Effective Coupling Constant of Plasmons

Stanisław Mrówczyński

Institute of Physics, Jan Kochanowski University, Kielce, Poland and National Centre for Nuclear Research, Warsaw, Poland

In collaboration with Margaret Carrington

based on arXiv:1907.03131, Phys. Rev. D 100, 056020 (2019)

The lady's man

Happy Birthday!

Background: plasmons

$$\mathbf{E}(t,\mathbf{r}) = \mathbf{E}_0 \cos(\omega(\mathbf{k})t - \mathbf{k} \cdot \mathbf{r} + \varphi)$$

plasma or Langmuir frequency

$$\omega(\mathbf{k}) \approx \omega_p \sim eT$$

$$\mathbf{k} \to 0$$

ultrarelativsitic EM plasma

Transverse plasmons

Background: plasma instabilities

stationary state

 $A(t) = A_0 + \delta A(t)$ fluctuation

Instability

 $\delta A(t) \propto \mathrm{e}^{\gamma t}$

 $\gamma > 0$

stable configuration

unstable configuration

Background: plasma instabilities

Anisotropic QGP is unstable

$$\delta A(t) \propto \mathrm{e}^{\gamma t}$$

q

$$\gamma \sim gT$$

 $T\,$ - hard momentum scale

Damping due to parton-parton scattering

hard scattering: $q \sim T$

soft scattering: $q \sim gT$

Frequency of collisions

 $v_{\text{hard}} \sim g^4 \ln(1/g) T$ $v_{\text{soft}} \sim g^2 \ln(1/g) T$

If
$$g^2 \ll 1 \implies v_{\text{hard}} \ll v_{\text{soft}} \ll \gamma$$

In weakly coupled plasma instabilities play an important role!

St. Mrówczyński, B. Schenke and M. Strickland, Phys. Rep. 682, 1 (2017).

Background: running coupling constant

QED - Landau's pole

$$\boldsymbol{\alpha}(q^2) \equiv \frac{e^2(q^2)}{4\pi} = \frac{3\pi}{\ln\left(\Lambda_{\text{QED}}^2 / q^2\right)} \qquad \qquad \Lambda_{\text{QED}} \approx 10^{287} \text{eV}$$

QCD - asymptotic freedom

$$\mathcal{O}(q^2) \equiv \frac{g^2(q^2)}{4\pi} = \frac{12\pi}{\left(33 - 2N_f\right) \ln\left(q^2 / \Lambda_{\text{QCD}}^2\right)} \qquad \qquad \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$$
$$N_c = 3$$

What is $\alpha(q^2)$ for plasma collective modes? What is q^2 ?

Plasmons in equilibrium QED plasma

Formulation of the problem

Plasmons – poles of propagator

Example of scalar fields

Dyson-Schwinger equation $\Delta(k) = \Delta_0(k) + \Delta(k) \Pi(k) \Delta_0(k)$

Free propagator
$$\Delta_0(p) = \frac{1}{p^2 - m^2}$$

Resumed propagator
$$\Delta(p) = \frac{1}{p^2 - m^2 - \Pi(p)}$$

Dispersion equation $\Delta^{-1}(p) = p^2 - m^2 - \Pi(p) = 0$

Photon propagator

Dyson-Schwinger equation

$$D(k) = D_0(k) + D(k) \Pi(k) D_0(k)$$

Free reatrded photon propagator

General covariant gauge (GCG)

$$D_0^{\mu\nu}(k) = \frac{1}{k^2 + ik_0 0^+} \left(g^{\mu\nu} - (1 - \zeta) \frac{k^{\mu} k^{\nu}}{k^2} \right)$$

> Temporal axial ague (TAG)

$$D_0^{\mu\nu}(k) = \frac{1}{k^2 + ik_0 0^+} \left(g^{\mu\nu} + (1 + \zeta) \frac{k^{\mu} k^{\nu}}{(k \cdot n)^2} - \frac{k^{\mu} n^{\nu} + n^{\mu} k^{\nu}}{(k \cdot n)} \right)$$

 $n^{\mu} = (1, 0, 0, 0)$ - rest frame of the heat bath

Strict TAG
$$\zeta = 0$$

$$\begin{cases}
D_0^{00}(k) = D_0^{0i}(k) = D_0^{i0}(k) = 0 \\
D_0^{ij}(k) = -\frac{1}{k^2 + ik_0 0^+} \left(\delta^{ij} - \frac{k^i k^j}{k_0^2}\right)
\end{cases}$$

Tensor decomposition for GCG

$$n^{\mu} = (1,0,0,0) - \text{rest frame of the heat bath} \qquad n_{T}^{\mu} = \left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^{2}}\right) n_{\nu}$$

Tensor basis

$$A^{\mu\nu}(k) = g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^{2}} - \frac{n_{T}^{\mu}n_{T}^{\nu}}{n_{T}^{2}}, \qquad B^{\mu\nu}(k) = \frac{n_{T}^{\mu}n_{T}^{\nu}}{n_{T}^{2}}$$

$$C^{\mu\nu}(k) = k^{\mu}n_{T}^{\nu} + n_{T}^{\mu}k^{\nu}, \qquad E^{\mu\nu}(k) = \frac{k^{\mu}k^{\nu}}{k^{2}}$$

$$D_{0}^{\mu\nu}(k) = \frac{1}{k^{2} + ik_{0}0^{+}} \left(A^{\mu\nu} + B^{\mu\nu}\right) + \frac{\zeta}{k^{2} + ik_{0}0^{+}} E^{\mu\nu}$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0 \implies \Pi^{\mu\nu}(k) = \Pi^{T}(k)A^{\mu\nu} + \Pi^{L}(k)B^{\mu\nu}$$

Dyson-Schwinger equation provides

$$D^{\mu\nu}(k) = D^{T}(k)A^{\mu\nu}(k) + D^{L}(k)B^{\mu\nu}(k) + \frac{\zeta}{k^{2} + ik_{0}0^{+}}E^{\mu\nu}(k)$$

$$D^{T,L}(k) = \frac{1}{k^2 - \Pi^{T,L}(k)}$$

Tensor decomposition for TAG

$$T^{ij}(k) \equiv \delta^{ij} - \frac{k^i k^j}{\mathbf{k}^2}, \qquad L^{ij}(k) \equiv \frac{k^i k^j}{\mathbf{k}^2}$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0 \implies \Pi^{ij}(k) = \Pi^{T}(k)T^{ij} + \frac{k_{0}^{2}}{k^{2}}\Pi^{L}(k)L^{ij}$$

$$-D^{ij}(k) = D^{T}(k)T^{ij}(k) + \frac{k^{2}}{k_{0}^{2}}D^{L}(k)L^{ij}(k)$$

$$D^{T,L}(k) = \frac{1}{k^2 - \Pi^{T,L}(k)}$$

Dispersion equation in GCG & TAG

$$k^2 - \Pi^{T,L}(k) = 0$$

Polarization tensor

Keldysh-Schwinger formalism

$$\Pi^{\mu\nu}(k) = 2e^{2} \sum_{n=\pm 1} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1 - n_{f}(|\mathbf{p}|)}{|\mathbf{p}|} \frac{2p^{\mu}p^{\nu} + p^{\mu}k^{\nu} + k^{\mu}p^{\nu} - g^{\mu\nu}(k \cdot p)}{(p+k)^{2} + i(p_{0} + k_{0})0^{+}} \bigg|_{p_{0} = n|\mathbf{p}|}$$

$$n_f(E) = \frac{1}{e^{\beta E} + 1}$$

$$\square^{\mu\nu}(k) = \Pi^{\mu\nu}_{vac}(k) + \Pi^{\mu\nu}_{med}(k)$$

Vacuum polarization tensor

One usually ignores the vacuum contribution as subleading when collective modes are studied but the vacuum makes the coupling run.

$$\Pi_{\rm vac}^{\mu\nu}(k) = \left(k^2 g^{\mu\nu} - k^{\mu} k^{\nu}\right) P(k^2)$$

$$\Pi_{\rm vac}^{T}(k) = \Pi_{\rm vac}^{L}(k) = k^2 P(k^2)$$

$$P(k^{2}) = -\frac{e^{2}}{2\pi^{2}} \left[\frac{1}{6} \left(\frac{1}{\delta} - \gamma_{E} \right) - \int_{0}^{1} dx \, x(1-x) \ln \left(-\frac{x(1-x)k^{2}}{4\pi M^{2}} \right) \right]$$

Dimensionally regularized, divergent as $\delta \rightarrow 0$

Medium contribution

Leading order, HTL approximation

$$\begin{cases} \Pi_{\rm HTL}^{L}(k) = -\frac{k^{2}}{\mathbf{k}^{2}} m_{D}^{2} \left[1 - \frac{k_{0}}{2|\mathbf{k}|} \left(\ln \left| \frac{|\mathbf{k}| + k_{0}}{|\mathbf{k}| - k_{0}} \right| - i\pi \Theta(-k^{2}) \right) \right] \\ \Pi_{\rm HTL}^{T}(k) = \frac{k_{0}^{2}}{2\mathbf{k}^{2}} m_{D}^{2} \left[1 - \left(\frac{k_{0}}{2|\mathbf{k}|} - \frac{|\mathbf{k}|}{2k_{0}} \right) \left(\ln \left| \frac{|\mathbf{k}| + k_{0}}{|\mathbf{k}| - k_{0}} \right| - i\pi \Theta(-k^{2}) \right) \right] \end{cases} m_{D}^{2} \equiv \frac{e^{2}T^{2}}{3}$$

V.P. Silin, Sov. Phys. JETP 11, 1136 (1960) [Zh. Eksp. Teor. Fiz. 38, 1577 (1960)].

Medium contribution cont.

Expansion in
$$\left(\frac{k_0}{T}, \frac{|\mathbf{k}|}{T}\right)$$

Next-to-leading order

$$\int \Pi_{\text{med}}^{L}(k) = \Pi_{\text{HTL}}^{L}(k) - \frac{k^{2}}{12\pi^{2}} \ln\left(\frac{k^{2}}{T^{2}}\right) + \dots$$
$$\Pi_{\text{med}}^{T}(k) = \Pi_{\text{HTL}}^{T}(k) - \frac{k^{2}}{12\pi^{2}} \ln\left(\frac{k^{2}}{T^{2}}\right) + \dots$$

H.A. Weldon, Phys. Rev. D 26, 1394 (1982).

Renormalization

$$\hat{D}^{T,L}(k,\mu) \equiv \frac{1}{Z_3(\mu)} D^{T,L}(k)$$

Renormalization condition

$$k^2 \rightarrow \mu^2 \quad \& \quad T = 0 \quad \Rightarrow \quad \hat{D}^{T,L}(k,\mu) = \frac{1}{k^2}$$

The scale μ is arbitrary.

$$Z_3(\mu) = 1 + P(-\mu^2)$$

$$\hat{\Pi}_{\text{vac}}^{T}(k,\mu) = \hat{\Pi}_{\text{vac}}^{T}(k,\mu) = k^{2}\hat{P}(k^{2},\mu)$$
$$\hat{P}(k^{2},\mu) \equiv P(k^{2}) - P(-\mu^{2}) = \frac{1}{12\pi^{2}}\ln\left(-\frac{k^{2}}{\mu^{2}}\right)$$

Charge renormalization

$$\hat{\alpha}(\mu) = Z_3(\mu)\alpha \qquad \qquad \alpha \equiv \frac{e^2}{4\pi}$$

$$\mu \frac{d\hat{\alpha}(\mu)}{d\mu} = \beta(\mu)$$

At one-loop level:

$$\beta(\mu) = \frac{2}{3\pi} \hat{\alpha}(\mu)$$

$$\hat{\alpha}(\mu) = \frac{\hat{\alpha}(\mu_0)}{1 - \frac{\hat{\alpha}(\mu_0)}{3\pi} \ln\left(\frac{\mu^2}{\mu_0^2}\right)}$$

Renormalized propagator

$$\hat{D}^{T,L}(k,\mu) = \frac{1}{k^2 \left(1 - \hat{P}(k^2,\mu)\right) - \Pi_{\text{med}}^{T,L}(k)}$$

$$\hat{D}^{T,L}(k,\mu) = \frac{1}{k^2 \left(1 - \frac{\hat{\alpha}(\mu)}{3\pi} \ln\left(\frac{T^2}{\mu^2}\right)\right) - \hat{\alpha}(\mu) \pi^{T,L}(k)}$$

 $\hat{\alpha}(\mu)\pi^{T,L}(k)$ includes all contributions to $\Pi^{T,L}(k,\mu)$ expect log terms

Scale dependent dispersion equation?

$$k^{2}\left(1-\frac{\hat{\alpha}(\mu)}{3\pi}\ln\left(\frac{T^{2}}{\mu^{2}}\right)\right)-\hat{\alpha}(\mu)\pi^{T,L}(k)=0$$

No! A physical quantity must be *μ* independent!

Plasmons – poles of

$$\hat{\alpha}(\mu)\hat{D}^{T,L}(k,\mu)$$

which is a renormlization-group invariant.

Coupling constant of plasmons

$$\hat{\alpha}(\mu)\hat{D}^{T,L}(k,\mu) = \frac{\hat{\alpha}(\mu)}{k^2 \left(1 - \frac{\hat{\alpha}(\mu)}{3\pi} \ln\left(\frac{T^2}{\mu^2}\right)\right) - \hat{\alpha}(\mu)\pi^{T,L}(k)}$$
$$= \frac{\hat{\alpha}(T)}{k^2 - \hat{\alpha}(T)\pi^{T,L}(k)} = \hat{\alpha}(T)\hat{D}^{T,L}(k,T)$$

$$\hat{\alpha}(\mu) - \hat{\alpha}(\mu_0) = O(\hat{\alpha}^2(\mu))$$

T is the scale of the effective coupling constant.

Conclusions

Collective modes need to be defined through a renormalization-group invariant.

Temperature is the scale of the effective coupling constant in equilibrium plasmas.

Outlook

Anisotropic plasma

QCD