Production of light nuclei in relativistic heavy-ion collisions

Stanisław Mrówczyński

Institute of Physics, Jan Kochanowski University, Kielce, Poland and National Centre for Nuclear Research, Warsaw, Poland

Background

Production of ²H, ²H, ³H, ³H, ³He, ³He, ⁴He, ⁴He, ⁴He, ³AH, ³ $_{\overline{\Lambda}}$ H is observed in midrpidity at RHIC & LHC.

• Thermal model properly describes yields of light nuclei.

baryonless fireball

Yield ~
$$g e^{-\frac{m}{T}}$$

T = 156 MeV

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, arXiv:1710.09425 [nucl-th]

Can light nuclei exist in a fireball?

- Interparticle spacing in a hadron gas is about 1.5 fm at T = 156 MeV.
- Root mean square radius of a deuteron is 2.0 fm.
- Binding energy of a deuteron is 2.2 MeV.
- A hadron gas at T = 156 MeV is essentially a classical system.

Final state interaction – conventional approach to production of light nuclei

S.T. Butler & C.A. Pearson, Phys. Rev. **129**, 836 (1963) A. Schwarzschild & C. Zupancic, Phys. Rev. **129**, 854 (1963)

Factorization of production of nucleons and formation of a nucleus

Deuteron production cross section

H. Sato and K. Yazaki, Phys. Lett. B 98, 153 (1981)

Deuteron formation rate vs. n-p correlation

$$\psi(\mathbf{r}_{1},\mathbf{r}_{2}) = e^{i\mathbf{P}\cdot\mathbf{R}}\varphi(\mathbf{r}) \qquad \mathbf{R} = \frac{1}{2}(\mathbf{r}_{1}+\mathbf{r}_{2}), \qquad \mathbf{r} = \mathbf{r}_{1}-\mathbf{r}_{2}$$
$$W = \frac{3}{4}(2\pi)^{3}\int d^{3}\mathbf{r} D_{r}(\mathbf{r}) |\varphi(\mathbf{r})|^{2}$$

$$D_r(\mathbf{r}) \equiv \int d^3 \mathbf{R} D\left(\mathbf{R} - \frac{1}{2}\mathbf{r}\right) D\left(\mathbf{R} + \frac{1}{2}\mathbf{r}\right)$$

n-*p* – correlation function

$$C(\mathbf{q}) = \int d^3 \mathbf{r} D_r(\mathbf{r}) \left| \varphi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

 $arphi({f r})$ – wave function of a bound state $arphi_{f q}({f r})$ – wave function of a scattering state

St. Mrówczyński, Phys. Lett. B 277, 43 (1992)

Quantum-mechanical meaning of the formation rate formula

Sudden approximation

$$\begin{array}{c|c} \psi(\mathbf{r}) & \varphi(\mathbf{r}) \\ \hline \rho(\mathbf{r}',\mathbf{r}) & t_f & time \end{array}$$

Transition matrix element

$$W = \left| \int d^{3}\mathbf{r} \psi^{*}(\mathbf{r}) \varphi(\mathbf{r}) \right|^{2} = \int d^{3}\mathbf{r} d^{3}\mathbf{r}' \varphi^{*}(\mathbf{r}') \psi(\mathbf{r}') \psi^{*}(\mathbf{r}) \varphi(\mathbf{r})$$

$$W = \int d^{3}\mathbf{r} d^{3}\mathbf{r}' \varphi^{*}(\mathbf{r}') \rho(\mathbf{r}',\mathbf{r}) \varphi(\mathbf{r})$$

If density matrix is diagonal (random phase approximation)

$$\rho(\mathbf{r}',\mathbf{r}) = D(\mathbf{r})\,\delta^{(3)}(\mathbf{r}'-\mathbf{r}) \qquad \Rightarrow \qquad W = \int d^3\mathbf{r}\,D(\mathbf{r}) \big|\varphi(\mathbf{r})\big|^2$$

Energy-momentum conservation

source - fireball

Nucleons are intermediate scattering states

$$E_i^2 - \mathbf{p}_i^2 \neq m_i^2 \quad i = n, p$$

Energy-momentum conservation

$$\begin{cases} \mathbf{p}_p + \mathbf{p}_n = \mathbf{p}_D \\ E_p + E_n = E_D \end{cases}$$

St. Mrówczyński, J. Phys. G 11, 1087 (1987)

Yields of light nuclei

Thermal model

Yield =
$$g_A V \int \frac{d^3 \mathbf{p}_A}{(2\pi)^3} \frac{1}{e^{\beta E_p} \pm 1}$$
 $E_p \equiv \sqrt{m_A^2 + \mathbf{p}_A^2}, \quad \beta \equiv \frac{1}{T}$

The models give rather similar yields of light nuclei.

St. Mrówczyński, Acta Phys. Pol. B 48, 707 (2017)

Thermal vs. Coalescence model

⁴He

 $r_{\rm RMS} = 1.68 \, {\rm fm}$ $\varepsilon_B = 28.3 \, {\rm MeV}$ $m = 3727.4 \, {\rm MeV}$ s = 0 ⁴Li \rightarrow ³He + p $\Gamma = 6$ MeV $m = m_{3_{He}} + m_p + 4.1$ MeV m = 3749.7 MeV s = 2

St. Mrówczyński, Acta Phys. Pol. B 48, 707 (2017)

Ratio of yields of 4Li to 4He

Thermal model

$$\frac{\text{Yield}(^{4}\text{Li})}{\text{Yield}(^{4}\text{He})} = \frac{2S_{\text{Li}} + 1}{2S_{\text{He}} + 1} = 5$$

Coalescence model

$$\frac{\text{Yield}(^{4}\text{Li})}{\text{Yield}(^{4}\text{He})} = \frac{W_{\text{Li}}}{W_{\text{He}}}$$

S. Bazak & St. Mrówczyński, arxiv: 1802.08212 [nucl-th]

Formation rates of 4He & 4Li

$$W = g_{s}g_{1}(2\pi)^{9} \int d^{3}\mathbf{r}_{1}d^{3}\mathbf{r}_{2} \int d^{3}\mathbf{r}_{3}d^{3}\mathbf{r}_{4} D(\mathbf{r}_{1})D(\mathbf{r}_{2})D(\mathbf{r}_{3})D(\mathbf{r}_{4}) |\psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})|^{2}$$

$$\stackrel{4}{\blacktriangleright} He \mathbf{r}_{ij} = \mathbf{r}_{i} - \mathbf{r}_{j}$$

$$|\psi_{He}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})|^{2} \sim \exp\left[-\alpha(\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2})\right]$$

$$\stackrel{4}{\blacktriangleright} Li \qquad J. C. Bergstrom, Nucl. Phys. A 327, 458 (1979)$$

$$\mathbf{z} = \mathbf{r}_{4} - \frac{1}{3}(\mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{3})$$

$$|\psi_{Li}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4})|^{2} \sim \exp\left[-\beta(\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{23}^{2})\right]\mathbf{z}^{4} \exp\left(-\gamma \mathbf{z}^{2}\right)|Y_{lm}(\Omega_{z})|^{2}$$

Formation rates of 4He & 4Li

Source function $D(\mathbf{r}_{i}) = \frac{1}{(2\pi R_{s}^{2})^{3/2}} \exp\left(-\frac{\mathbf{r}_{i}^{2}}{2R_{s}^{2}}\right) \qquad i = 1, 2, 3, 4$

If emission time included

$$R_s \to \sqrt{R_s^2 + v^2 \tau^2}$$

Jacobi variables

$$\begin{cases}
\mathbf{R} \equiv \frac{1}{4} (\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 + \mathbf{r}_4) \\
\mathbf{x} \equiv \mathbf{r}_2 - \mathbf{r}_1 \\
\mathbf{y} \equiv \mathbf{r}_3 - \frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2) \\
\mathbf{z} \equiv \mathbf{r}_4 - \frac{1}{3} (\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3)
\end{cases}$$

$$\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2} + \mathbf{r}_{3}^{2} + \mathbf{r}_{4}^{2} = 4\mathbf{R}^{2} + \frac{1}{2}\mathbf{x}^{2} + \frac{2}{3}\mathbf{y}^{2} + \frac{3}{4}\mathbf{z}^{2}$$
$$\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2} = 2\mathbf{x}^{2} + \frac{8}{3}\mathbf{y}^{2} + 3\mathbf{z}^{2}$$
$$\mathbf{r}_{ij} \equiv \mathbf{r}_{i} - \mathbf{r}_{j}$$

Formation rates of 4He & 4Li

$$W_{\text{He}} = \frac{\pi^{9/2}}{2^{9/2}} \frac{1}{\left(R_s^2 + R_\alpha^2\right)^{9/2}}$$

$$W_{\rm Li} = \frac{3\pi^{9/2}}{2^{11/2}} \left(\frac{5}{2} \\ 1\right) \frac{R_s^4}{\left(R_s^2 + \frac{1}{2}R_c^2\right)^3 \left(R_s^2 + \frac{4}{7}R_{\rm Li}^2 - \frac{3}{7}R_c^2\right)^{7/2}} \qquad \begin{pmatrix} l=1\\ l=2 \end{pmatrix}$$

 R_s - root mean square radius of the source R_{α} - root mean square radius of 4He R_{Li} - root mean square radius of 4Li R_c - root mean square radius of 3He cluster in 4Li

Ratio of yields of 4Li to 4He

In the thermal model the ratio equals 5.

How to observe 4Li?

Measurement of the correlation function of ³He-*p* is needed

J. Pochodzala et al. Phys. Rev. C 35, 1695 (1987)

Conclusions & Outlook

The thermal and coalescence models give different predictions on the ratio of yields of ⁴Li to ⁴He.

- In the thermal model the ratio of yields is rather independent of collision centrality.
- In the coalescence model the ratio is maximal for central collisions and rapidly decreases when one goes to peripheral collisions.

Since ⁴Li can be observed through the correlation function of ³He-*p*, the correlation needs to be computed.