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Density fluctuations in the quark-gluon plasma
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Using the kinetic theory we discuss how the particle and energy densities of the quark-gluon plasma
fluctuate in a space-time cell. The fluctuations in the equilibrium plasma and in one from the early stage of
ultrarelativistic heavy-ion collisions are estimated. Within the physically interesting values of the parameters
involved the fluctuations appear sizable in both cases.
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The quark-gluon plasma, which is expected to be p
duced in energetic heavy-ion collisions, is usually describ
in terms of the averaged quantities such as baryon or en
density, temperature, etc. However, it is often important
know how these quantities, which are treated as local o
fluctuate around their average values. For example, it
been argued in our papers@1# that the color current fluctuat
ing around zero can initiate plasma instabilities. Gyulas
Rischke, and Zhang@2# have recently shown that the hydro
dynamical evolution of the quark-gluon plasma can be s
nificantly influenced by the energy density fluctuations at
initial state.

In this paper we derive, using kinetic theory metho
simple analytic expressions describing how the particle
energy densities fluctuate in a space-time cell of the volu
Dx3Dt. Then, we use the derived formulas to estimate
particle and energy density fluctuations in the equilibriu
plasma and in the parton system from the early stage
ultrarelativistic heavy-ion collisions at RHIC or LHC. Sinc
the approach which is employed is rather simplistic our
sults should be mainly treated as a guide for a more qua
tative study in the future.

Let us start with the fluctuations of particle densityr(x),
wherex[(t,x) is the four-position. The average density
expressed through the distribution functionf as

^r~x!&5^r&5E d3p

~2p!3 f ~p!, ~1!

wherep is the particle momentum. The system is assume
be on averagehomogeneous and stationary and con
quently, the distribution function is independent ofx. The
momentum distribution is arbitrary.

The density correlation function for the classical syst
of noninteracting particles is given by a well-known formu
see, e.g.,@3#, as

A~x!5
def

^r~x1!r~x2!&2^r&25E d3p

~2p!3 f ~p!d~3!~x2vpt !,

~2!
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wherex[x12x25(t12t2 ,x12x2) andvp is the particle ve-
locity equal p/Ep with Ep[Ap21m2. Due to the average
space-time homogeneity the correlation functionA(x) de-
pends on the difference ofx1 and x2 only. The space-time
points (t1 ,x1) and (t2 ,x2) are correlated in the system o
noninteracting particles if the particles fly from (t1 ,x1) to
(t2 ,x2). For this reason the deltad (3)(x2vt) is present in
formula~2!. The momentum integral of the distribution func
tion simply represents the summation over particles. Ap
cability of our classical approach to a quantum system s
as a quark-gluon plasma is considered below. We also
cuss there when the partons can be taken as noninteracti
in Eq. ~2!.

We get the particle density fluctuations in a given spa
time cell averaging the correlation functionA(x) over the
cell volume. Specifically,

^r2&2^r&2[E d4x D~x!A~x!, ~3!

where the coarse-graining functionD(x) is chosen to be of
the Gaussian shape, i.e.,

D~x!5
1

4p2DtDx3 exp S 2
t2

2Dt22
x2

2Dx2D ,

with Dt and Dx denoting the root mean square of the c
size in time and space direction, respectively.

Substituting the correlation function~2! into Eq. ~3! we
get

^r2&2^r&25
1

~2p!3/2Dx2E d3p

~2p!3

f ~p!

ADx21vp
2Dt2

. ~4!

As seen, the fluctuations remain finite forDt50 but grow to
infinity when Dx→0.

For massless particlesvp
251 and formula~4! essentially

simplifies. The relative fluctuations are then

^r2&2^r&2

^r&2 5
1

~2p!3/2Dx2ADx21Dt2

1

^r&
, ~5!
1518 © 1998 The American Physical Society
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and depend only on the average density and the size o
space-time cell. In the case of massive particles, a sim
simplification occurs forDt50.

One easily generalizes the above considerations to the
ergy density fluctuations. The average energy density and
respective correlation function read

^«&5E d3p

~2p!3 Epf ~p!, ~6!

W~x!5
def

^«~x1!«~x2!&2^«&2

5E d3p

~2p!3 Ep
2 f ~p!d~3!~x2vpt !.

One finds the energy density fluctuations in the space-t
cell as

^«2&2^«&2[E d4x D~x!W~x!

5
1

~2p!3/2Dx2E d3p

~2p!3

Ep
2 f ~p!

ADx21vp
2Dt2

.

For massless particles the relative energy density fluctuat
are

^«2&2^«&2

^«&2 5
1

~2p!3/2Dx2ADx21Dt2

^e2&

^«&2 , ~7!

with

^e2&[E d3p

~2p!3Ep
2 f ~p!. ~8!

One sees that in contrast to the relative particle density fl
tuations given by Eq.~5!, the energy density fluctuations~7!
depend not only on the average energy density but on
energy second moment, i.e.,^e2&, as well.

As already mentioned, our approach is classical. There
two quantum effects: particle localization and bosonic or f
mionic statistics which should be considered before the
proach is applied to a quantum system. If the cell sizeDx is
much larger than the average length of particle de Bro
wavel, i.e.,

Dx@l, ~9!

the particles can be treated as well localized. One also fi
analogous requirement forDt, but for the ultrarelativistic
system under consideration, the space and time scales, a
momentum and energy ones, are usually of the same o
Thus, we further discuss only the condition~9!, which is
checked below for the two cases: the equilibrium qua
gluon plasma and the parton system from the early stag
ultrarelativistic heavy-ion collisions.

One takes into account the effect of quantum statis
substituting the distribution functionf by f (16 f ), where1
is for bosons and2 for fermions, in Eq.~2!. For the equi-
librium quark-plasma the numerical effect of the statistics
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small because the quark~fermionic! and gluon~bosonic! cor-
rections, which are of comparable value, act in opposite
rections. In the case of the parton system from the early s
of ultrarelativistic heavy-ion collisions, where gluons dom
nate, we also neglect the effect of bosonic statistics. T
correction is expected to be small but significantly comp
cates the computation. The point is that the parton densit
large at the early stage of the collision but the phase-sp
density, which matters for the quantum statistics effects
reduced due to the large longitudinal momentum range of
partons.

The quarks and gluons are taken as noninteracting in
approach. More specifically, the partons are assumed to
low the straight line trajectories in Eq.~2!. Since the QCD
color forces are of long range, the quarks and gluons alw
interact in a many-parton system. However, the effect of
teraction is minor at the space scale which is much sma
than the inverse momentum transfer due to the interact
Therefore, our formulas~5! and ~7! are basically correct as
long as

Dx!
1

q
, ~10!

whereq is the characteristic momentum transfer discus
below.

To obtain our final formulas~5! and ~7! the partons have
been assumed to be massless. This assumption is corre
the case of equilibrium plasma at sufficiently large tempe
ture when the interaction can be treated as a small pertu
tion. The situation is less clear when the early stage
nucleus-nucleus collision is considered. Then, the partons
off mass shell. Nevertheless we still treat them as mass
i.e., we assume that the parton mass~‘‘off-shellness’’! is
smaller than 1/Dx. We adopt this assumption keeping
mind that the partons with off-shellnessm decay afterm21.
Thus, they can be treated as noninteracting at a much sm
scale only.

After these comments let us discuss the equilibriu
quark-gluon plasma. The distribution function then reads

f eq~p!5
gg

ebEp21
1

gq

ebEp11
, ~11!

whereb215T is the temperature andgg516 andgq524 are
the numbers of the internal degrees of freedom of quarks~of
two flavors! and gluons within the SU~3! gauge group. The
plasma is assumed to be baryonless and the quarks are m
less, as are gluons.

Substituting the function~11! to Eqs.~1!, ~6!, and~8! we
get, respectively,

^r&5
34z~3!

p2 T3>4.14T3,

^«&5
37p2

30
T4>12.2T4,

^e2&5
462z~5!

p2 T5>48.5T5,
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with z(z) being the zeta Riemann function;z(3)>1.202 and
z(5)>1.037. The relative fluctuations of particle and ener
densities~5! and ~7! are then

A^r2&2^r&2

^r&2 >
0.124

Dx3/2T3/2
,

A^«2&2^«&2

^«&2 >
0.144

Dx3/2T3/2
, ~12!

where we put for simplicityDt50.
We estimate the average length of particle de Brog

wave as the inverse average momentum, which in turn
defined asA^^p2&&, where ^^•••&& denotes averaging ove
particles. Therefore,

l5
1

A^^p2&&
5A ^r&

^e2&
>

0.292

T
,

and condition~9! gets the formDxT@0.3.
In the equilibrium quark-gluon plasma the characteris

momentum transfer can be identified with the Debye scre
ing massmD , which for two flavors and three colors equa
gT with g being the QCD coupling constant, see, e.g.,@4#.
Then, condition~10! is DxT!1/g.

One sees that the two conditions, which allow us to tr
partons as free and classical, can be fulfilled simultaneo
if g21@1, i.e., when the plasma is weakly interacting. U
fortunately, at temperatures of order of a few hundreds M
g is not much smaller than unity. Therefore,Dx should be
close toT21 so that the two conditions are not badly vi
lated.

The result~12! can be helpful in choosing the physical
reasonable size of the elementary fluid cell in numerical
drodynamical calculations. On one hand, the cell should
small enough to get details of the density profiles, but on
other hand, the cell size should be sufficiently large to red
the fluctuations. One sees from Eq.~12! that atT5200 MeV
andDx51 fm the energy density deviates from the avera
value by about 14%. The fluctuations increase to 41%
Dx50.5 fm. However, such a small cell is at the border li
of applicability of our classical approach.

The size of the space-time cell is sometimes dictated
the characteristic scale of the phenomenon under cons
ation. When the deconfinement phase transition is discus
the cell sizeDx should be identified with the inverse con
finement scale parameterLQCD>200 MeV. At the critical
temperatureTc5150 MeV the energy density fluctuation
are about 22%. Such sizable fluctuations can significa
speed up the process of hadronization. However, one sh
keep in mind that near the phase transition the quark-gl
plasma is no longer a system of weakly interacting partic
and the formulas derived above can provide only a v
rough estimate.

Let us now consider the nonequilibrium plasma from t
early stage of ultrarelativistic heavy-ion collisions. It is com
monly believed that perturbative processes, which are un
theoretical control, play an important, if not dominant, ro
in these collisions, see, e.g.,@6#. We adopt this conventiona
point of view and discuss density fluctuations of hard a
semihard partons which are characterized by the transv
y
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momentum being relatively large, at least 2 GeV, when co
pared to the QCD scale parameterLQCD.

We estimate the particle~mostly gluons! density taking
the numbers from@5#, where it has been found that about 57
perturbative gluons are generated at the early stage of
central Au-Au collision at RHIC (As5200 GeV perN-N
collision! and 8100 at LHC (As56 TeV perN-N collision!.
Assuming that all these gluons appear in the cylinder of
volume pr 0

2A2/3l , wherer 051.1 fm, A5197, andl 51 fm,
we get the average densities

^r&>H 4.4 fm23 for RHIC,

63 fm23 for LHC,

which immediately provide@via Eq. ~5!# the density fluctua-
tions.

To estimate the energy density fluctuations one needs
parton momentum distribution. We take it in the form whic
corresponds to the flat rapidity distribution in the interv
(2Y,Y), i.e.,

f ~p!5
1

2Y
Q~Y2y!Q~Y1y!h~p'!

1

p'coshy
, ~13!

where y and p' denote the parton rapidity and transver
momentum. We do not specify the transverse momen
distribution h(p') because it is sufficient for our conside
ations to demand that the distribution~13! is strongly elon-
gated along the beam axis, i.e.,eY@1.

The QCD-based computations, see, e.g.,@6#, show that the
rapidity distribution of partons produced at the early stage
heavy-ion collisions is essentially Gaussian with the width
about one to two units. When the distribution~13! is used to
simulate the Gaussian one,Y does not measure the size
the ‘‘plateau’’ but rather the range over which the partons
spread. If one takes the Gaussian distribution of the varia
s and the distribution~13! of the same variance, thenY
5A3s.

One computes the average energy~6! and energy squared
~8! densities with the distribution~13! as

^«&5
sinhY

Y
^p'&^r&>

eY

2Y
^p'&^r&,

^e2&5
sinh 2Y12Y

4Y
^p'

2 &^r&>
e2Y

8Y
^p'&2^r&,

and gets the energy density fluctuations

A^«2&2^«&2

^«&2 >
0.178

Dx3/2
A Y

^r&
, ~14!

whereDt50.
Taking the values ofY given in @5#, i.e., Y>2.5 at RHIC

and Y>5.0 at LHC and the gluon density, which has be
estimated above, one gets the energy density fluctuati
Equation~14! tells us that the fluctuations at RHIC are 13
for Dx51 fm and increase to 38% forDx50.5 fm. At LHC
the fluctuations are smaller by factor 2.7. Since the aver
transverse momentum of perturbative partons is of GeV
der and the longitudinal momentum is even larger, th
wavelength is a small fraction of 1 fm. The condition~9! is
then easily satisfied for the cell size of interest. Neglect
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the interaction seems to be reasonable as well, when
partons with small off-shellness are taken into account.

Let us summarize our considerations. We have deri
the formulas which describe how the particle and ene
densities fluctuate in a space-time cell of the volumeDx3Dt.
These formulas, which have a very simple form for massl
particles, have been applied to estimate the density fluc
tions in quark-gluon plasma. We have considered equi
rium plasma and the anisotropic parton system from the e
stage of ultrarelativistic heavy-ion collisions at RHIC
LHC. In both cases the fluctuations can be large within
,
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reasonable values of the parameters of interest. Sizeable
sity fluctuations are of physical interest when the tempo
evolution of the plasma system is studied. As shown in@2#,
the hydrodynamics is then noticeably modified. The dens
fluctuations seem to be even more important when the h
ronization is analyzed or one considers processes, such a
J/c dissociation in the plasma@7#, which are strongly den-
sity dependent.
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