Color Instabilities of the Quark-Gluon Plasma

Stanisław Mrówczyński

Świętokrzyska Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland

Course of relativistic heavy-ion collisions

Evidence of the early stage equilibration

Success of hydrodynamic models in describing elliptic flow

Equilibration is fast

$$v_2 \sim \varepsilon = \left\langle \frac{x^2 - y^2}{x^2 + y^2} \right\rangle$$

Eccentricity decays due to the free streaming!

U. Heinz, AIP Conf. Proc.739, 163 (2004)

Collisions in weakly coupled QGP

Assumption: **QGP is weakly coupled** ! $\alpha_s \equiv \frac{g^2}{4\pi} << 1 - \text{QCD coupling constant}$

Time scale of equilibration driven by hard parton-parton scatterings

Kinetic instabilities

longitudinal modes –
$$\mathbf{k} \parallel \mathbf{E}, \ \delta \rho \sim e^{-i(\omega t - \mathbf{kr})}$$

transverse modes -
$$\mathbf{k} \perp \mathbf{E}$$
, $\delta \mathbf{j} \sim e^{-i(\omega t - \mathbf{kr})}$

E – electric field, **k** – wave vector, ρ – charge density, **j** - current

Logitudinal modes

Energy is transferred from particles to fields

Transverse modes

Unstable modes occur due to anisotropy of the momentum distribution

Parton momentum distribution is initially strongly anisotropic

Transverse modes are relevant for relativistic nuclear collisions!

Seeds of instability

 $\langle j_a^{\mu}(x) \rangle = 0$ but current fluctuations are finite

$$\left\langle j_{a}^{\mu}(x_{1}) j_{b}^{\nu}(x_{2}) \right\rangle = \frac{1}{2} \delta^{ab} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}p^{\nu}}{E_{p}^{2}} f(\mathbf{p}) \delta^{(3)}(\mathbf{x} - \mathbf{v}t) \neq 0$$

$$x_1 = (t_1, \mathbf{x}_1), \quad x_2 = (t_2, \mathbf{x}_2), \quad x = (t_1 - t_2, \mathbf{x}_1 - \mathbf{x}_2)$$

11

Mechanism of filamentation

Dispersion equation

Equation of motion of chromodynamic field *A*^µ in momentum space

$$[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0$$

gluon self-energy
Dispersion equation
$$det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$
$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Instabilities – solutions with Im $\omega > 0 \implies A^{\mu}(x) \sim e^{\operatorname{Im}\omega t}$

Dynamical information is hidden in $\Pi^{\mu\nu}(k)$ **. How to get it?**

13

Transport theory

fundamental
$$\begin{cases} p_{\mu}D^{\mu}Q - \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}Q\} = C \\ p_{\mu}D^{\mu}\overline{Q} + \frac{g}{2} p^{\mu} \{F_{\mu\nu}(x), \partial_{p}^{\nu}\overline{Q}\} = C \\ p_{\mu}D^{\mu}G - \frac{g}{2} p^{\mu} \{F_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} \\ gluons \end{cases}$$
adjoint
$$p_{\mu}D^{\mu}G - \frac{g}{2} p^{\mu} \{F_{\mu\nu}, (x)\partial_{p}^{\nu}G\} = C_{g} \\ gluons \\ D^{\mu} = \partial^{\mu} - ig[A^{\mu},], \quad F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} - ig[A^{\mu}, A^{\nu}] \\ D_{\mu}F^{\mu\nu} = j^{\nu}[Q, \overline{Q}, G] \\ mean-field generation \\ \hline collisionless limit: \quad C = \overline{C} = C_{g} = 0 \\ 14 \end{cases}$$

Time scale of collisional processes

Time scale of processes driven by parton-parton scattering

The instabilities are fast!

Transport theory - linearization
fluctuation

$$Q(p, x) = Q_0(p) + \delta Q(p, x)$$

stationary colorless state $Q_0^{ij}(p) = \delta^{ij}n(p)$

$$|Q_0(p)| \gg |\delta Q(p,x)|, \quad |\partial_p^{\mu} Q_0(p)| \gg |\partial_p^{\mu} \delta Q(p,x)|$$

Linearized transport equations

$$p_{\mu}D^{\mu}\delta Q(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}Q_{0}(p) = 0$$

$$p_{\mu}D^{\mu}\delta\overline{Q}(p,x) + gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}\overline{Q}_{0}(p) = 0$$

$$p_{\mu}D^{\mu}\delta G(p,x) - gp^{\mu}F_{\mu\nu}(x)\partial_{p}^{\nu}G_{0}(p) = 0$$

Transport theory – polarization tensor

$$\delta Q(p,x) = g \int d^4 x' \Delta_p (x - x') p^{\mu} F_{\mu\nu}(x) \partial_p^{\nu} Q_0(p)$$

$$j^{\mu} [\delta Q, \delta \overline{Q}, \delta G]$$

$$p_{\mu} D^{\mu} \Delta_p(x) = \delta^{(4)}(x)$$

$$f(\mathbf{p}) \equiv n(\mathbf{p}) + \overline{n}(\mathbf{p}) + 2n_g(\mathbf{p})$$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu} k^{\lambda}}{p^{\sigma} k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

17

Diagrammatic Hard Loop approach

$$\Pi^{\mu\nu}(k) = \left(\begin{array}{ccc} p & p & p \\ k & p & k & k & k \\ & p + k & p + k & k \end{array} \right)$$

Hard loop approximation: $k^{\mu} \ll p^{\mu}$

$$\Pi^{\mu\nu}(k) = \frac{g^2}{2} \int \frac{d^3p}{(2\pi)^3} \frac{p^{\mu}}{E} \left[g^{\nu\lambda} - \frac{p^{\nu}k^{\lambda}}{p^{\sigma}k_{\sigma} + i0^+} \right] \frac{\partial f(\mathbf{p})}{\partial p^{\lambda}}$$

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k), \quad k_{\mu}\Pi^{\mu\nu}(k) = 0$$

St. M. & M. Thoma, Phys. Rev. C 62, 036011 (2000)

Dispersion equation

Dispersion equation

$$\det[k^2 g^{\mu\nu} - k^{\mu} k^{\nu} - \Pi^{\mu\nu}(k)] = 0$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} - \frac{1}{\omega^2} \Pi^{ij}(k)$$
 chromodie

chromodielectric tensor

$$k^{\mu} \equiv (\omega, \mathbf{k})$$

Dispersion equation

$$\det[\mathbf{k}^2 \delta^{ij} - k^i k^j - \omega^2 \varepsilon^{ij}(k)] = 0$$

$$\varepsilon^{ij}(k) = \delta^{ij} + \frac{g^2}{2\omega} \int \frac{d^3p}{(2\pi)^3} \frac{v^i}{\omega - \mathbf{kv} + i0^+} \frac{\partial f(\mathbf{p})}{\partial p^l} \Big[\Big(1 - \frac{\mathbf{kv}}{\omega} \Big) \delta^{lj} + \frac{k^l v^j}{\omega} \Big]$$

 $\mathbf{v} \equiv \mathbf{p} \,/\, E \qquad 19$

Dispersion equation – configuration of interest

Existence of unstable modes – Penrose criterion

$$H(\omega) = k^{2} - \omega^{2} \varepsilon^{zz}(\omega, k)$$

$$\oint_{C} \frac{d\omega}{2\pi i} \frac{1}{H(\omega)} \frac{dH(\omega)}{d\omega} = \begin{cases} \oint_{C} \frac{d\omega}{2\pi i} \frac{d\ln H(\omega)}{d\omega} = \ln H(\omega) \Big|_{\phi=\pi^{+}}^{\phi=\pi^{-}} \\ \text{number of zeros of } H(\omega) \text{ in } C \end{cases}$$

$$\bigoplus_{W=-\infty} \bigoplus_{W=0}^{W=-\infty} \bigoplus_{R\in W} \bigoplus_{M=0}^{W=-\infty} \bigoplus_{W=0}^{W=-\infty} \bigoplus_{R\in W} \bigoplus_{M=0}^{W=-\infty} \bigoplus_{M=0}^{W=-\infty} \bigoplus_{W=0}^{W=-\infty} \bigoplus_{W=0}^$$

Unstable solutions

$$f(\mathbf{p}) = \frac{2^{1/2}}{\pi^{3/2}} \frac{\rho \sigma_{\perp}^4}{\sigma_{\parallel}} \frac{1}{(p_{\perp}^2 + \sigma_{\perp}^2)^3} e^{-\frac{p_{\parallel}^2}{2\sigma_{\parallel}^2}} \qquad \qquad \rho = 6 \text{ fm}^{-3}$$

$$\alpha_s = g^2 / 4\pi = 0.3$$

$$\sigma_{\perp} = 0.3 \text{ GeV}$$

Soft fields in the passive background of hard particles

Braaten-Pisarski action generalized to anisotropic momentum distribution:

$$L_{\text{eff}} = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \Big[f(\mathbf{p}) F^a_{\mu\nu}(x) \Big(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2} \Big)_{ab} F^{b\mu}_{\rho}(x) + i \frac{C_F}{3} \tilde{f}(\mathbf{p}) \Psi(x) \frac{p \cdot \gamma}{p \cdot D} \Psi(x) \Big]$$

$$k_{\mu}\Pi^{\mu\nu}(k) = 0, \qquad k_{\mu}\Lambda^{\mu}(p,q,k) = \Sigma(p) + \Sigma(q)$$

St. M., A. Rebhan & M. Strickland, Phys. Rev. D 74, 025004 (2004)

Growth of instabilities – 1+1 numerical simulations

A. Rebhan, P. Romatschke & M. Strickland, Phys. Rev. Lett. **94**, 102303 (2005) ²⁴

Isotropization - particles

Isotropization - fields

Isotropization – numerical simulation

Classical system of colored particles & fields

A. Dumitru & Y. Nara, Phys. Lett. B621, 89 (2005).

Conclusion

The scenario of instabilities driven equilibration provides a plausible solution to the fast equilibration problem of weakly coupled plasma