N=4 super Yang-Mills Plasma

Stanisław Mrówczyński

Institute of Physics, Jan Kochanowski University, Kielce, Poland and National Centre for Nuclear Research, Warsaw, Poland

in collaboration with Alina Czajka

Outline

- 1. Motivation
- 2. *N*=4 super Yang-Mills
- 3. Basic plasma characteristics
- 4. Collective modes
 - 1. Dispersion equations
 - 2. Perturbative computation of self-energies
 - 3. Effective action
- 5. Collisional characteristics
 - 1. Elementary processes
 - 2. Transport coefficients
 - 3. Energy loss & \hat{q}
- 6. Conclusions

Motivation

Supersymmetry

If symmetry of Nature

supersymmetric plasma is a physical object

AdS/CFT duality

weakly coupled gravity in AdS

strongly couled \mathcal{N} = 4 super Yang-Mills

QCD vs. super Yang-Mills?

Motivation cont.

Does rudimentary SUSY induce instabilities in fermionic sector?

QED PLASMA There are unstable photon modes

SUSY QED PLASMA

Are there unstable photino modes?

Bigger project

A systematic comparison of supersymmetric plasma systems to their non-supersymmetric counterparts in a weak coupling domain

A. Czajka & St. Mrówczyński, arXiv: 1203.1856 [hep-th] *N*=4 super Yang-Mills

A. Czajka & St. Mrówczyński, Physical Review **D83** (2011) 065021 J SUSY A. Czajka & St. Mrówczyński, Physical Review **D84** (2011) 105020 J QED

Lagrangian of *N*=4 super Yang-Mills

$$\mathcal{L} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \frac{i}{2} \overline{\Psi}_i^a (\mathcal{D}\Psi_i)^a + \frac{1}{2} (D_\mu \Phi_A)_a (D^\mu \Phi_A)_a$$
$$-\frac{1}{4} g^2 f^{abe} f^{cde} \Phi_A^a \Phi_B^b \Phi_A^c \Phi_B^d$$
$$-i \frac{g}{2} f^{abc} (\overline{\Psi}_i^a \alpha_{ij}^p X_p^b \Psi_j^c + i \overline{\Psi}_i^a \beta_{ij}^p \gamma_5 Y_p^b \Psi_j^c)$$

Type of the field	Range of the field's index	Spin	Number of degrees of freedom
A^{μ} - vector	$\mu, \nu = 0, 1, 2, 3$	1	$2 \times (N_c^2 - 1)$
$\Phi_{\scriptscriptstyle A}$ - real (pseudo-)scalar	$A, B = 1, 2, \dots 6$	0	$6 \times (N_c^2 - 1)$
$\lambda_i^{}$ - Majorana spinor	<i>i</i> , <i>j</i> = 1, 2, 3, 4	$\frac{1}{2}$	$8 \times (N_c^2 - 1)$

Basic plasma characteristics

	QGP	N=4 SYMP
energy density - ε	$\frac{\pi^2 T^4}{60} \Big[4(N_c^2 - 1) + 7N_f N_c \Big]$	$\frac{\pi^2 T^4}{2} (N_c^2 - 1)$
particle density - n	$\frac{2\zeta(3)T^{3}}{\pi^{2}} \Big[2(N_{c}^{2}-1) + 3N_{f}N_{c} \Big]$	$\frac{14\zeta(3)T^3}{\pi^2}(N_c^2-1)$
Debye mass - $m_{\rm D}^{\ 2}$	$\frac{g^2T^2}{6} \left(2N_c + N_f \right)$	$2g^2T^2N_c$
plasma parameter - λ $\left(\lambda = \frac{1}{\frac{4}{3}\pi r_D^3 n}\right)$	$0.042g^{3}$	$0.257g^{3}$

All chemical potentials are assumed to vanish in both QGP and $\mathcal{N}=4$ SYMP

Collective modes

Gluon dispersion equation

Equation of motion of gluon field $A^{\mu}(k)$

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

$$k^{\mu} \equiv (\omega, \mathbf{k})$$
Dispersion equation
$$\det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

Collective modes - solutions: $\omega(\mathbf{k})$

 $\Pi^{\mu\nu}$ – retarded polarization tensor encodes gluon interaction with surrounding plasma

Fermion & scalar dispersion equations

Fermion field

$$\det[k_{\mu}\gamma^{\mu} - \Sigma(k)] = 0$$

Scalar field

$$k^2 + P(k) = 0$$

Keldysh–Schwinger formalism

Description of non-equilibrium many-body systems

Contour Green function of scalar field

$$iG(x,y) \stackrel{\text{def}}{=} \left\langle \widetilde{T}\phi(x)\phi(y) \right\rangle$$

$$\langle ... \rangle = \mathrm{Tr}[\hat{\rho}(t)...]$$

 \widetilde{T} - ordering along the contour

$$\widetilde{T}A(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$$

$$\xrightarrow{\mathbf{C}_1} \quad \mathbf{t} \Rightarrow$$

$$-\infty \leftarrow t_0 \qquad \mathbf{C}_2 \qquad t_{\max} \rightarrow +\infty$$

Keldysh–Schwinger Green functions

Unordered functions – phase-space densities

Ordered functions – propagators

Polarization tensor

Dyson-Schwinger equation

$$D = D_0 - D_0 \Pi D$$

D(x, y) = D(x - y) homogeneity, translational invariance

Lowest order contributions to $\boldsymbol{\Pi}$

Contour-ordered Green functions have perturbative expansion similar to that of time-ordered Green functions

Fermion-loop contribution to Π

<u>Contour</u> polarization tensor

$$\Pi_{ab}^{\mu\nu}(x,y) = -ig^2 N_c \delta_{ab} \operatorname{Tr}[\gamma^{\mu} S(x,y) \gamma^{\nu} S(y,x)]$$

From contour to retarded Π

$$\Pi^{+}(x, y) = \Theta(x_{0} - y_{0}) \Big(\Pi^{>}(x, y) - \Pi^{<}(x, y) \Big)$$

<u>Contour</u> polarization tensor

$$\left(\Pi(x,y)\right)_{ab}^{\mu\nu} = -ig^2 N_c \delta_{ab} \operatorname{Tr}[\gamma^{\mu} S(x,y) \gamma^{\nu} S(y,x)]$$

<u>Unordered</u> polarization tensor

$$\left(\Pi^{>}(x,y)\right)_{ab}^{\mu\nu} = -ig^{2}N_{c}\delta_{ab}\operatorname{Tr}[\gamma^{\mu}S^{>}(x,y)\gamma^{\nu}S^{<}(y,x)]$$

Fermion-loop contribution to Π⁺

$$\left(\Pi^{+}(k)\right)_{ab}^{\mu\nu} = -\frac{ig^{2}}{2}N_{c}\delta_{ab}\int\frac{d^{4}p}{(2\pi)^{4}}\times \operatorname{Tr}[\gamma^{\mu}S^{+}(p+k)\gamma^{\nu}S^{\mathrm{sym}}(p) + \gamma^{\mu}S^{\mathrm{sym}}(p)\gamma^{\nu}S^{-}(p-k)]$$

Free Green functions

$$S^{\pm}(p) = \frac{p^{\mu} \gamma_{\mu}}{p^{2} \pm i p_{0} 0^{+}} \qquad S^{\text{sym}}(p) = S^{>}(p) + S^{<}(p)$$
$$S^{>}(p) = \frac{i\pi}{E_{p}} p^{\mu} \gamma_{\mu} \Big[\delta(E_{p} - p_{0}) [n_{f}(\mathbf{p}) - 1] + \delta(E_{p} + p_{0}) n_{f}(-\mathbf{p}) \Big]$$
$$S^{<}(p) = \frac{i\pi}{E_{p}} p^{\mu} \gamma_{\mu} \Big[\delta(E_{p} - p_{0}) n_{f}(\mathbf{p}) + \delta(E_{p} + p_{0}) [n_{f}(-\mathbf{p}) - 1] \Big]$$

17

Contributions to Π in $\mathcal{N}=4$ SYMP

$$(\Pi^+(k))_{ab}^{\mu\nu} = g^2 N_c \delta_{ab} \int \frac{d^4 p}{(2\pi)^4} \dots$$

18

Hard Loop Approximation

Wavelength of a quasi-particle is much bigger than inter-particle distance in the plasma

Hard Loop Approximation cont.

The only dimensional parameter in free ultrarelativistic equilibrium plasma is temperature *T*.

particle density
$$\rho \sim \frac{1}{d^3} \sim T^3 \sim |\mathbf{p}|^3$$

 $\frac{1}{d} \sim |\mathbf{p}|$ momentum of plasma constituent
 $\frac{1}{\lambda} \sim |\mathbf{k}|$ wave vector of collective mode

HL polarization tensor

 $k^{\mu} << p^{\mu}$

$$\Pi_{ab}^{\mu\nu}(k) = g^2 N_c \delta_{ab} \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^+)^2}$$

$$f(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})$$

the same structure as in QED and QCD

Gauge independence!

Effects of SUSY

- vacuum contribution vanishes $(\Pi(k) = 0 \text{ for } f(\mathbf{p}) = 0)$
- the coefficients in front of the distribution functions are the numbers of dof

$$f_{QGP}(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + \frac{N_f}{N_c} \left(n_q(\mathbf{p}) + n_{\overline{q}}(\mathbf{p}) \right)$$

$$f(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})$$

The fermion self-energy has **the same structure** for the *N*=4 SYM, SUSY QED and usual QED plasma

Scalar self-energy

$$f(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})$$

Scalar self-energy:

- independent of *k*
- vanishes in the vacuum limit

Hard loop effective action

Self-energy constrains the form of effective action

$$\mathcal{L}_{2}^{(\Psi)}(x) = \int d^{4}y \,\overline{\Psi}(x)\Sigma(x-y)\Psi(y)$$
$$\Sigma(x,y) = \frac{\delta^{2}S[\Psi,\overline{\Psi}]}{\delta\overline{\Psi}(x)\delta\Psi(y)}$$

$$\begin{aligned} \mathcal{L}_{\text{HL}} &= -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \frac{i}{2} \overline{\Psi}_i^a (\mathcal{D}\Psi_i)^a + \frac{1}{2} (D_\mu \Phi_A)_a (D^\mu \Phi_A)_a \\ &+ \mathcal{L}_{HL}^{(A)} + \mathcal{L}_{HL}^{(\Psi)} + \mathcal{L}_{HL}^{(\Phi)} \end{aligned}$$

From effective action to self-energies

$$\mathcal{L}_{\rm HL}^{(A)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} F_{\mu\nu}^a(x) \left(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2}\right)_{ab} F_{\rho}^{b\mu}(x)$$
$$\mathcal{L}_{\rm HL}^{(\Psi)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \overline{\Psi}_i^a(x) \left(\frac{p \cdot \gamma}{p \cdot D}\right)_{ab} \Psi_i^b(x)$$
$$\mathcal{L}_{\rm HL}^{(\Phi)}(x) = -2g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \Phi_A^a(x) \Phi_A^a(x)$$

The structure of each term of the effective action appears to be unique

Structure of each self-energy is unique

Gauge bosons collective modes

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

solutions: $\omega(\mathbf{k})$ $k^{\mu} \equiv (\omega, \mathbf{k})$

The structure of $\Pi^{\mu\nu}(k)$

- coincides with the gluon polarization tensor of QCD plasma
- such as of QED and SUSY QED plasma

The spectrum of collective excitations of gauge bosons in *N*=4 super Yang-Mills, QCD, QED and SUSY QED plasma is the same

There is a whole variety of possible collective excitations, there are unstable modes

Fermion collective modes

The structure of fermion self-energy is

- such as of quark self-energy in QCD plasma
- such as of QED and SUSY QED plasma

There are identical spectra of collective excitations of fermions in all systems

No unstable modes found!

Supersymmetry does not change anything

Scalar collective modes

The self-energy is independent of momentum, negative and real

$$P(k) = -m_{\rm eff}^2$$

 $m_{
m eff}$ is the effective scalar mass

The solutions of dispersion equation

$$E_p = \pm \sqrt{m_{\rm eff}^2 + \mathbf{p}^2}$$

Collisional characteristics

Elementary processes

S. C. Huot, S. Jeon, and G. D. Moore, Phys. Rev. Lett. **98**, 172303 (2007)

Transport coefficients

Collisional processes

transport properties of ultrarelativistic plasma

- ✓ Temperature *T* is the only dimensional parameter
- ✓ Coulomb-like scatterings dominate the interaction

shear viscosity
$$\eta \sim \frac{T^3}{g^4 \ln g^{-1}}$$

S. C. Huot, S. Jeon, and G. D. Moore, Phys. Rev. Lett. 98, 172303 (2007)

Energy loss & momentum broadening

are not constrained by dimensional arguments

$$\frac{dE}{dx} \sim T^2, ET, E^2, \dots$$

E – energy of test particle

$$\hat{q} \sim T^3, ET^2, E^2T, E^3, \dots$$

depend on a specific scattering process under consideration

Momentum broadening

Radiative energy loss of a fast parton is controlled by

$$\hat{q} \equiv \frac{d\left\langle \Delta p_T^2(t) \right\rangle}{dt}$$

Baier, Dokshitzer, Mueller, Peigne & Schiff 1996

Elementary processes in SUSY QED

Energy loss and momentum broadening in SUSY QED

A selectron is traversing an equilibrium photon gas.

$$\left|\mathcal{M}\right|^2 = 4e^4$$

$$\frac{dE}{dx} = -\frac{e^4}{2^5 3\pi} T^2 \left[1 - \frac{12\zeta(3)}{\pi^2} \frac{T}{E} \right] \underset{E>>T}{\approx} -\frac{e^4}{2^5 3\pi} T^2$$

$$\hat{q} = \frac{e^4}{12\pi^3} T^3 \left[\zeta(3) + \frac{\pi^4}{45} \frac{T}{E} \right] \approx \frac{e^4 \zeta(3)}{12\pi^3} T^3$$

Comparison with Coulomb-like interaction

Energy loss for contact interaction

Energy loss for Coulomb-like interaction

$$\frac{dE}{dx} = -\frac{e^4}{48\pi^3} T^2 \left(\ln \frac{E}{eT} + 2.031 \right)$$

E. Braaten and M. H. Thoma, Phys. Rev. D 44, 1298 (1991)

Energy loss						
		Contact $\left \mathcal{M}\right ^2 \sim e^4$	Coulomb $\left \mathcal{M}\right ^2 \sim e^4 \frac{s^2}{t^2}$			
energy change in single collision	ΔE	$\sim E$	$\sim e^2 T$			
cross section	σ	$\sim \frac{e^4}{ET}$	$\sim \frac{e^2}{T^2}$			
density	ρ	$\sim T^3$	$\sim T^3$			
inverse mean path	$\lambda^{-1} = \sigma \rho$	$\sim rac{e^4T^2}{E}$	$\sim e^2 T$			
energy loss	$\frac{dE}{dx} \sim \frac{\Delta E}{\lambda}$	$\sim e^4 T^2$	$\sim e^4 T^2$			

Different interactions lead to the same energy loss!

Conclusions

- The collective modes of *N*=4 super Yang-Mills plasma are the same as those of QGP
 - The structures of self-energies appear to be unique
 - There are no unstable fermion modes
- The transport characteristics of SUSY plasma are similar to those of QGP

Both systems are very similar to each other in the weak coupling regime!