Instabilities Driven Equilibration of the Quark-Gluon Plasma

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

1

Relativistic heavy-ion collision – *Little Bang*

Relativistic heavy-ion collisions

Au–Au collisions @ $\sqrt{s} = 100 + 100 \text{ GeV/NN}$

Evidence of the early stage equilibration

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$\mathbf{v}_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

$$\varepsilon \searrow \Rightarrow v_2 \checkmark \longrightarrow t_{eq} \le 1 \text{ fm/}c$$

time of equilibration

U. Heinz, AIP Conf. Proc.739, 163 (2004)

Collisions are too slow

R. Baier, A.H. Mueller, D. Schiff & D.T. Son, Phys. Lett. B539, 46 (2002)

Kinetic instabilities

longitudinal modes –
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

• transverse modes –
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Logitudinal modes

Energy is transferred from particles to fields

Logitudinal modes

Transverse modes

Unstable modes occur due to anisotropy of the momentum distribution

Momentum distribution distribution can monotonously decrease in every direction

Transverse modes are relevant for relativistic nuclear collisions!

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{8} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Instabilities – solutions with Im\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory – distribution functions

Distribution functions of quarks Q(p,x) and antiquarks $\overline{Q}(p,x)$ are gauge dependent $N_c \times N_c$ matrices

The gauge transformation:

$$Q(p,x) \to U(x)Q(p,x)U^{-1}(x)$$

Distribution function of gluons G(p, x) is $(N_c^2 - 1) \times (N_c^2 - 1)$ matrix

Transport theory – transport equations

fundamental
$$\begin{cases} p_{\mu}D^{\mu}Q - \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}Q\} = C \\ p_{\mu}D^{\mu}\overline{Q} + \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}\overline{Q}\} = \overline{C} \\ p_{\mu}D^{\mu}G - \frac{g}{2} p^{\mu} \{F_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} \\ gluons \end{cases}$$
free streaming mean-field force collisions
$$D^{\mu} = \partial^{\mu} - ig[A^{\mu}, ...], \quad F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}]$$

$$D_{\mu}F^{\mu\nu} = j^{\nu}[Q, \overline{Q}, \overline{G}] \qquad \text{mean-field generation}$$

$$(collisionless limit: C = \overline{C} = C_{g} = 0$$

Transport theory - linearizationfluctuation
$$Q(p,x) = Q_0(p) + \delta Q(p,x)$$
stationary colorless state $Q_0^{ij}(p) = \delta^{ij} n(p)$

$$|Q_0(p)| \gg |\delta Q(p,x)|, \quad |\partial_p^{\mu} Q_0(p)| \gg |\partial_p^{\mu} \delta Q(p,x)|$$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$
$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$
$$p_{\mu}\mathcal{D}^{\mu}\delta G(p,x) - gp^{\mu}\mathcal{F}_{\mu\nu}(x)\partial_{p}^{\nu}QG_{0}(p) = 0$$

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x-x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu}[\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) = n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\mu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu} \Pi^{\mu\nu}(k) = 0$$
21

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & p \\ & & & & & \\ p + k & & & & \\ p + k & & & & \\ \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\mu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

Chromo-hydrodynamic approach for short time scales

Collisionless transport equation of quark distribution function Q(p, x)

$$p_{\mu}D^{\mu}Q(p,x) - \frac{g}{2}p^{\mu}\{F_{\mu\nu}, \partial^{\nu}_{p}Q(p,x)\} = 0$$

Taking into account antiquarks
and gluons is straightforward
$$dP = \frac{d^{4}p}{(2\pi)^{3}}2\Theta(p_{0})\,\delta(p^{2})$$

Covariant continuity

$$D_{\mu}n^{\mu}(x) = 0$$

$$n^{\mu}(x) \equiv \int dP \, p^{\mu} Q(p, x)$$

C. Manuel & St. M., Phys. Rev. D74, 105003 (2006)

Chromo-hydrodynamic approach cont.

$$p_{\mu}D^{\mu}Q(p,x) - \frac{g}{2}p^{\mu} \{F_{\mu\nu}, \partial_{p}^{\nu}Q(p,x)\} = 0$$

$$\int dP p^{\mu}$$

$$p^{2} = 0$$

$$D_{\mu}T^{\mu\nu}(x) - \frac{g}{2}\{F_{\mu\nu}, n^{\mu}(x)\} = 0$$

$$T^{\mu\nu}(x) = \int dP p^{\mu}p^{\nu}Q(p,x)$$

$$T^{\mu}(x) = 0$$

Chromo-hydrodynamic equations

$$D_{\mu}n^{\mu}(x) = 0$$

$$D_{\mu}T^{\mu\nu}(x) - \frac{g}{2} \{F^{\mu\nu}, n_{\mu}(x)\} = 0$$

$$D_{\mu}T^{\mu\nu}(x) = 0$$
isotropy in the local rest frame

Postulated form of $n^{\mu}(x)$ and $T^{\mu\nu}(x)$:

Isotropy in the local rest frame

$$n^{\mu}(x) = n(x)u^{\mu}(x)$$
$$T^{\mu\nu}(x) = \frac{1}{2} (\varepsilon(x) + p(x)) \{ u^{\mu}(x), u^{\mu}(x) \} - p(x) g^{\mu\nu}$$

 $n(x), \epsilon(x), p(x), u^{\mu}(x)$ matrices! $u^{\mu}(x)u_{\mu}(x) = 1$

To close the system of equations:

$$\nabla p = 0 \text{ or } \epsilon = 3 p \Leftarrow T_{\mu}^{\mu} = 0$$

Linear response approximation

Small perturbation of the space-time homogeneous & colorless state

$$n(x) = \tilde{n} + \delta n(x), \quad \varepsilon(x) = \tilde{\varepsilon} + \delta \varepsilon(x),$$

$$p(x) = \tilde{p} + \delta p(x), \quad u^{\mu}(x) = \tilde{u}^{\mu} + \delta u^{\mu}(x)$$

$$\tilde{n}, \tilde{\varepsilon}, \tilde{p}, \tilde{u}^{\mu} \text{ unit matrices in color space}$$

$$\tilde{n} >> \delta n, \quad \tilde{\varepsilon} >> \delta \varepsilon, \quad \tilde{p} >> \delta p, \quad \tilde{u}^{\mu} >> \delta u^{\mu}$$

$$F^{\mu\nu} \sim A^{\mu} \sim \delta n$$

Color current & polarization tensor

$$j^{\mu}(x) = -\frac{g}{2} \left(n(x) u^{\mu}(x) - \frac{1}{N_c} \operatorname{Tr}[n(x) u^{\mu}(x)] \right)$$
$$j^{\mu}(x) = \tilde{j}^{\mu} + \delta j^{\mu}(x), \qquad \tilde{j}^{\mu} = 0$$
$$\delta j^{\mu}(x) = -\frac{g}{2} \left(\tilde{n} \, \delta u^{\mu}(x) + \tilde{u}^{\mu} \delta n(x) \right)$$
$$\operatorname{Tr}[F^{\mu\nu}] = 0$$
polarization tensor
$$\Pi^{\mu\nu}(x, y) = -\frac{\delta j^{\mu}(x)}{\delta A_{\nu}(y)}$$

Polarization tensor

$$\Pi^{\mu\nu}(k) = -\frac{g^2}{2} \frac{\widetilde{n}^2}{\widetilde{\varepsilon} + \widetilde{p}} \frac{(\widetilde{u} \cdot k)(\widetilde{u}^{\,\mu}k^{\nu} + \widetilde{u}^{\nu}k^{\,\mu}) - k^2 \widetilde{u}^{\,\mu}\widetilde{u}^{\nu} - (\widetilde{u} \cdot k)^2 g^{\mu\nu}}{(\widetilde{u} \cdot k)^2}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k)$$

chromodielectric tensor

$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2\delta^{ij} - k^ik^j - \omega^2\varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} / E \qquad 30$

Dispersion equation – configuration of interest

Dispersion equation

$$k^2 - \omega^2 \varepsilon^{zz}(\omega, k) = 0$$

Existence of unstable modes – Penrose criterion

$$H(\omega) \equiv k^{2} - \omega^{2} \varepsilon^{zz}(\omega, k)$$

$$\oint_{C} \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint_{C} \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{-}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigoplus_{\omega = \infty} \bigoplus_{\omega = 0} \bigoplus_{\alpha = 0} \bigoplus_{$$

Unstable solutions

J. Randrup & St. M., Phys. Rev. C 68, 034909 (2003)

Hard-Loop dynamics

Soft fields in the passive background of hard particles

Braaten-Pisarski action generalized to anisotropic momentum distribution:

$$\begin{split} L_{\rm eff} &= \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \Big[f(\mathbf{p}) F^a_{\mu\nu}(x) \Big(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \Big)_{ab} F^{b\mu}_{\rho}(x) \\ &+ i \frac{C_F}{3} \widetilde{f}(\mathbf{p}) \Psi(x) \frac{p \cdot \gamma}{p \cdot D} \Psi(x) \Big] \\ k_{\mu} \Pi^{\mu\nu}(k) &= 0, \qquad k_{\mu} \Lambda^{\mu}(p,q,k) = \Sigma(p) + \Sigma(q) \end{split}$$

St. M., A. Rebhan & M. Strickland, Phys. Rev. D 74, 025004 (2004)

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ³⁵

Growth of instabilities – 1+1 numerical simulations

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Growth of instabilities – 1+3 numerical simulations

P. Arnold, G.D. Moore & L.G. Yaffe, Phys. Rev. **D72**, 054003 (2005)

A. Rebhan, P. Romatschke & M.Strickland, JHEP **0509**, 041 (2005) 37

Abelanization

$$V_{\text{eff}}[\mathbf{A}^{a}] = -\mu^{2}\mathbf{A}^{a} \cdot \mathbf{A}^{a} + \frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$
the gauge $A_{0}^{a} = 0$, $A_{i}^{a}(t, x, y, z) = A_{i}^{a}(x)$

$$\mathcal{L}_{\text{YM}} = -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} = -\frac{1}{2}\mathbf{B}^{a}\mathbf{B}^{a}$$

$$= -\frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

$$\mathbf{B}^{a} = \nabla \times \mathbf{A}^{a} + \frac{g}{2}f_{abc}\mathbf{A}^{b} \times \mathbf{A}^{c}$$

P. Arnold & J. Lenaghan, Phys. Rev. D 70, 114007 (2004)

Abelanization – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ³⁹

Abelanization – 1+1 numerical simulations

Classical system of colored particles & fields

A. Dumitru & Y. Nara, Phys. Lett. **B621**, 89 (2005).

Abelanization – 1+3 numerical simulations

P. Arnold, G.D. Moore & L.G. Yaffe, Phys. Rev. D72, 054003 (2005)

41

Hard Expanding Loopsfluctuation
$$Q(p,x) = Q_0(p,x) + \delta Q(p,x)$$
 $colorless expanding background $Q_0^{ij}(p,x) = \delta^{ij}n(p,x)$ $|Q_0(p,x)| >> |\delta Q(p,x)|, |\partial_p^{\mu} Q_0(p,x)| >> |\partial_p^{\mu} \delta Q(p,x)|$ $p_{\mu} D^{\mu} Q_0(p,x) = \delta^{\mu} P_{\mu\nu}(x) \partial_p^{\nu} Q_0(p,x) = 0$ Linearized transport equations $p_{\mu} D^{\mu} \delta Q(p,x) - g p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p,x) = 0$ Expansion delays the onset of instability growth $A_i^a \sim e^{\lambda \sqrt{t}}$ Altern & 0. Dependence for the part of 222201 (2000)$

A. Rebhan & P. Romatschke, Phys. Rev. Lett. 97, 252301 (2006)

Beyond Hard Loop level

C. Manuel & St. M., Phys. Rev. D72, 034005 (2005)

Role of collisions

B. Schenke, M. Strickland, C. Greiner & M.H. Thoma, Phys. Rev. D73, 125004 (2006)

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

10²

$$T_{ij} = \int \frac{d^3 p}{\left(2\pi\right)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

 $T_{xx} = (T_{yy} + T_{zz})/2$

Isotropy:

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Conclusion

The scenario of instabilities driven equilibration provides a plausible solution of the fast equilibration problem