Quark-Gluon Plasma @ LHC

- strongly or weakly coupled

Stanisław Mrówczyński

Jan Kochanowski University, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland What we have learned @ RHIC

Au-Au collisions @ $\sqrt{s} = 100 + 100 \text{ GeV/NN}$

Equilibrium

Matter produced at RHIC appears to be in local thermal equilibrium

Late stage equilibrium

Au-Au @ 130 GeV within Cracow Thermal Model

	Model	Experiment
Fitted thermal parameters		
T [MeV]	165 ± 7	
μ_B [MeV]	41 ± 5	
$\mu_S [\text{MeV}]$	9	
$\mu_I [\text{MeV}]$	-1	
χ^2/n	0.97	
Ratios used for the fit		
π^-/π^+	1.02	1.00 ± 0.02 [47], 0.99 ± 0.02 [48]
\overline{p}/π^{-}	0.09	0.08 ± 0.01 [49]
K^-/K^+	0.92	$0.88 \pm 0.05 \; [50], 0.78 \pm 0.12 \; [51]$
		$0.91 \pm 0.09 [47], 0.92 \pm 0.06 [48]$
K^-/π^-	0.16	0.15 ± 0.02 [50]
K_0^*/h^-	0.046	0.060 ± 0.012 [50, 52]
		later: 0.042 ± 0.011 [41]
$\overline{K_0^*}/h^-$	0.041	0.058 ± 0.012 [50, 52]
		later: 0.039 ± 0.011 [41]
\overline{n}/n	0.65	$0.61 \pm 0.07 \ [49], 0.54 \pm 0.08 \ [51]$
F/F		0.60 ± 0.07 [47], 0.61 ± 0.06 [48]
Λ/Λ	0.69	0.73 ± 0.03 [50]
Ξ/Ξ	0.76	0.82 ± 0.08 [50]
Ratios predicted		
ϕ/h^-	0.019	0.021 ± 0.001 [53]
ϕ/K^-	0.15	$0.1-0.16\ [53]$
Λ/p	0.47	$0.49 \pm 0.03 [54, 55]$
Ω^{-}/h^{-}	0.0010	0.0012 ± 0.0005 [56]
Ξ^-/π^-	0.0072	0.0085 ± 0.0020 [57]
Ω^+/Ω^-	0.85	0.95 ± 0.15 [56]

W. Broniowski, A. Baran and W. Florkowski, Acta Phys. Polon. B33, 4235 (2002)

Scenario of relativistic heavy-ion collisions

Elliptic Flow & Early Stage Equilibrium

Elliptic Flow & Early Stage Equilibrium

Au-Au @ 130 GeV

K.H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86, 402 (2001)

Elliptic Flow & Early Stage Equilibrium

Au-Au @ 200 GeV

$$\frac{dN}{d\varphi} = \frac{1}{2\pi} \left[1 + \sum_{n=0}^{\infty} \mathbf{v}_n \cos(n(\varphi - \varphi_R)) \right]$$

S. Afanasiev et al. [PHENIX Collaboration], Phys. Rev. Lett. 99, 052301 (2007)

Equilibration Time

Hard Jets @ RHIC

J. Adams et al. [STAR Collaboration], Nucl. Phys. A757, 102 (2005)

Hard Jets @ RHIC

Inclusive π^0 production

J. Adams et al. [STAR Collaboration], Nucl. Phys. A757, 102 (2005)

Heavy-Flavours @ RHIC

A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98, 172301 (2007)

Experimental features

- Matter produced at RHIC is in local equilibrium
- Equilibration time is short $\sim 1 \text{fm}/c$
- Viscosity of the matter is low
- Matter produced at RHIC is opaque

What does it mean 'short', 'low', 'opaque'?

Weakly coupled quasi-equilibrium QGP

Equilibration time due to collisions:
$$t_{eq} \sim \frac{1}{T\alpha_s^2 \ln(1/\alpha_s)}$$
Shear viscosity: $\eta \sim \frac{T^3}{\alpha_s^2 \ln(1/\alpha_s)}$
Collisional energy loss: $\frac{dE}{dx} \sim \alpha_s^2 T^2 \ln(1/\alpha_s)$
Radiative energy loss of $\begin{cases} \text{light quark: } \frac{dE}{dx} \sim \alpha_s^2 ET \ln(1/\alpha_s) \\ \text{heavy quark: } \frac{dE}{dx} \sim \frac{\alpha_s^3 ET^3}{M^2} \ln(1/\alpha_s) \end{cases}$ (M >> T)

 α_s - coupling constant, T - temperature, E - quark energy, M - heavy quark mass

15

Provisional Conclusion

QGP is strongly coupled

or

QGP behaves as strongly coupled but $\alpha_s \le 0.3$

Mean fields vs. collisions

Plasma's collective behavior

Plasma oscillations

$$\mathbf{E}(t,\mathbf{r}) = \mathbf{E}_0 \cos(\omega(\mathbf{k}) t - \mathbf{k} \cdot \mathbf{r} + \varphi)$$

$$\omega(\mathbf{k}) \approx \omega_0 \sim gT$$

$$\mathbf{k} \rightarrow 0$$

plasma frequency

Landau damping

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Mechanism of filamentation

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. 94, 102303 (2005)

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Momentum broadening of a fast parton

A. Majumder, B. Müller & St. Mrówczyński, Phys.Rev. D80 (2009) 125020

Viscosity of turbulent QGP

M. Asakawa, S.A. Bass and B. Müller, Prog. Theor. Phys. 116, 725 (2007)

Possible conclusion

Weakly coupled magnetized turbulent QGP can behave as strongly coupled plasma

RHIC vs. LHC

Collision energy

$$\sqrt{s} = \begin{cases}
200 \text{ GeV/NN} - \text{RHIC} \\
5500 \text{ GeV/NN} - \text{LHC}
\end{cases} \frac{\sqrt{s}_{\text{LHC}}}{\sqrt{s}_{\text{RHIC}}} \approx 30$$
Initial energy density

$$\mathcal{E}_i \approx \begin{cases}
30 \text{ GeV/fm}^3 - \text{RHIC} \\
130 \text{ GeV/fm}^3 - \text{LHC}
\end{cases}$$
Initial temperature

$$T_i \approx \begin{cases}
350 \text{ MeV} - \text{RHIC} \\
500 \text{ MeV} - \text{LHC}
\end{cases}$$

RHIC vs. LHC cont.

Lattice thermodynamics of Quark-Gluon Plasma

F. Karsch, arXiv:0711.0656 [hep-lat].

No conclusion

