
scalar in N=1 SUSY QED		$\langle \rangle$	 _	
scalar in N=4 Super Yang-Mills		60003		

$$P(k) = C_P \int \frac{d^3 p}{(2\pi)^3} \frac{f_P(\mathbf{p})}{E_p}$$

The scalar self-energy in HL approximation has **the same structure** for all considered systems.

Plasma system	C_P	$f_{P}(\mathbf{p})$
Scalar QED	e^2	$2f_{\gamma}(\mathbf{p}) + f_s(\mathbf{p}) + \bar{f}_s(\mathbf{p})$
$\mathcal{N} = 1$ super QED	e^2	$2f_{\gamma}(\mathbf{p}) + f_{e}(\mathbf{p}) + \bar{f}_{e}(\mathbf{p}) + 2f_{\tilde{\gamma}}(\mathbf{p}) + f_{s}(\mathbf{p}) + \bar{f}_{s}(\mathbf{p})$
$\mathcal{N} = 4$ super Yang-Mills	$g^2 N_c \delta^{ab} \delta^{AB}$	$2f_g(\mathbf{p}) + 8f_f(\mathbf{p}) + 6f_s(\mathbf{p})$

A. Czajka, St. Mrówczyński, PRD 83, 065021 (2011)

From self-energies to effective action

The structure of self-energy of every field (vector, spinor, scalar) appears to be universal.

$$\Pi^{\mu\nu}(x,y) = \frac{\delta^2 S[A]}{\delta A_{\mu}(x) \delta A_{\nu}(y)} \qquad S = \int d^4 x \, \mathcal{L}(x)$$
$$\mathcal{L}_2^{(A)}(x) = C_{\Pi} \int \frac{d^3 p}{(2\pi)^3} \frac{f_{\Pi}(\mathbf{p})}{E_p} F_{\mu\nu}(x) \left(\frac{p^{\nu} p^{\rho}}{(p \cdot \partial)^2}\right) F_{\rho}^{\mu}(x)$$
$$\mathcal{L}_2^{(\Psi)}(x) = C_{\Sigma} \int \frac{d^3 p}{(2\pi)^3} \frac{f_{\Sigma}(\mathbf{p})}{E_p} \overline{\Psi}(x) \left(\frac{p \cdot \gamma}{p \cdot \partial}\right) \Psi(x)$$
$$\mathcal{L}_2^{(\Phi)}(x) = -C_p \int \frac{d^3 p}{(2\pi)^3} \frac{f_p(\mathbf{p})}{E_p} \Phi^*(x) \Phi(x)$$

$$\frac{1}{p \cdot \partial} \Psi(x) \equiv i \int \frac{d^4 k}{(2\pi)^4} \frac{e^{-ik \cdot x}}{p \cdot k} \Psi(k)$$

Hard-loop effective action

$$\mathcal{L}_{\mathrm{HL}}^{(A)}(x) = C_{\Pi} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{f_{\Pi}(\mathbf{p})}{E_{p}} F_{\mu\nu}(x) \left(\frac{p^{\nu}p^{\rho}}{(p \cdot D)^{2}}\right) F_{\rho}^{\ \mu}(x)$$
$$\mathcal{L}_{\mathrm{HL}}^{(\Psi)}(x) = C_{\Sigma} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{f_{\Sigma}(\mathbf{p})}{E_{p}} \overline{\Psi}(x) \left(\frac{p \cdot \gamma}{p \cdot D}\right) \Psi(x)$$
$$\mathcal{L}_{\mathrm{HL}}^{(\Phi)}(x) = -C_{P} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{f_{P}(\mathbf{p})}{E_{p}} \Phi^{*}(x) \Phi(x)$$

$$\frac{1}{p \cdot D} \Psi(x) \equiv \frac{1}{p \cdot \partial} \sum_{n=0}^{\infty} \left(igp \cdot A(x) \frac{1}{p \cdot \partial} \right)^n \Psi(x)$$

E. Braaten, R. D. Pisarski, PRD 45, 1827 (1992) St. Mrówczyński, A. Rebhan, M. Strickland, PRD 70, 025004 (2004)

The structure of each term of the effective action appears to be unique.

A. Czajka, St. Mrówczyński, PRD 91, 025013 (2015)

Limitations of universality

When is the universality valid?

Let us consider the limit $k \rightarrow 0$

$$\Sigma(k) \sim g^2 \int \frac{d^3 p}{(2\pi)^3} \frac{f_{\Sigma}(\mathbf{p})}{E_p} \frac{\hat{p}}{k \cdot p + i0^+}$$

 $k \sim g^2 T$ $\Sigma \sim O(g^0)$ the self-energy is not perturbatively small

(ultrasoft scale)

The wavevector k cannot be too small!

A. D. Linde, Phys. Lett. B 96, 289 (1980)

The universality works when

 $k^{\mu} \ll p^{\mu} \qquad k^{\mu} \propto g P^{\mu}$ (HLA) (soft scale)

Physical consequences of universality

Microscopically different systems have **the same long wavelength physical characteristics**:

- □ response functions (dielectric function)
- □ screening lengths
- □ spectrum of collective modes (quasiparticles, instabilities)

Dispersion equations

gauge boson field: det $[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$ fermionic field: det $[\hat{k} - \Sigma(k)] = 0$

scalar field: $k^2 + P(k) = 0$

Why universality occurs?

Microscopic dynamics of different systems is different Macroscopic behaviour of different systems is very similar

Simple example:

Why is there no effect of **quantum statistics** of plasma constituents?

Why is there no effect of **different interactions**?

Why universality occurs?

1. Hard loop condition:

$$k^{\mu} \ll p^{\mu}$$

In classical limit fermions and bosons are not distinguishable!

2. Gauge symmetry determines the interaction

Summary

- The generating functional of QCD in the Keldysh-Schwinger formalism was constructed
- > The general Slavnov-Taylor identity was derived
- > The ghost Green's function was expressed through the gluon one
- QCD calculations in Keldysh-Schwinger approach are possible in the Feynman gauge
- Universal effective of various gauge theories was derived
- Universality results from long wavelength limit combined with gauge symmetry
- Properties of various plasma systems are very similar to each other