

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

- elliptic flow & fast equilibration
- instabilities driven isotropization
- equilibration vs. isotropization
- azimuthal fluctuations & preequilibrium

Evidence of equilibration at the early stage

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$v_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

time of equilibration

U. Heinz and P. Kolb, Nucl. Phys. A702, 269 (2002)

Collisions are too slow

$$t_{\rm eq} \approx t_{\rm hard} \geq 2.6 \, {\rm fm/}c$$

R. Baier, A.H. Mueller, D. Schiff and D.T. Son, Phys. Lett. **B539**, 46 (2002)

Scenarios of fast equilibration

Production mechanism of particles obeys equilibrium
 momentum distributions – instantaneous equilibration

Schwinger mechanism:

sQGP

$$\frac{d^2 n}{dp_T^2} \sim e^{-\frac{2\pi m_T^2}{eE}}$$

A. Białas, Phys.Lett. **B466**, 301 (1999)
W. Florkowski, Acta Phys. Pol. **B35**, 799 (2004)
D. Kharzeev & K. Tuchin, hep-ph/0501234

Equilibration is fast because quark-qluon plasma is strongly coupled

E.V. Shuryak, J. Phys.G30, S1221 (2004)E.V. Shuryak & I. Zahed, Phys. Rev. C70, 021901 (2004)

Instabilities drive equilibration - as in the EM plasma

Instabilities driven equilibration

The most important contributions

St. Mrówczyński,

Color Collective Effects At The Early Stage Of Ultrarelativistic Heavy Ion Collisions, Phys. Rev. C **49**, 2191 (1994).

St. Mrówczyński, *Color filamentation in ultrarelativistic heavy-ion collisions*, Phys. Lett. B **393**, 26 (1997).

P. Romatschke and M. Strickland,*Collective modes of an anisotropic quark gluon plasma*,Phys. Rev. D 68, 036004 (2003)

P. Arnold, J. Lenaghan and G.D. Moore, *QCD plasma instabilities and bottom-up thermalization*, JHEP **0308**, 002 (2003)

> Numerical Simulations

Unstable Mode Analysis

A. Rebhan, P. Romatschke and M. Strickland, *Hard-loop dynamics of non-Abelian plasma instabilities*, Phys. Rev. Lett. **94**, 102303 (2005)

A. Dumitru and Y. Nara, *QCD plasma instabilities and isotropization*, arXiv:hep-ph/0503121.

Instabilities driven equilibration

The most important contributions cont.

St. Mrówczyński and M. Thoma, Hard Loop Approach to Anisotropic Systems, Phys. Rev. D 62 , 036011 (2000)	
P. Arnold and J. Lenaghan, <i>The abelianization of QCD plasma instabilities</i> , Phys. Rev. D 70 , 114007 (2004)	Effective Action
St. Mrówczyński, A. Rebhan and M. Strickland, <i>Hard-loop effective action for anisotropic plasmas</i> , Phys. Rev. D 70 , 025004 (2004)	

Heavy-Ion

Phenomenology

J. Randrup and St. Mrówczyński, *Chromodynamic Weibel instabilities in relativistic nuclear collisions*, Phys. Rev. C **68**, 034909 (2003)

P. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, *Apparent thermalization due to plasma instabilities in quark gluon plasma*, Phys. Rev. Lett. **94**, 072302 (2005)

Plasma instabilities

instabilities in configuration space – hydrodynamic instabilities

instabilities in momentum space – kinetic instabilities

Instabilities due to non-equilibrium momentum distribution

b longitudinal modes –
$$\mathbf{k} \parallel \mathbf{E}$$
, $\delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$

• transverse modes –
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

Current fluctuations

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t)$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

11

Mechanism of filamentation

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Instabilities – solutions with Im $\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}$

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory – transport equations

fundamental
$$\begin{cases} \left(p_{\mu}D^{\mu} - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)Q(p,x) = C\\ \left(p_{\mu}D^{\mu} + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)\overline{Q}(p,x) = \overline{C}\\ \left(p_{\mu}\mathcal{D}^{\mu} - gp^{\mu}\mathcal{F}_{\mu\nu}(x)\partial_{p}^{\nu}\right)G(p,x) = C_{g} \end{cases}$$
free streaming mean-field force collisions
$$D^{\mu} \equiv \partial^{\mu} - ig[A^{\mu},...], \quad F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu},A^{\nu}]$$

$$D_{\mu}F^{\mu\nu} = j^{\nu}[Q,\overline{Q},G] \quad \text{mean-field generation}$$

$$(\text{collisionless limit: } C = \overline{C} = C_{g} = 0 \qquad 14$$

 $V_0(p) \sim V_0(p,x), V_p Q_0(p) \sim V_p Q_0(p)$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$

$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$

$$p_{\mu}\mathcal{D}^{\mu}\delta G(p,x) - gp^{\mu}\mathcal{F}_{\mu\nu}(x)\partial_{p}^{\nu}G_{0}(p) = 0$$

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x-x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu} [\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) \equiv n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu} \Pi^{\mu\nu}(k) = 0$$
16

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & p \\ & & & & & \\ p+k & & & & p+k \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

17

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k) \quad \text{chromodielectric tensor} \\ k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2 \delta^{ij} - k^i k^j - \omega^2 \varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} \,/\, E \qquad ^{18}$

Dispersion equation – configuration of interest

Existence of unstable modes – Penrose criterion

$$H(\omega) = k^{2} - \omega^{2} \varepsilon^{zz} (\omega, k)$$

$$\oint \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{+}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigcup = -\infty$$

$$\bigcup = 100$$

$$\bigcup = 100$$

$$\bigcup = 100$$

$$\square = 100$$

$$\square$$

Unstable solution

$$f(\mathbf{p}) = \frac{2^{1/2}}{\pi^{3/2}} \frac{\rho \sigma_{\perp}^4}{\sigma_{\parallel}} \frac{1}{(p_{\perp}^2 + \sigma_{\perp}^2)^3} e^{-\frac{p_{\parallel}^2}{2\sigma_{\parallel}^2}} \qquad \qquad \rho = 6 \text{ fm}^{-3}$$

$$\alpha_s = g^2 / 4\pi = 0.3$$

$$\sigma_{\perp} = 0.3 \text{ GeV}$$

Growth of instabilities – numerical simulation

A. Dumitru and Y. Nara, arXiv:hep-ph/0503121

Abelanization

$$V_{\text{eff}}[\mathbf{A}^{a}] = -\mu^{2}\mathbf{A}^{a} \cdot \mathbf{A}^{a} + \frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

the gauge $A_{0}^{a} = 0$, $A_{i}^{a}(t, x, y, z) = A_{i}^{a}(x)$

$$\mathcal{L}_{\text{YM}} = -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} = -\frac{1}{2}\mathbf{B}^{a}\mathbf{B}^{a}$$

$$= -\frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

$$\mathbf{B}^{a} = \nabla \times \mathbf{A}^{a} + \frac{g}{2}f_{abc}\mathbf{A}^{b} \times \mathbf{A}^{c}$$

P. Arnold and J. Lenaghan, Phys. Rev. D 70, 114007 (2004)

Abelanization – numerical simulation

Classical system of colored particles & fields

A. Dumitru and Y. Nara, arXiv:hep-ph/0503121

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

$$T_{ij} = \int \frac{d^3 p}{(2\pi)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

Isotropy:

$$T_{xx} = (T_{yy} + T_{zz})/2$$

$$I_{xx} = (T_{yy} + T_{zz})/2$$

A. Dumitru and Y. Nara, arXiv:hep-ph/0503121

Isotropization vs. equilibration

Three comments:

Isotropization is a mean-field phenomenon which is not associated with the entropy production.

Collisions are needed for equilibration.

After the stage of instabilities, the system is in prequilibrium.

P. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Phys. Rev. Lett. **94**, 072302 (2005) 29

Equilibrium vs. preequilibrium

Q: How to distinguish equilibrium form preequilibrium collective flow?

A: Look for flow fluctuations.

Elliptic flow

$$P(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n} v_n \cos(n(\varphi - \psi_R)) \right]$$

$$v_2 = \langle \cos(2(\varphi - \psi_R)) \rangle$$

Elliptic flow fluctuations

$$\langle v_2 \rangle = \frac{\left\langle \overline{\cos(2(\varphi - \psi_E))} \right\rangle}{\left\langle R \right\rangle}$$

$$R \equiv \cos(\psi_R - \psi_E)$$

$$\operatorname{Var}(v_2) \equiv \left\langle v_2^2 \right\rangle - \left\langle v_2 \right\rangle^2$$

$$\langle \cdots \rangle$$
 averaging over events

$$\operatorname{Var}(v_2) = \frac{1}{\langle R \rangle^2} \left(\left\langle \overline{\cos(2(\varphi - \psi_E))}^2 \right\rangle - \left\langle \overline{\cos(2(\varphi - \psi_E))} \right\rangle^2 \right)$$

St. M. and E.V. Shuryak, Acta Phys. Pol. **B34**, 4241 (2003)

Statistical noise

Statistical noise

$$\delta v_2 \equiv \sqrt{\operatorname{Var}(v_2)}$$

$$\langle R \rangle \sim 1 \quad \& \quad \langle N \rangle \sim 10^3 \quad \Rightarrow \quad \left(\delta v_2 \sim 10^{-2} \right)$$

Fluctuations due to b - variation

$$\delta v_2 = \frac{d\langle v_2 \rangle}{db} \,\delta b$$

$$b \to N_p$$
 $N_p = 2Z \left(1 - \frac{b}{b_{\text{max}}} \right)$

$$\delta v_2 \approx 8 \times 10^{-4} \delta N_p$$

$$\delta N_p \sim 10 \implies \delta v_2 \sim 10^{-2}$$

Elliptic flow fluctuations

Dynamical elliptic flow fluctuations seem to be measurable

Integrated azimuthal fluctuations & Φ-measure

single particle's variable
$$z = \phi - \overline{\phi}$$
 inclusive averaging

• event's variable
$$Z = \sum_{i=1}^{N} (\varphi_i - \overline{\varphi})$$
 $\langle \cdots \rangle$ averaging over events
 $\langle Z \rangle = 0$

$$\Phi = \sqrt{\frac{\left\langle Z^2 \right\rangle}{\left\langle N \right\rangle}} - \sqrt{z^2}$$

M. Gaździcki and St. M., Z. Phys. C54, 127 (1992)

Φ -measure of flow fluctuations

$$P_{\rm ev}(\phi) = \frac{1}{2\pi} \Big[1 + 2\sum_{n} v_n \cos(n(\phi - \psi_n)) \Big]$$

$$\Phi \approx \frac{3}{2\pi^2} \langle N \rangle \begin{cases} \left\langle \sum_n \left(\frac{v_n}{n} \right)^2 \right\rangle & \text{for } \langle \psi_n \psi_m \rangle = \langle \psi_n \rangle \langle \psi_m \rangle \\ n \neq m \end{cases} \\ \left\langle \left(\sum_n \frac{v_n}{n} \right)^2 \right\rangle & \text{for } n \psi_n + \alpha_n = \psi_R \end{cases}$$

no flow fluctuations!

$$\langle N \rangle = 10^3$$
, $v_1 = v_2 = 0.03$, $v_n = 0, n \ge 3$

St. M., Acta Phys. Pol. **B31**, 2065 (2000)

Non-flow azimuthal fluctuations

Bose-Einstein correlations

St. M., Acta Phys. Pol. **B31**, 2065 (2000)

Conclusions

Azimuthal fluctuations can tell us whether the elliptic flow is generated in the fully equilibrated sQGP or in the prequilibrium pQGP driven by instabilities