

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

- Review focused on recent developments -

1

Evidence of the early stage equilibration

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$v_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

U. Heinz, AIP Conf. Proc.739, 163 (2004)

Collisions are too slow

$$t_{\rm eq} \approx t_{\rm hard} \geq 2.6 \, {\rm fm/}c$$

R. Baier, A.H. Mueller, D. Schiff & D.T. Son, Phys. Lett. **B539**, 46 (2002)

Plasma instabilities

instabilities in configuration space – hydrodynamic instabilities

instabilities in momentum space – kinetic instabilities

instabilities due to non-equilibrium momentum distribution

Kinetic instabilities

longitudinal modes -
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

transverse modes -
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, k – wave vector, ρ – charge density, j - current

Logitudinal modes

Energy is transferred from particles to fields

Logitudinal modes

Transverse modes

Unstable modes occur due to anisotropy of the momentum distribution

Momentum distribution distribution can monotonously decrease in every direction

Transverse modes are relevant for relativistic nuclear collisions!

Momentum Space Anisotropy in Nuclear Collisions

Parton momentum distribution is initially strongly anisotropic

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

Direction of the momentum surplus

Mechanism of filamentation

Dispersion equation

Equation of motion of chromodynamic field A^{μ} in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$
gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k^{\mu} \equiv (\omega, \mathbf{k})$$
Instabilities – solutions with Imo > 0 $\Rightarrow A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}$

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

Transport theory – distribution functions

Distribution functions of quarks Q(p, x) and antiquarks $\overline{Q}(p, x)$ are gauge dependent $N_c \times N_c$ matrices

The gauge transformation:

$$Q(p,x) \to U(x)Q(p,x)U^{-1}(x)$$

Distribution function of gluons G(p, x) is $(N_c^2 - 1) \times (N_c^2 - 1)$ matrix

Transport theory – transport equations

fundamental
$$\begin{cases} p_{\mu}D^{\mu}Q - \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}Q\} = C & \text{quarks} \\ p_{\mu}D^{\mu}\overline{Q} + \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}\overline{Q}\} = C & \text{antiquarks} \\ p_{\mu}\overline{D}^{\mu}G - \frac{g}{2} p^{\mu} \{\overline{F}_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} & \text{gluons} \end{cases}$$

$$free \text{ streaming} & \text{mean-field force} & \text{collisions} \\ D^{\mu} \equiv \partial^{\mu} - ig[A^{\mu},], \quad F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}] \end{cases}$$

$$D_{\mu}F^{\mu\nu} = j^{\nu}[Q, \overline{Q}, \overline{G}] \quad \text{mean-field generation}$$

$$(\text{collisionless limit:} \quad C = \overline{C} = C_{g} = 0$$

 $V_0(p) > V_0(p, x), V_p Q_0(p) > V_p Q_0(p)$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$

$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$

$$p_{\mu}\mathcal{D}^{\mu}\delta G(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}G_{0}(p) = 0$$

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x-x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu} [\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) \equiv n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu} \Pi^{\mu\nu}(k) = 0$$
19

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & p \\ & & & & & \\ p+k & & & & & \\ p+k & & & & & \\ \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

St. M. & M. Thoma, Phys. Rev. C 62, 036011 (2000)

Chromo-hydrodynamic approach

Transport equation of quark distribution function Q(p, x)

$$p_{\mu}D^{\mu}Q(p,x) - \frac{g}{2}p^{\mu}\{F_{\mu\nu},\partial^{\nu}_{p}Q(p,x)\} = 0$$
Taking into account antiquarks
and gluons is straightforward
$$dP = \frac{d^{4}p}{(2\pi)^{3}}2\Theta(p_{0})\,\delta(p^{2})$$
Covariant continuity
$$D_{\mu}n^{\mu}(x) = 0$$

$$n^{\mu}(x) \equiv \int dP \, p^{\mu}Q(p,x)$$

St. M. & C. Manuel, hep-ph/0606276

Chromo-hydrodynamic approach cont.

$$p_{\mu}D^{\mu}Q(p,x) - \frac{g}{2}p^{\mu}\{F_{\mu\nu},\partial_{p}^{\nu}Q(p,x)\} = 0$$

$$dP p^{\mu}$$

$$p^{2} = 0$$

$$D_{\mu}T^{\mu\nu}(x) - \frac{g}{2} \{F_{\mu\nu}, n^{\mu}(x)\} = 0$$

$$T^{\mu\nu}(x) = \int dP p^{\mu} p^{\nu}Q(p, x)$$

$$T^{\mu}(x) = 0$$

Chromo-hydrodynamic equations

$$D_{\mu}n^{\mu}(x) = 0$$
$$D_{\mu}T^{\mu\nu}(x) - \frac{g}{2} \{F^{\mu\nu}, n_{\mu}(x)\} = 0$$

Postulated form of $n^{\mu}(x)$ and $T^{\mu\nu}(x)$:

$$n^{\mu}(x) = n(x) u^{\mu}(x)$$
$$T^{\mu\nu}(x) = \frac{1}{2} (\varepsilon(x) + p(x)) \{ u^{\mu}(x), u^{\mu}(x) \} - p(x) g^{\mu\nu}$$

 $n(x), \epsilon(x), p(x), u^{\mu}(x)$ matrices! $u^{\mu}(x)u_{\mu}(x) = 1$

To close the system of equations:

$$\nabla p = 0 \text{ or } \epsilon = 3 p \iff T_{\mu}^{\mu} = 0$$

Linear response approximation

Small perturbation of the space-time homogeneous & colorless state

$$n(x) = \tilde{n} + \delta n(x), \quad \varepsilon(x) = \tilde{\varepsilon} + \delta \varepsilon(x),$$

$$p(x) = \tilde{p} + \delta p(x), \quad u^{\mu}(x) = \tilde{u}^{\mu} + \delta u^{\mu}(x)$$

$$\tilde{n}, \tilde{\varepsilon}, \quad \tilde{p}, \quad \tilde{u}^{\mu} \text{ unit matrices in color space}$$

$$\tilde{n} >> \delta n, \quad \tilde{\varepsilon} >> \delta \varepsilon, \quad \tilde{p} >> \delta p, \quad \tilde{u}^{\mu} >> \delta u^{\mu}$$

$$F^{\mu\nu} \sim A^{\mu} \sim \delta n$$

Solutions of the linearized equations

•
$$D^{\mu} \rightarrow \partial^{\mu}$$
 full linearization $A^{\mu} \sim \delta n$
• Fourier transformations • $\partial^{\nu} \delta p \approx 0$
continuity $k_{\mu} \tilde{u}^{\mu} \delta n(k) + \tilde{n} k_{\mu} \delta u^{\mu}(k) = 0$
Euler $i(\mathfrak{E} + \tilde{p}) \tilde{u}^{\mu} k_{\mu} \delta u^{\nu}(k) - g \tilde{n} \tilde{u}_{\mu} F^{\mu\nu}(k) = 0$

Solutions
$$\delta n(k) = ig \frac{\tilde{n}^2}{\tilde{\epsilon} + \tilde{p}} \frac{\tilde{u}_v k_\mu}{(\tilde{u} \cdot k)^2} F^{\mu\nu}(k)$$
$$\delta u^{\nu}(k) = ig \frac{\tilde{n}}{\tilde{\epsilon} + \tilde{p}} \frac{\tilde{u}_\mu}{\tilde{u} \cdot k} F^{\mu\nu}(k)$$

Color current & polarization tensor

$$j^{\mu}(x) = -\frac{g}{2} \left(n(x) u^{\mu}(x) - \frac{1}{N_c} \operatorname{Tr}[n(x) u^{\mu}(x)] \right)$$
$$j^{\mu}(x) = \tilde{j}^{\mu} + \delta j^{\mu}(x), \qquad \tilde{j}^{\mu} = 0$$

$$\delta j^{\mu}(x) = -\frac{g}{2} \left(\tilde{n} \, \delta u^{\mu}(x) + \tilde{u}^{\mu} \delta n(x) \right)$$

Tr[$F^{\mu\nu}$]=0
polarization tensor $\Pi^{\mu\nu}(x, y) = -\frac{\delta j^{\mu}(x)}{\delta A_{\nu}(y)}$
26

Polarization tensor

$$\Pi^{\mu\nu}(k) = -\frac{g^2}{2} \frac{\tilde{n}^2}{\tilde{\varepsilon} + \tilde{p}} \frac{(\tilde{u} \cdot k)(\tilde{u}^{\mu}k^{\nu} + \tilde{u}^{\nu}k^{\mu}) - k^2 \tilde{u}^{\mu}\tilde{u}^{\nu} - (\tilde{u} \cdot k)^2 g^{\mu\nu}}{(\tilde{u} \cdot k)^2}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

From one- to multi-stream system

There are several streams in the plasma

Polarization tensor for multi-stream system

$$\Pi^{\mu\nu}(k) = -\frac{g^2}{2} \sum_{\alpha} \frac{\widetilde{n}_{\alpha}^2}{\widetilde{\varepsilon}_{\alpha} + \widetilde{p}_{\alpha}} \frac{(\widetilde{u}_{\alpha} \cdot k)(\widetilde{u}_{\alpha}^{\mu}k^{\nu} + \widetilde{u}_{\alpha}^{\nu}k^{\mu}) - k^2 \widetilde{u}_{\alpha}^{\mu} \widetilde{u}_{\alpha}^{\nu} - (\widetilde{u}_{\alpha} \cdot k)^2 g^{\mu\nu}}{(\widetilde{u}_{\alpha} \cdot k)^2}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad (k_{\mu}\Pi^{\mu\nu}(k) = 0)$$

Connection with the kinetic theory

$$f(p) = \sum_{\alpha} \tilde{n}_{\alpha} \tilde{u}_{\alpha}^{0} \delta^{(3)}(\mathbf{p} - m_{\alpha} \mathbf{\tilde{u}}_{\alpha})$$

$$m_{\alpha} \equiv \frac{\mathfrak{E}_{\alpha} + \widetilde{p}_{\alpha}}{\widetilde{n}_{\alpha}}$$

Effect of pressure gradients

The set of fluid equations is closed by the relation $p_{\alpha}(x) = \frac{1}{3}\varepsilon_{\alpha}(x)$

$$\Pi^{\mu\nu}(k) = -\frac{3g^2}{8} \sum_{\alpha} \frac{\widetilde{n}_{\alpha}^2}{\widetilde{\varepsilon}_{\alpha}} \left[\frac{(\widetilde{u}_{\alpha} \cdot k)(\widetilde{u}_{\alpha}^{\mu}k^{\nu} + \widetilde{u}_{\alpha}^{\nu}k^{\mu}) - k^2 \widetilde{u}_{\alpha}^{\mu} \widetilde{u}_{\alpha}^{\nu} - (\widetilde{u}_{\alpha} \cdot k)^2 g^{\mu\nu}}{(\widetilde{u}_{\alpha} \cdot k)^2} \right]$$
$$-\frac{(\widetilde{u}_{\alpha} \cdot k)k^2 (\widetilde{u}_{\alpha}^{\mu}k^{\nu} + \widetilde{u}_{\alpha}^{\nu}k^{\mu}) - (\widetilde{u}_{\alpha} \cdot k)^2 k^{\mu}k^{\nu} - k^4 \widetilde{u}_{\alpha}^{\mu} \widetilde{u}_{\alpha}^{\nu}}{k^2 + 2(\widetilde{u}_{\alpha} \cdot k)^2} \right]$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k) \quad \text{chromodielectric tensor} \\ k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2 \delta^{ij} - k^i k^j - \omega^2 \varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} / E \qquad 31$

Dispersion equation – configuration of interest

Existence of unstable modes – Penrose criterion

$$H(\omega) = k^{2} - \omega^{2} \varepsilon^{zz} (\omega, k)$$

$$\oint_{C} \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint_{C} \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{+}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigoplus_{W=-\infty} \bigoplus_{W=W} \bigoplus_{$$

Unstable solutions

$$f(\mathbf{p}) = \frac{2^{1/2}}{\pi^{3/2}} \frac{\rho \sigma_{\perp}^4}{\sigma_{\parallel}} \frac{1}{(p_{\perp}^2 + \sigma_{\perp}^2)^3} e^{-\frac{p_{\parallel}^2}{2\sigma_{\parallel}^2}} \qquad \qquad \rho = 6 \text{ fm}^{-3}$$

$$\alpha_s = g^2 / 4\pi = 0.3$$

$$\sigma_{\perp} = 0.3 \text{ GeV}$$

Hard-Loop dynamics

Soft fields in the passive background of hard particles

Braaten-Pisarski action generalized to anisotropic momentum distribution:

$$L_{\text{eff}} = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \Big[f(\mathbf{p}) F^a_{\mu\nu}(x) \Big(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \Big)_{ab} F^{b\mu}_{\rho}(x) + i \frac{C_F}{3} \tilde{f}(\mathbf{p}) \Psi(x) \frac{p \cdot \gamma}{p \cdot D} \Psi(x) \Big]$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0, \qquad k_{\mu}\Lambda^{\mu}(p,q,k) = \Sigma(p) + \Sigma(q)$$

St. M., A. Rebhan & M. Strickland, Phys. Rev. D 74, 025004 (2004)

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ³⁶

Growth of instabilities – 1+1 numerical simulations

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Growth of instabilities – 1+3 numerical simulations

Phys. Rev. **D72**, 054003 (2005)

JHEP **0509**, 041 (2005)

Abelanization

$$V_{\text{eff}}[\mathbf{A}^{a}] = -\mu^{2}\mathbf{A}^{a} \cdot \mathbf{A}^{a} + \frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

the gauge $A_{0}^{a} = 0$, $A_{i}^{a}(t, x, y, z) = A_{i}^{a}(x)$

$$\mathcal{L}_{\text{YM}} = -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} = -\frac{1}{2}\mathbf{B}^{a}\mathbf{B}^{a}$$

$$= -\frac{1}{4}g^{2}f_{abc}f_{ade}(\mathbf{A}^{b} \cdot \mathbf{A}^{d})(\mathbf{A}^{c} \cdot \mathbf{A}^{e})$$

$$\mathbf{B}^{a} = \nabla \times \mathbf{A}^{a} + \frac{g}{2}f_{abc}\mathbf{A}^{b} \times \mathbf{A}^{c}$$

P. Arnold & J. Lenaghan, Phys. Rev. D 70, 114007 (2004)

Abelanization – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) 40

Abelanization – 1+1 numerical simulations

Classical system of colored particles & fields

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Abelanization – 1+3 numerical simulations

SU(2) Hard Loop Dynamics

P. Arnold, G.D. Moore & L.G. Yaffe, Phys. Rev. D72, 054003 (2005)

NonAbelian Turbulence

1+3 simulations of Hard Loops Dynamics

P. Arnold & G.D. Moore, Phys. Rev. D73, 025006 (2006);
P. Arnold & G.D. Moore, Phys. Rev. D73, 025013 (2006);
A. Dumitru, Y. Nara & M. Strickland, hep-ph/0604149.

Hard Expanding Loopsfluctuation
$$Q(p,x) = Q_0(p,x) + \delta Q(p,x)$$
 $colorless expanding background $Q_0^{ij}(p,x) = \delta^{ij}n(p,x)$ $|Q_0(p,x)| >> |\delta Q(p,x)|, |\partial_p^{\mu} Q_0(p,x)| >> |\partial_p^{\mu} \delta Q(p,x)|$ Linearized transport equations $p_{\mu} D^{\mu} \delta Q(p,x) - gp^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p,x) = 0$ Expansion delays the onset of instability growth $A_i^a \sim e^{\lambda \sqrt{t}}$ A. Rebhan & P. Romatschke, hep-ph/0605064$

Beyond Hard Loop level

C. Manuel & St. M., Phys. Rev. D72, 034005 (2005)

Beyond Hard Loop level cont.

Vlasov equation

$$\left(p_{\mu}D^{\mu} - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\right)Q(p,x) = 0$$

Exact solution for a system homogeneous along α direction

$$\partial^{\alpha}Q(p,x) = 0 = \partial^{\alpha}A^{\mu}(x)$$

$$Q(p,x) = f(p^{\alpha} - gA^{\alpha}(x)) = \sum_{n=0}^{\infty} \frac{(-g)^n}{n!} (A^{\alpha}(x))^n \frac{\partial^n f(p^{\alpha})}{\partial p_{\alpha}^n}$$

$$[D^{\mu}A^{\alpha}(x), A^{\alpha}(x)] = 0$$

Beyond Hard Loop level cont.

$$j^{\mu}[Q(x,p)] = j^{\mu}[f(p), A^{\alpha}(x)]$$

$$j^{\mu}(x) = -\frac{\delta S_{\text{eff}}}{A_{\mu}(x)}$$

$$S_{\text{eff}} = -\int d^{4}x V_{\text{eff}}$$

$$V_{\text{eff}}[A^{\alpha}] = \sum_{n=0}^{\infty} \frac{(-g)^{n+1}}{(n+1)!} \operatorname{Tr}[(A^{\alpha})^{n+1}] \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\alpha}}{E_{p}} \frac{\partial^{n}f(p^{\alpha})}{\partial p_{\alpha}^{n}}$$

Unstable configuration of interest

 $\mathbf{j}(x) = (0,0, j(x)), \quad \mathbf{B}(x) = (0, B(x), 0), \quad \mathbf{A}(x) = (0,0, A(x))$

$$Q(p,x) = f(p_0, p_z - gA_z), \qquad A_0 = 0$$

48

Effective potential beyond Hard Loop

$$f(p_0, p_z) \sim \exp(-\beta p_0^2 + \alpha p_z^2) = \exp(-\beta(p_x^2 + p_y^2) - (\beta - \alpha)p_z^2)$$

$$p_T$$

$$p_T$$

$$p_0 = \sqrt{p_x^2 + p_y^2 + p_z^2}$$

$$V_{\text{eff}}[A_z] = -g^2 \alpha \left\langle \frac{p_z^2}{E_p} \right\rangle \text{Tr}[A_z^2]$$
$$-g^4 \left\{ \frac{1}{3} \alpha^3 \left\langle \frac{p_z^4}{E_p} \right\rangle + \frac{1}{2} \alpha^2 \left\langle \frac{p_z^2}{E_p} \right\rangle \right\} \text{Tr}[A_z^4] - \dots$$

All terms are negative!

Effective potential beyond Hard Loop

$$V_{\rm eff}[A_z] = -\mu^2 \operatorname{Tr}[A_z^2] + \lambda \operatorname{Tr}[A_z^4] + \cdots$$

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Instabilities in CGC & Glasma

Expansion into vacuum of self-interacting classical nonAbelian fields

P. Romatschke & R. Venugopalan, Phys. Rev. Lett. 96, 062302 (2006);
T. Lappi & L. McLerran, Nucl. Phys. A772, 200 (2006)

Conclusion

The scenario of instabilities driven equilibration is dynamically very rich and it provides a plausible solution of the fast equilibration problem