Quark-Gluon Plasma @ LHC

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

Relativistic heavy-ion collision – *Little Bang*

Au-Au collisions @ RHIC

$\sqrt{s} = 100 + 100 \, \text{GeV/NN}$

RHIC vs. LHC

$$\sqrt{s} = \begin{cases} 200 \,\text{GeV/NN} - \text{RHIC} & \frac{\sqrt{s}_{\text{LHC}}}{\sqrt{s}_{\text{RHIC}}} \approx 30 \\ 5500 \,\text{GeV/NN} - \text{LHC} & \frac{\sqrt{s}_{\text{RHIC}}}{\sqrt{s}_{\text{RHIC}}} \end{cases}$$

Initial temperature

$$T_i \approx \begin{cases} 300 \,\text{MeV} - \text{RHIC} \\ 700 \,\text{GeV} - \text{LHC} \end{cases}$$
(30)^{1/4} \approx 2.3

RHIC vs. LHC cont.

Asymptotic freedom

RHIC vs. LHC cont.

Lattice thermodynamics of Quark-Gluon Plasma

F. Karsch, arXiv:0711.0656 [hep-lat].

Plasma's collective behavior

Plasma oscillations

$$\mathbf{E}(t,\mathbf{r}) = \mathbf{E}_0 \cos(\omega(\mathbf{k})t - \mathbf{k} \cdot \mathbf{r} + \varphi)$$

$$\omega(\mathbf{k}) \approx \omega_0 \sim gT$$

k \rightarrow 0
plasma frequency

Landau damping

Resonance energy transfer from electric field to particles with $v = v_{\phi}$

Kinetic instabilities

longitudinal modes –
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

• transverse modes –
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Transverse modes

Instabilities occur due to anisotropy of the momentum distribution

Transverse modes are relevant for relativistic nuclear collisions!

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{8} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Instabilities vs. collisions

Time scale of collisional processes

The instabilities are fast!

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} = (\omega, \mathbf{k})$$

Instabilities – solutions with Im\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory – transport equations

fundamental
$$\begin{cases} p_{\mu}D^{\mu}Q - \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}Q\} = C \\ p_{\mu}D^{\mu}\overline{Q} + \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}\overline{Q}\} = C \\ p_{\mu}D^{\mu}G - \frac{g}{2} p^{\mu} \{F_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} \\ gluons \end{cases}$$
free streaming mean-field force collisions
$$D^{\mu} = \partial^{\mu} - ig[A^{\mu}, ...], \quad F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}]$$

$$D_{\mu}F^{\mu\nu} = j^{\nu}[Q, \overline{Q}, G] \qquad \text{mean-field generation}$$

$$(collisionless limit: C = \overline{C} = C_{g} = 0$$

Transport theory - linearizationfluctuation
$$Q(p, x) = Q_0(p) + \delta Q(p, x)$$
stationary colorless state $Q_0^{ij}(p) = \delta^{ij}n(p)$

$$|Q_0(p)| \gg |\delta Q(p,x)|, \quad |\partial_p^{\mu} Q_0(p)| \gg |\partial_p^{\mu} \delta Q(p,x)|$$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$
$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$
$$p_{\mu}\mathcal{D}^{\mu}\delta G(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}QG_{0}(p) = 0$$

22

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x-x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu}[\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) = n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\mu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu} \Pi^{\mu\nu}(k) = 0$$
23

Diagrammatic Hard Loop approach

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\mu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k)$$

chromodielectric tensor

$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2\delta^{ij} - k^ik^j - \omega^2\varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} / E \qquad 25$

Dispersion equation – configuration of interest

Dispersion equation

$$k^2 - \omega^2 \varepsilon^{zz}(\omega, k) = 0$$

Existence of unstable modes – Penrose criterion

$$H(\omega) \equiv k^{2} - \omega^{2} \varepsilon^{zz}(\omega, k)$$

$$\oint_{C} \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint_{C} \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{-}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigoplus_{\omega = \infty} \bigoplus_{\omega = 0} \bigoplus_{\alpha = 0} \bigoplus_{$$

Unstable solutions

J. Randrup & St. M., Phys. Rev. C 68, 034909 (2003)

Hard-Loop dynamics

Soft fields in the passive background of hard particles

Braaten-Pisarski action generalized to anisotropic momentum distribution:

$$\begin{split} L_{\text{eff}} &= \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \bigg[f(\mathbf{p}) F^a_{\mu\nu}(x) \bigg(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \bigg)_{ab} F^{b\mu}_{\rho}(x) \\ &+ i \frac{C_F}{3} \, \widetilde{f}(\mathbf{p}) \overline{\psi}(x) \frac{p \cdot \gamma}{p \cdot D} \psi(x) \bigg] \\ k_{\mu} \Pi^{\mu\nu}(k) &= 0, \qquad k_{\mu} \Lambda^{\mu}(p,q,k) = \Sigma(p) + \Sigma(q) \end{split}$$

St. M., A. Rebhan & M. Strickland, Phys. Rev. D 74, 025004 (2004)

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. 94, 102303 (2005)

Isotropization - particles

Isotropization - fields

$$\begin{array}{c} \hline \mathbf{E} \\ \hline \mathbf{E} \\ \hline \mathbf{K} \\ \otimes \odot \\ \mathbf{B} \end{array} \end{array} \mathbf{k} \quad \mathbf{P}_{fields} \sim \mathbf{B}^{a} \times \mathbf{E}^{a} \sim \mathbf{k} \\ \end{array}$$

Isotropization – numerical simulation

Classical system of colored particles & fields

10²

$$T_{ij} = \int \frac{d^3 p}{\left(2\pi\right)^3} \frac{p_i p_j}{E} f(\mathbf{p})$$

 $T_{xx} = (T_{yy} + T_{zz})/2$

Isotropy:

33

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Conclusions

QGP @ LHC

- weakly coupled
- strongly collective
- unstable
- equilibrates fast

