

Stanisław Mrówczyński

Jan Kochanowski University, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

1

Experimental Programs

- AGS Alternating Gradient Synchrotron, BNL fixed target experiments, energy 15 AGeV
- SPS Super Proton Synchroton, CERN fixed target experiments, energy 20-160 AGeV
- RHIC Relativistic Heavy-Ion Collider Collider, BNL energy up to 100+100 AGeV

Scenario of relativistic heavy-ion collisions

Phase diagram

Late stage equilibrium

Au-Au @ 130 GeV within Cracow Thermal Model

	Model	Experiment
Fitted thermal parameters		
T [MeV]	165 ± 7	
$\mu_B [\text{MeV}]$	41 ± 5	
$\mu_S [\text{MeV}]$	9	
$\mu_I [\text{MeV}]$	-1	
χ^2/n	0.97	
Ratios used for the fit		
π^-/π^+	1.02	1.00 ± 0.02 [47], 0.99 ± 0.02 [48]
\overline{p}/π^{-}	0.09	$0.08 \pm 0.01 [49]$
K^-/K^+	0.92	0.88 ± 0.05 [50], 0.78 ± 0.12 [51]
		0.91 ± 0.09 [47], 0.92 ± 0.06 [48]
K^-/π^-	0.16	0.15 ± 0.02 [50]
K_{0}^{*}/h^{-}	0.046	0.060 ± 0.012 [50, 52]
		later: 0.042 ± 0.011 [41]
$\overline{K_0^*}/h^-$	0.041	$0.058 \pm 0.012 \; [50, 52]$
		later: 0.039 ± 0.011 [41]
\overline{p}/p	0.65	0.61 ± 0.07 [49], 0.54 ± 0.08 [51]
		0.60 ± 0.07 [47], 0.61 ± 0.06 [48]
Λ/Λ	0.69	0.73 ± 0.03 [50]
$\overline{\Xi}/\Xi$	0.76	0.82 ± 0.08 [50]
Ratios predicted		
ϕ/h^-	0.019	0.021 ± 0.001 [53]
ϕ/K^-	0.15	0.1 - 0.16 [53]
Λ/p	0.47	$0.49 \pm 0.03 [54, 55]$
Ω^-/h^-	0.0010	0.0012 ± 0.0005 [56]
Ξ^-/π^-	0.0072	0.0085 ± 0.0020 [57]
Ω^+/Ω^-	0.85	0.95 ± 0.15 [56]

W. Broniowski, A. Baran and W. Florkowski, Acta Phys. Polon. B33, 4235 (2002)

Elliptic Flow & Early Stage Equilibrium

Elliptic Flow & Early Stage Equilibrium

Au-Au @ 130 GeV

K.H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86, 402 (2001)

Elliptic Flow & Early Stage Equilibrium

Au-Au @ 200 GeV

$$\frac{dN}{d\varphi} = \frac{1}{2\pi} \left[1 + \sum_{n=0}^{\infty} \mathbf{v}_n \cos(n(\varphi - \varphi_R)) \right]$$

S. Afanasiev et al. [PHENIX Collaboration], Phys. Rev. Lett. 99, 052301 (2007)

Equilibration Time

W. Jas and St. Mrówczyński, Phys. Rev. C76, 044905 (2007)

Hard Jets @ RHIC

J. Adams et al. [STAR Collaboration], Nucl. Phys. A757, 102 (2005)

Hard Jets @ RHIC

Inclusive π^0 production

J. Adams et al. [STAR Collaboration], Nucl. Phys. A757, 102 (2005)

Heavy-Flavours @ RHIC

A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98, 172301 (2007)

Experimental features

- Matter produced at RHIC is in local equilibrium
- Equilibration time is short $\sim 1 \text{ fm/}c$
- Viscosity of the matter is low
- Matter produced at RHIC is opaque

What does it mean 'short', 'low', 'opaque'?

Weakly coupled quasi-equilibrium QGP

Equilibration time due to collisions:
$$t_{eq} \sim \frac{1}{T\alpha_s^2 \ln(1/\alpha_s)}$$

Shear viscosity:
$$\eta \sim \frac{T^3}{\alpha_s^2 \ln(1/\alpha_s)}$$

Collisional energy loss:
$$\frac{dE}{dx} \sim \alpha_s^2 T^2 \ln(1/\alpha_s)$$

Radiative energy loss of
$$\begin{cases} \text{light quark:} \quad \frac{dE}{dx} \sim \alpha_s^2 ET \ln(1/\alpha_s) \\ \text{heavy quark:} \quad \frac{dE}{dx} \sim \frac{\alpha_s^3 ET^3}{M^2} \ln(1/\alpha_s) \quad (M >> T) \end{cases}$$

 α_s - coupling constant, T - temperature, E - quark energy, M - heavy quark mass

Provisional Conclusion

QGP is strongly coupled

or

QGP behaves as strongly coupled but $\alpha_s \le 0.3$

Chromomagnetic instabilities

The instabilities occur due to anisotropy of the momentum distribution

Parton momentum distribution is initially anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Instabilities are fast

Time scale of processes driven by parton-parton scattering

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. 94, 102303 (2005)

Isotropization

Isotropization – numerical simulation

Classical system of colored particles & fields

$$T_{ij} = \int \frac{d^3 p}{\left(2\pi\right)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

Initial anisotropy:

$$T_{xx} = 0$$

Isotropy:

$$T_{xx} = (T_{yy} + T_{zz})/2$$

A. Dumitru & Y. Nara, Phys. Lett. **B621**, 89 (2005)

Role of instabilities

Chromomagnetic instabilities efficiently speed up equilibration of weakly coupled plasma

Viscosity of turbulent QGP

M. Asakawa, S.A. Bass and B. Müller, Prog. Theor. Phys. 116, 725 (2007)

My personal opinion

Weakly coupled magnetized turbulent QGP can behave as strongly coupled plasma