Instabilities Driven Equilibration at the Early Stage of Nuclear Collisions

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

1

Evidence of the early stage equilibration

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$v_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

U. Heinz, AIP Conf. Proc.739, 163 (2004)

Collisions are too slow

$$t_{\rm eq} \approx t_{\rm hard} \geq 2.6 \, {\rm fm/}c$$

R. Baier, A.H. Mueller, D. Schiff & D.T. Son, Phys. Lett. **B539**, 46 (2002)

Plasma instabilities

instabilities in configuration space – hydrodynamic instabilities

instabilities in momentum space – kinetic instabilities

instabilities due to non-equilibrium momentum distribution

Kinetic instabilities

longitudinal modes -
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

transverse modes -
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Logitudinal modes

Energy is transferred from particles to fields

Logitudinal modes

Transverse modes

Unstable modes occur due to anisotropy of the momentum distribution

Momentum distribution distribution can monotonously decrease in every direction

Transverse modes are relevant for relativistic nuclear collisions!

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Instabilities – solutions with Im $\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}$

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory – transport equations

fundamental
$$\begin{cases} \left(p_{\mu}D^{\mu} - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)Q(p,x) = C \\ \left(p_{\mu}D^{\mu} + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)\overline{Q}(p,x) = \overline{C} \\ antiquarks \\ adjoint \\ \left(p_{\mu}D^{\mu} - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)G(p,x) = C_{g} \\ gluons \\ free streaming \\ mean-field force \\ collisions \\ D^{\mu} \equiv \partial^{\mu} - ig[A^{\mu},...], \quad F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu},A^{\nu}] \\ D_{\mu}F^{\mu\nu} = j^{\nu}[Q,\overline{Q},G] \\ mean-field generation \\ \hline collisionless limit: \quad C = \overline{C} = C_{g} = 0 \\ 15 \end{cases}$$

 $|Q_0(p)| \gg |\delta Q(p,x)|, \quad |\partial_p^{\mu} Q_0(p)| \gg |\partial_p^{\mu} \delta Q(p,x)|$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$

$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$

$$p_{\mu}\mathcal{D}^{\mu}\delta G(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}G_{0}(p) = 0$$

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x-x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu} [\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) \equiv n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu} \Pi^{\mu\nu}(k) = 0$$
17

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & p \\ & & & & & \\ p+k & & & & & \\ p+k & & & & & \\ \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

St. M. & M. Thoma, Phys. Rev. C 62, 036011 (2000)

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k) \quad \text{chromodielectric tensor} \\ k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2 \delta^{ij} - k^i k^j - \omega^2 \varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} \,/\, E \qquad 19$

Dispersion equation – configuration of interest

Existence of unstable modes – Penrose criterion

Unstable solutions

$$f(\mathbf{p}) = \frac{2^{1/2}}{\pi^{3/2}} \frac{\rho \sigma_{\perp}^4}{\sigma_{\parallel}} \frac{1}{(p_{\perp}^2 + \sigma_{\perp}^2)^3} e^{-\frac{p_{\parallel}^2}{2\sigma_{\parallel}^2}} \qquad \qquad \rho = 6 \text{ fm}^{-3}$$

$$\alpha_s = g^2 / 4\pi = 0.3$$

$$\sigma_{\perp} = 0.3 \text{ GeV}$$

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ²³

Growth of instabilities – 1+1 numerical simulations

A. Dumitru & Y. Nara, hep-ph/0503121

Growth of instabilities – 1+3 numerical simulations

hep-ph/0505212

A. Rebhan, P. Romatschke & M.Strickland hep-ph/0505261

Abelanization

$$V_{\text{eff}}[\mathbf{A}^{a}] = -\mu^{2}\mathbf{A}^{a} \cdot \mathbf{A}^{a} + \frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

the gauge $A_{0}^{a} = 0$, $A_{i}^{a}(t, x, y, z) = A_{i}^{a}(x)$

$$\mathcal{L}_{\text{YM}} = -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} = -\frac{1}{2}\mathbf{B}^{a}\mathbf{B}^{a}$$

$$= -\frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

$$\mathbf{B}^{a} = \nabla \times \mathbf{A}^{a} + \frac{g}{2}f_{abc}\mathbf{A}^{b} \times \mathbf{A}^{c}$$

P. Arnold & J. Lenaghan, Phys. Rev. D 70, 114007 (2004)

Abelanization – 1+1 numerical simulations

Classical system of colored particles & fields

Abelanization – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ²⁸

Abelanization – 1+3 numerical simulations

SU(2) Hard Loop Dynamics

P. Arnold, G.D. Moore & L.G. Yaffe, hep-ph/0505212

Beyond Hard Loop level

C. Manuel & St. M., hep-ph/0504156

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

$$T_{ij} = \int \frac{d^3 p}{\left(2\pi\right)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

Isotropy:

$$T_{xx} = (T_{yy} + T_{zz})/2$$

Conclusion

The scenario of instabilities driven equilibration is a plausible solution of the fast equilibration problem

Appendix – important contributions

St. Mrówczyński, *Color collective effects at the early stage of ultrarelativistic heavy ion collisions*, Phys. Rev. C **49**, 2191 (1994).

St. Mrówczyński, *Color filamentation in ultrarelativistic heavy-ion collisions*, Phys. Lett. B **393**, 26 (1997).

P. Romatschke and M. Strickland, *Collective modes of an anisotropic quark gluon plasma*, Phys. Rev. D **68**, 036004 (2003)

P. Arnold, J. Lenaghan and G.D. Moore, *QCD plasma instabilities and bottom-up thermalization*, JHEP **0308**, 002 (2003)

Unstable Mode Analysis

Heavy-Ion Phenomenology

J. Randrup and St. Mrówczyński, *Chromodynamic Weibel instabilities in relativistic nuclear collisions*, Phys. Rev. C **68**, 034909 (2003)

P. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, *Apparent thermalization due to plasma instabilities in quark gluon plasma*, Phys. Rev. Lett. **94**, 072302 (2005)

Appendix – important contributions cont.

St. Mrówczyński and M. Thoma, *Hard loop approach to anisotropic systems*, Phys. Rev. D **62**, 036011 (2000)

P. Arnold and J. Lenaghan, *The abelianization of QCD plasma instabilities*, Phys. Rev. D **70**, 114007 (2004)

St. Mrówczyński, A. Rebhan and M. Strickland, *Hard-loop effective action* for anisotropic plasmas, Phys. Rev. D **70**, 025004 (2004)

C. Manuel and St. Mrówczyński, *Strongly and weakly unstable anisotropic quark-gluon plasma*, arXiv:hep-ph/0504156, Phys. Rev. D in print

Effective Action

A. Rebhan, P. Romatschke and M. Strickland, *Hard-loop dynamics of non-Abelian* plasma instabilities, Phys. Rev. Lett. **94**, 102303 (2005)

A. Dumitru and Y. Nara, *QCD plasma instabilities and isotropization*, arXiv:hep-ph/0503121, Phys. Lett. B in print

P. Arnold, G.D. Moore and L.G. Yaffe, *The fate of non-Abelian plasma instabilities in 3+1 dimensions*, arXiv:hep-ph/0505212

A. Rebhan, P. Romatschke and M. Strickland, *Dynamics of quark-gluon plasma instabilities in discretized hard-loop approximation*, arXiv:hep-ph/0505261

Numerical Simulations