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The Wigner function, which provides a phase-space description of quantum systems, has various

applications in quantum mechanics, quantum kinetic theory, quantum optics, radiation transport and

others. The concept of the Wigner function has been extended to quantum fields, scalar and electromag-

netic. Then, one deals with the Wigner functional which gives a distribution of field and its conjugate

momentum. We introduce here the Wigner functional of fermionic fields of the values in a Grassmann

algebra. Properties of the functional are discussed and its equation of motion, which is of the Liouville

form, is derived.
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I. INTRODUCTION

A description of a quantum mechanical system is usu-
ally formulated in a position or momentum space. A
probabilistic description in a phase space spanned by posi-
tions and momenta is not possible because of the uncer-
tainty principle. The quasiprobabilistic approach can be
achieved by using the Wigner function [1], which for a
system of single degree of freedom, is usually defined
nowadays as

Wðx; p; tÞ ¼def
Z

due�ipuhxþ u=2j�̂ðtÞjx� u=2i; (1)

where �̂ðtÞ is the time-dependent density operator and jxi is
the position eigenstate. The Wigner function is real but it
is not everywhere positive, and consequently the approach
is not probabilistic but only quasiprobabilistic. Various
quantum mechanical problems can be formulated in terms
of the Wigner function [2]. It is particularly useful to
discuss the classical limit of quantum mechanics. In case
of many-body systems, the Wigner function plays a role of
quantum analog of classical distribution function, see, e.g.,
Ref. [3], and it is thus the key object of quantum kinetic
theory. The phase-space methods are particularly well
developed in the theory of radiation transport and quantum
optics, see the monographs in Refs. [4,5].

The concept of the Wigner function was extended to
quantum fields in Ref. [6] where a real scalar field was
discussed. The Wigner functional is defined in a full anal-
ogy to Eq. (1) that is

W½�;�; t� ¼def
Z

D’ðxÞ exp
�
�i

Z
d3x�ðxÞ’ðxÞ

�

�
�
�ðxÞ þ 1

2
’ðxÞ

���������̂ðtÞ
���������ðxÞ � 1

2
’ðxÞ

�
;

(2)

where �ðxÞ is the time-independent scalar field in the
Schrödinger picture, x 2 R3 is the coordinate variable
and

R
D’ðxÞ . . . denotes the functional integral. The

Wigner functional was shown to be a density in an infi-
nitely dimensional phase space spanned by �ðxÞ and its
conjugate momentum�ðxÞ. Properties ofW½�;�; t�were
discussed and its equation of motion was derived. The
scalar fields in thermal equilibrium and a system under-
going a phase transition due to the falling temperature were
also studied. Later on, the Wigner functional of electro-
magnetic field was analyzed [7] with the thermal, coherent
and squeezed states being discussed.
Our aim here is to introduce the Wigner functional of

fermionic fields which take their values in a Grassmann
algebra. While such fields are commonly used nowadays in
the path-integral formulation of quantum field theory, other
applications of anticommuting numbers are much less
popular. Nevertheless, both classical and quantummechan-
ics of systems with dynamical variables belonging to a
Grassmann algebra were formulated long ago [8], and
properties of phase-space densities in the two cases were
briefly discussed. Later on, quasiprobability distributions
of fermionic systems were analyzed in some detail in
Ref. [9]. These studies show that in spite of a different
algebraic structure, fermionic objects appear to be rather
similar to their bosonic counterparts. Even more, at a
superficial level the corresponding formulas often look
almost the same and the differences are merely in mathe-
matical background. We encounter an analogous situation
with the Wigner functional of fermionic fields which is
constructed like that of bosonic ones and the properties of
the two functionals are surprisingly similar. These circum-
stances make us adopt a specific style of presentation of
our results with many—hopefully not too many—technical
details included, as it is rather difficult to expose the
differences and similarities of Wigner functionals of bo-
sonic and fermionic fields not referring to technicalities.
In the subsequent sections, the Wigner functional is

defined and its properties as a phase-space density are
discussed. The equation of motion, which has a form of
the Liouville equation, is also derived and its solutions are
given. Some remarks close the paper.
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II. DEFINITION OF THE WIGNER FUNCTIONAL

Let us define the Wigner functional of fermionic field in
the same way as in the case of bosonic field [6] that is

W½�;�; t� ¼def
Z

D’ðxÞ exp
�
�i

Z
d3x�ðxÞ’ðxÞ

�

�
�
�ðxÞ þ 1

2
’ðxÞ

���������̂ðtÞ
���������ðxÞ � 1

2
’ðxÞ

�
;

(3)

where �ðxÞ is the time-independent fermionic field in the
Schrödinger picture, and

R
D’ðxÞ . . . denotes here the

functional Berezin integral which is extensively discussed
by its founder in Ref. [10].

To check whether the definition (3) makes any sense, we
consider for the beginning the Gaussian functional with

h�1ðxÞj�̂j�2ðxÞi ¼ e�
1
2

R
d3x½�1ðxÞA�1ðxÞþ�2ðxÞA�2ðxÞ�; (4)

where �1, �2 are the two-component Weyl spinors and A
is an antisymmetric matrix (AT ¼ �A). If the matrix A is
not antisymmetric, only its antisymmetric part contributes
to (4), as squares of fermionic fields vanish. The formula
(4) substituted into the definition (3) provides

W½�;�� ¼ e�
R

d3x�ðxÞA�ðxÞ Z D’e�i
R

d3x�ðxÞ’ðxÞ

� e�
1
4

R
d3x’ðxÞA’ðxÞ: (5)

To compute the functional integral over ’ðxÞ, the field is
discretized ’ðxÞ ! ’1; ’2; . . . ; ’n and using the formulaZ

d�m . . . d�1dc m . . . dc 1e
�iMijc jþki�iþpic i

¼ detMe�kiðM�1Þijpj ; (6)

which is not difficult to prove following the methods
described in Ref. [10], the Gaussian Wigner functional is
calculated as

W½�;�� ¼ Ce�
R

d3x½�ðxÞA�ðxÞ��ðxÞA�1�ðxÞ�; (7)

where C is a constant. The result (7), which is rather
expected as fully analogous to the case of bosonic fields,
suggests that the definition (3) makes sense and is worth
further consideration.

III. PROPERTIES OF THEWIGNER FUNCTIONAL

The Wigner functional (3) is expected to represent a
density in a phase space spanned by� and�. Then, there
should hold the relation

hOð�̂; �̂Þi ¼ hOð�;�Þi; (8)

where Oð�;�Þ is a function of � and �. We use the hats
to distinguish the field operators from their ‘‘classical’’
counterparts. The word classical is written in the quotation

marks, as the anticommuting fields are not classical in the
usual sense. The average of the field operators is defined as

hOð�̂; �̂Þi ¼def 1

Tr½�̂ðtÞ� Tr½�̂ðtÞOð�̂; �̂Þ� (9)

and that of ‘‘classical’’ fields in the following way:

hOð�;�Þi ¼def 1
Z

Z
D�

D�

2�
Oð�;�ÞW½�;�; t� (10)

with

Z �
Z

D�
D�

2�
W½�;�; t�: (11)

A. Computation of Z

We start with the computation of Z presenting here some
technical details which will be mostly skipped in the sub-
sequent sections. Substituting the Wigner functional (3)
into Eq. (11) and performing the discretization of the fields,
one has

Z ¼
Z

d�nd�n�1 . . . d�1

d�n

2�

d�n�1
2�

. . .
d�1

2�

� d’nd’n�1 . . . d’1 exp

�
�i�V Xn

k¼1
�k’k

�

�
�
�ðxÞ þ 1

2
’ðxÞ

���������̂ðtÞ
���������ðxÞ � 1

2
’ðxÞ

�
; (12)

where �i � �ðxiÞ, �i � �ðxiÞ and ’i � ’ðxiÞ with i ¼
1; 2; . . . ; n;�V is the volume of the elementary cell coming
from discretization of R3. The equality holds in the con-
tinuum limit which is implicitly assumed here. Now we are
going to take the integrals over �i which requires moving
d�i right of d’i. If n is even, the number of interchanges
of Grassmann elements is also even, and the sign of the
whole expression is not altered. When n is an odd number,
the sign changes. One computes the integrals over �i

expanding the exponential and taking into account the
nth term which is the only one contributing to the integral.
Then, one obtains

Z d�n

2�

d�n�1
2�

. . .
d�1

2�
exp

�
�i�VXn

k¼1
�k’k

�

¼ð�i�VÞ
n

n!

Z d�n

2�

d�n�1
2�

. . .
d�1

2�

�Xn
k¼1

�k’k

�
n

¼ð�i�VÞn
Z d�n

2�

d�n�1
2�

. . .
d�1

2�
�1’1�2’2 . . .�n’n

¼�
�
i�V

2�

�
n
�ðnÞð’1;’2; . . . ;’nÞ; (13)

where the factor ð�1Þn�1, which occurs due to interchang-
ing d�i and ’j, is included, and the function

�ðnÞð’1; ’2; . . . ; ’nÞ � ’1’2 . . .’n (14)

STANISŁAW MRÓWCZYŃSKI PHYSICAL REVIEW D 87, 065026 (2013)

065026-2



appears to be the Dirac deltalike function in the n-dimensional Grassmann algebra. Indeed,

Z
d’nd’n�1 . . . d’1�

ðnÞð’1; ’2; . . . ; ’nÞfð’1; ’2; . . . ; ’nÞ ¼ f0; (15)

where fk with k ¼ 0; 1; 2; . . . ; n is defined through the decomposition of an arbitrary function fð’1; ’2; . . . ; ’nÞ as

fð’1;’2;...;’nÞ¼f0þ
Xn
i¼1

f1ðiÞ’iþ
Xn

i1;i2¼1
f2ði1;i2Þ’i1’i2þ���þ

Xn
i1;i2;...;in¼1

fnði1;i2;...;inÞ’i1’i2 ;...;’in : (16)

The continuum limit of �ðnÞð’1; ’2; . . . ; ’nÞ is denoted
as �½’� and we have the identityZ D�

2�
exp

�
�i

Z
d3x�’

�
¼ C��½’�; (17)

which is repeatedly used further on. It is a complex mathe-
matical issue to determine the constant C� which is, how-
ever, irrelevant for our considerations. It will be shown that
the constants of this type drop out when the final average
(10) is computed.

Using the result (13) and (12) provides

Z ¼ C
Z

D�h�j�̂ðtÞj�i ¼ CTr½�̂ðtÞ�; (18)

as

Tr ½�̂ðtÞ� ¼def
Z

D�h�j�̂ðtÞj�i: (19)

Now we are going to prove the relation (8) considering
step by step three special cases.

B. Oð�̂; �̂Þ depends only on �̂

We first consider Oð�̂; �̂Þ ¼ �̂ðxÞ. Since squares and
higher powers of fermionic fields vanish, there is no other

local operator made of �̂ðxÞ except a linear function of

�̂ðxÞ. Therefore, we compute

h�̂i ¼ 1

Tr½�̂�
Z

D�h�j�̂ �̂ j�i

¼ 1

Tr½�̂�
Z

D��h�j�̂j�i: (20)

The last equality holds because the states j�i are by

definition the eigenstates of �̂ that is �̂j�i ¼ �j�i.
Computing h�i exactly as Z, one finds

h�i ¼ 1

Z
C
Z

D��h�j�̂j�i

¼ 1

Tr½�̂�
Z

D��h�j�̂j�i ¼ h�̂i: (21)

As seen, the constant C cancels out and consequently
we will ignore constants of this type further on. If
one considers an average of a nonlocal product

�̂ðx1Þ�̂ðx2Þ . . . �̂ðxnÞ, the result obviously is

h�ðx1Þ�ðx2Þ . . . �ðxnÞi ¼ h�̂ðx1Þ�̂ðx2Þ . . . �̂ðxnÞi:
(22)

C. Oð�̂; �̂Þ depends only on �̂

As previously, we first consider Oð�̂; �̂Þ ¼ �̂ðxÞ

h�̂i ¼ 1

Tr½�̂�
Z D�

2�
h�j�̂ �̂ j�i

¼ 1

Tr½�̂�
Z D�

2�
�h�j�̂j�i; (23)

where

Tr ½�̂� ¼
Z D�

2�
h�j�̂j�i: (24)

The same result is obviously obtained starting with the

complete set of eigenstates of �̂. Since we will epeatedly

go from the eigenstates of �̂ to eigenstates of �̂ or vice
versa, let us see how it proceeds

h�̂i ¼ 1

Tr½�̂�
Z

D�h�j�̂ �̂ j�i

¼ 1

Tr½�̂�
Z

D�
D�1

2�

D�2

2�

��2h�j�1ih�1j�̂j�2ih�2j�i: (25)

Because

h�j�i ¼ exp

�
i
Z

d3x��

�
;

h�j�i ¼ exp

�
�i

Z
d3x��

�
;

(26)

one finds

h�̂i¼ 1

Tr½�̂�
Z
D�

D�1

2�

D�2

2�
exp

�
i
Z
d3xð�1��2Þ�

�
��2h�1j�̂j�2i: (27)

Now one performs the integral over �, which generates
�½�1 ��2�, and after taking the integral either over�1 or
�2 one reproduces the result (23).
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Let us now compute h�i as

h�i ¼ 1

Z

Z
D�

D�

2�
D’ exp

�
�i

Z
d3x�’

�

��

�
�þ 1

2
’

���������̂
���������� 1

2
’

�
: (28)

With the complete sets of momentum eigenstates, the
formula (28) is rewritten as

h�i ¼ 1

Z

Z
D�

D�

2�
D’

D�1

2�

D�2

2�

� exp

�
i
Z

d3x

�
ð�1 ��2Þ�

þ
�
1

2
ð�1 þ�2Þ ��

�
’

�	
�h�1j�̂j�2i: (29)

The integrals over � and ’ produce the deltas
�½�1 ��2� and �½ð�1 þ�2Þ=2���, respectively.
After taking the trivial integrals over �1 and �2, one
shows that

h�̂i ¼ h�i: (30)

If one considers an average of a nonlocal product

�̂ðx1Þ�̂ðx2Þ . . . �̂ðxnÞ, the result is obviously analogous
to Eq. (22).

D. Oð�̂; �̂Þ depends on �̂ �̂

Let us compute h�ðxÞ�ðyÞi. The computation proceeds
in the same way independently whether x ¼ y or x � y.
So, the arguments are dropped. Using the complete sets of
momentum eigenstates, we have

h��i¼ 1

Z

Z
D�

D�1

2�

D�2

2�
exp

�
i
Z
d3xð�1��2Þ�

�

��1þ�2

2
�h�1j�̂j�2i: (31)

Now we evaluate h�̂ �̂i as

h�̂ �̂i ¼ 1

Tr½�̂�
Z

D�h�j�̂ �̂ �̂ j�i

¼ 1

Tr½�̂�
Z

D�
D�1

2�

D�2

2�

� exp

�
i
Z

d3xð�1 ��2Þ�
�
�2�h�1j�̂j�2i;

(32)

which is not equal to h��i.
In case of bosonic fields, it was found [6] that h��i ¼

1
2 h�̂ �̂þ�̂ �̂i; that is, the operators �̂ and �̂ have to be

symmetrized. One can guess that the fermionic operators
need to be antisymmetrized. To clarify this point, we

compute h�̂ �̂i

h�̂ �̂i ¼ 1

Tr½�̂�
Z

D�h�j�̂ �̂ �̂ j�i

¼ � 1

Tr½�̂�
Z

D�h�j�̂ �̂ �̂ j�i: (33)

The minus sign occurs because Tr½AB� ¼ �Tr½BA� when
the elements of matrices A and B belong to a Grassmann
algebra. Using the complete sets of momentum eigenstates,
one finds

h�̂ �̂i ¼ � 1

Tr½�̂�
Z

D�
D�1

2�

D�2

2�

� exp

�
i
Z

d3xð�1 ��2Þ�
�
�1�h�1j�̂j�2i:

(34)

Combining the results of (32) and (34), we prove that

h��i ¼ 1

2
h�̂ �̂��̂ �̂i: (35)

The result can be easily generalized to a nonlocal multiple

product of �̂ and �̂.
We conclude this section by saying that the Wigner

functional (3) indeed represents a density in a phase space
spanned by � and �.

IV. DIRAC FIELD

To proceed further, a dynamics of fermionic field must
be specified. We consider here the four-component Dirac

spinor �̂ðt;xÞ, which is an operator acting in the Hilbert
space of states, with the Lagrangian density

L̂ ¼ �̂ði��@� �mÞ�̂þ L̂I; (36)

where �̂ � �̂y�0, �� are the gammamatrices andm is the
fermion mass; the interaction term is assumed to either
describe the coupling to an electromagnetic (A�) or scalar
(�) classical field

L̂I ¼
8<
:�e�̂���̂A�;

�g�̂ �̂�
(37)

with e and g being the coupling constants. The field

operators �̂ and �̂� obey the Dirac equations

ð��@
� þ imÞ�̂ ¼

8<
:�ie�

�A��̂;

�ig��̂;

�̂ð��@
�
 � imÞ ¼

8<
: ie�̂��A�;

ig�̂�:

(38)

As is well known, the momentum conjugate to �̂ is

�̂¼def @L̂
@
_̂
�
¼ i�̂�0 ¼ i�̂y (39)
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with
_̂
� � @�̂

@t , and the field operators obey the anticommu-

tation relations

f�̂�ðt;xÞ; �̂�ðt;x0Þg ¼ 0; f�̂�ðt;xÞ; �̂�ðt;x0Þg ¼ 0;

(40)

f�̂�ðt;xÞ; �̂�ðt;x0Þg ¼ ����ð3Þðx� x0Þ; (41)

where �, � ¼ 1, 2, 3, 4 are the spinor indices.
The Hamiltonian is

Ĥ¼def
Z

d3xð�̂ _̂
��L̂Þ ¼ �

Z
d3x�̂�0

 
� � r þ im

þ ie��A�

ig�

 !!
�̂; (42)

and the Hamilton equations, which read

_̂
� ¼ �Ĥ

��̂
¼ ��0

�
� � r þ imþ ie��A�

ig�

� ��
�̂; (43)

_̂
�¼��Ĥ

��̂
¼��̂�0

�
��r
 
�im� ie��A�

ig�

� ��
(44)

are identical with the Dirac equations (38).

V. EQUATION OF MOTION

The equation of motion of the Wigner functional is
derived from the equation satisfied by the density matrix
operator

i
@

@t
�̂ðtÞ ¼ ½Ĥ; �̂ðtÞ�; (45)

where the Hamiltonian is given by Eq. (42). The field
operators are assumed to be in the Schrödinger picture
and thus the operators are time independent. We split the
Hamiltonian as

Ĥ ¼ Ĥr þ Ĥm þ ĤI; (46)

where

Ĥr � �
Z

d3x�̂�0� � r�̂;

Ĥm � �im
Z

d3x�̂�0�̂;

ĤI � �i
Z

d3x�̂
e�0��A�

g�0�

 !
�̂:

(47)

Equation (45) provides

i
@

@t
W½�;�; t� ¼ Ir þ Im þ II; (48)

where

I	 �
Z

D’ exp

�
�i

Z
d3x�’

�

�
�
�þ 1

2
’

��������½Ĥ	; �̂�
���������� 1

2
’

�
(49)

with 	 ¼ r, m, I. Further on we compute Ir, Im, and II.

A. Mass term

We first analyze the mass term showing some details
which will be skipped in the discussion of Ir and II. The
mass term has the form

Im ¼ im
Z

d3x
Z

D’ exp

�
�i

Z
d3x�’

�

�
�
�þ 1

2
’

���������̂�T
0 �̂ �̂þ�̂ �̂�0�̂

���������� 1

2
’

�

þmTr½�0�
Z

d3x�ð3Þðx ¼ 0ÞW½�;�; t�; (50)

where we have used the commutation relation (41) provid-
ing

�̂ðxÞ�0�̂ðxÞ ¼ ��̂ðxÞ�T
0 �̂ðxÞ þ iTr½�0��ð3Þðx ¼ 0Þ:

(51)

The last term in Eq. (50), which is rather pathological

because of �ð3Þðx ¼ 0Þ, actually vanishes as Tr½��� ¼ 0.
It is, however, kept here as analogous expressions in Ir and
II are nonzero. We will show that the pathological term
from Eq. (50) will be exactly canceled by another term of
this type. It is worth noting that such pathological terms do
not show up when the equation of motion of the Wigner
functional of bosonic fields is derived [6]. The point is that
the Hamiltonian of the scalar field is the sum of the terms

which depend either on �̂ or �̂ but not on both.

Since h�þ 1
2’j, j�� 1

2’i are eigenstates of �̂, we

have

I0m ¼ im
Z

D’ exp

�
�i

Z
d3x�’

�Z
d3x

��
�þ 1

2
’

�
�T
0

�
�
�þ 1

2
’

���������̂ �̂

���������� 1

2
’

�

þ
�
�þ 1

2
’

���������̂ �̂

���������� 1

2
’

�
�0

�
�� 1

2
’

��
; (52)

where the pathological term is excluded from I0m that is

I0m � Im �mTr½�0�
Z

d3x�ð3Þðx ¼ 0ÞW½�;�; t�: (53)

Now, the complete sets of momentum eigenstates are
introduced and one gets
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I0m ¼ im
Z

D’
D�1

2�

D�2

2�
exp

�
�i

Z
d3x�’

�

� exp

�
i
Z

d3x

�
ð�1 ��2Þ�þ�1 þ�2

2
’

�	

�
Z

d3x

�
��T

0 ð�1 ��2Þ þ ’�T
0

�1 þ�2

2

�
� h�1j�̂j�2i: (54)

Observing that the identity, which is obvious for bosonic
fields, holds for the fermionic ones with merely changed
the sign

i
�

��
exp

�
i
Z

d3x��

�
¼ �exp

�
i
Z

d3x��

�
; (55)

we find

I0m ¼ �m
Z

D’
D�1

2�

D�2

2�
exp

�
�i

Z
d3x�’

�

�
Z

d3x

�
��T

0

�

��
þ ’�T

0

�

�’

�

� exp

�
i
Z

d3x

�
ð�1 ��2Þ�þ�1 þ�2

2
’

�	
� h�1j�̂j�2i: (56)

The first term in Eq. (56) provides

I0m1
¼
Z

d3x��T
0

�

��
W½�;�; t�; (57)

but the second one requires further manipulations.
Using again the identity of the form (55), we get

I0m2
¼ �im

Z
D’

D�1

2�

D�2

2�

�
Z

d3x

�
�

��
exp

�
�i

Z
d3x�’

��
�T
0

�

�’

� exp

�
i
Z

d3x

�
ð�1 ��2Þ�þ�1 þ�2

2
’

�	
� h�1j�̂j�2i: (58)

With the help of the partial integration formula, which also
holds for the Berezin integrals, we obtain

I0m2
¼ �m

Z
d3x

�

��
�T
0�W½�;�; t�: (59)

Since

ð�T
0 Þ��

�

���ðxÞ��ðxÞ ¼ �ð�0Þ����ðxÞ �

���ðxÞ
þ Tr½�0��ð3Þðx ¼ 0Þ; (60)

where the spinor indices are explicitly written for clarity,
we have

I0m2
¼ m

Z
d3x��0

�

��
W½�;�; t� � Tr½�0�

�
Z

d3x�ð3Þðx ¼ 0ÞW½�;�; t�: (61)

One sees that the pathological term encountered in Eq. (50)
is exactly compensated by the term found in Eq. (61).
Therefore, combining the results of (57) and (61), the final
expression of Im reads

Im ¼ �m
Z

d3x

�
��T

0

�

��
���0

�

��

�
W½�;�; t�:

(62)

B. Interaction term

The computation of the interaction term II proceeds in
exactly the same way as that of the mass term Im, but m�0

must be replaced by either e�0��A� or g�0�. Therefore,

we have

II ¼ �
Z

d3x

�
�

e�0��A�

g�0�

 !
T �

��

��
e�0��A�

g�0�

 !
�

��

�
W½�;�; t�: (63)

C. Gradient term

It is more tedious to compute the gradient term Ir than
the mass one Im, but conceptually there are no important
differences. Finally, one finds

Ir ¼ i
Z

d3x

�
r� � ð�0�ÞT �

��

�r� � �0�
�

��

�
W½�;�; t�; (64)

where the relative minus sign of the two terms results from
the additional, when compared to analogous terms in Im,
partial integration with respect to x.

D. Equation of motion

Summing up the terms Ir, Im and II, the equation of
motion of the Wigner functional (48) gets the form

@

@t
W½�;�; t� �

Z
d3x

"
�

 
�0� � r þ im�0

þ i
e�0��A�

g�0�

 !!
T �

��
þ�

 
�0� � r

 
� im�0

� i
e�0��A�

g�0�

 !!
�

��

#
W½�;�; t� ¼ 0: (65)

Equations (43) and (44) show that the equation of motion
can be rewritten as
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�
@

@t
þ
Z

d3x

�
�H

���

�

���

þ �H

���

�

���

��
W½�;�; t� ¼ 0;

(66)

where the ‘‘classical’’ Hamiltonian equals

H ¼
Z

d3x

�
���0

�
� � r þ imþ i

e��A�

g�

� ��
�

�

¼
Z

d3x

�
��0

�
� � r

 
� im� i

e��A�

g�

� ��
�

�
:

(67)

We note that the differentiation of the ‘‘classical’’
Hamiltonian with respect the ‘‘classical’’ fields proceeds
somewhat differently than the differentiation of the
Hamiltonian operator with respect to the field operators,
as the ‘‘classical’’ fields belong to the Grassmann algebra.

Therefore, the signs of �Ĥ=��̂ and �H=�� coincide, but

those of �Ĥ=��̂ and �H=�� differ.
The equation of motion (66) has a structure of the

classical Liouville equation. This is an important differ-
ence when compared to the Wigner functional of bosonic
fields where the Liouville equation is obtained only when
the fields are either free or the quantum corrections to the
interaction are neglected [6]. The fermionic field instead
remains always classical except for the effects related to
the Pauli principle. This is not surprising, as the Dirac
equation is linear in the fermion field.

Once the equation ofmotion (66) is of the Liouville form,
one immediately writes down its ‘‘elementary’’ solution as

Wel½�;�; t� ¼ �½�ðxÞ ��cðt;xÞ��½�ðxÞ ��cðt;xÞ�;
(68)

where �cðt;xÞ and �cðt;xÞ is the solution of ‘‘classical’’
equations of motion

_� cðt;xÞ ¼ �H

��cðt;xÞ ;
_�cðt;xÞ ¼ �H

��cðt;xÞ ; (69)

which coincide with the Dirac equation and its conjugate.
We note that the sign in the second equation is different than
usual, as the differentiation is performed in the Grassmann
algebra. The solution (68) is called ‘‘elementary’’ because it
corresponds to a specific solution �cðt;xÞ, �cðt;xÞ of the

equations of motion. A general solution of Eq. (66) is a
superposition of the elementary solutions (68) with various
�cðt;xÞ, �cðt;xÞ. One typically considers a solution of
Liouville’s equation which includes a distribution of initial
values of the elementary solution.

VI. FINAL REMARKS

Quantum mechanical problems are usually solved in
terms of wave functions determined by the Schrödinger
equation. The approach using the Wigner function, which
obeys the transportlike equation of motion, offers an alter-
native technique. However, it has taken quite some time to
develop appropriate methods [2–5]. The counterpart of the
formalism employing the Wigner functional is the
Schrödinger functional equation satisfied by the wave
function which functionally depends on a field. The ap-
proach, which was first introduced for the bosonic fields
[11] and then extended to fermionic ones [12,13], has
various applications. Nonperturbative studies of gauge
fields and quantum gravity can be enlisted here, see
Refs. [14,15] for exemplary recent developments.
Hopefully, methods referring to the Wigner functionals
will be also useful.
The Wigner function is obviously not the only quasi-

probability distribution which allows one for a phase-space
description of quantum mechanical systems. There are of
particular importance the so-called Q and P quasiprob-
ability functions which were studied for fermion variables
[9]. Following the considerations, which are presented
here, the functions can be rather easily generalized to
functionals describing anticommuting fields, but it goes
beyond the scope of our study.
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