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Glasma properties in small proper-time expansion
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In a series of works by two of us, various characteristics of the glasma from the earliest phase of relativistic
heavy-ion collisions have been studied using a proper-time expansion. These characteristics include energy den-
sity, longitudinal and transverse pressures, collective flow, angular momentum, and parameters of jet quenching.
In this paper we extend the proper-time interval where our results are reliable by working at higher order in the
expansion. We also generalize our previous study of jet quenching by extending our calculations to consider
inhomogeneous glasma. Inhomogeneities are an important aspect of physically realistic systems that are difficult
to include in calculations and are frequently ignored.
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I. INTRODUCTION

The earliest phase of relativistic heavy-ion collisions is
the least understood. The phenomena occurring during this
earliest phase are largely “forgotten” due to the subsequent
temporal evolution of the system, and consequently experi-
ments provide very limited information about its properties.
What happens during this phase is usually parametrized using
a few of its primary characteristics, such as an energy density
profile, and used only to provide initial conditions for the later,
much better understood, hydrodynamic phase. The earliest
phase, however, is of special interest for several reasons. At
very early times the matter is strongly anisotropic, far from
thermodynamic equilibrium, and the energy density reaches
its maximal values. The processes which take place in this
phase can significantly affect the subsequent evolution of the
system and its final-state characteristics.

Several different strategies have been used to understand
and describe the earliest phase of relativistic heavy-ion colli-
sions. The framework of the color glass condensate effective
theory (see, for example, the review [1]) is very commonly
applied. The theory is based on a separation of scales between
hard valence partons and soft gluons. The system that exists
at very early times is called a “glasma.” It consists of large
occupation number, coherent chromodynamic fields that are
essentially classical. The dynamics of the glasma fields is
determined by the classical Yang-Mills equations with sources
provided by the valence partons. To calculate observables
one performs averaging over a Gaussian distribution of color
charges within each nucleus.

Properties of the glasma have been studied for over two
decades using more and more advanced numerical simula-
tions; see Refs. [2–5] as examples of recent works in this
direction. There are also analytic approaches, but they are

usually very limited in their applicability. There is a method
designed to study the earliest phase of relativistic heavy-ion
collisions that uses an expansion of the Yang-Mills equa-
tions in powers of the proper time τ , which is treated as
a small parameter. The method, which is sometimes called
a “near field expansion,” was proposed in [6] and further
developed in [7–11]. The results provided by the method are
limited to small values of τ but they are analytic and free of
artifacts of numerical computation like those caused by taking
a continuous limit in the case of lattice calculations.

The small τ expansion has been extensively used in a series
of works by two of us [12–16]. We will summarize below
the main results from those papers. The results that will be
presented in this paper extend the range of proper times over
which our method is reliable, and clarify some important is-
sues about the effects of realistic color charge densities. These
results more firmly establish the validity of our method, and
motivate the development of other applications.

In Refs. [12,13] we studied various glasma characteristics
which can be derived from the energy-momentum tensor ob-
tained working to sixth order in the small-τ expansion. The
calculation was technically difficult because event-averaged
field correlators need to be regulated in both infrared and
ultraviolet domains, and because the number and complexity
of the terms involved grows rapidly with the order of the
proper-time expansion. We obtained analytic expressions for
the energy density and longitudinal and transverse pressures
as functions of τ . Numerical calculations were done using a
Woods-Saxon distribution of color charges in the colliding
nuclei. Central and peripheral Pb-Pb and Pb-Ca collisions
were considered. We discussed the glasma pressure anisotropy
and observed the temporal evolution of the longitudinal and
transverse pressures, and of two pressures transverse to the
beam direction: one parallel to the impact parameter and one
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perpendicular to it. The beginning of the process of the sys-
tem’s equilibration is clearly seen.

We also studied in [13] the collective flow of the glasma.
We considered radial flow, at fixed azimuthal angle in the
transverse plane, and also azimuthal asymmetries of the flow
at fixed radius. We found the rather surprising result that
Fourier coefficients of flow anisotropy v1, v2, v3 are of com-
parable values to the coefficients experimentally measured in
final states of relativistic heavy-ion collisions. We also showed
that the glasma collective flow is correlated with the spatial
eccentricity of the system, which mimics hydrodynamic be-
havior. The result might explain, at least partially, the success
of hydrodynamic models applied to the far-from-equilibrium
quark-gluon plasma that is produced in a heavy-ion collision.

The final finding presented in [13] is a very small glasma
angular momentum perpendicular to the reaction plane. This
shows that only a small fraction of the very large angular mo-
mentum of the incoming nuclei which is carried by the valence
quarks is transferred to the matter produced at midrapidity.
Our finding contradicts the picture of a rapidly rotating glasma
but it agrees with the experimentally observed absence of
global polarization of hyperons and vector mesons produced
in heavy-ion collisions at top energies available at the BNL
Relativistic Heavy Ion Collider (RHIC) as well as at higher
energies [17].

In Refs. [14–16] we studied jet quenching in the glasma.
Since the preequilibrium phase lasts for about 1 fm/c or less
while the lifetime of the equilibrium phase is an order of
magnitude longer, the effect of jet suppression in glasma is
typically ignored completely. We have shown that the coef-
ficient q̂, which controls the radiative energy loss of a high
pT parton, is about an order of magnitude bigger in glasma
than in a quark-gluon plasma in the equilibrium phase. The
effect is mostly due to the high energy density of the glasma.
Consequently, the accumulated energy loss in the short life-
time preequilibrium phase and in the long lasting equilibrium
one are of similar value. The conclusion is that ignoring
the glasma in a theoretical description of jet suppression is
unjustified.

In this work we have extended and generalized the cal-
culations done in [12–16]. One important point is that the
validity of the results obtained using the small proper-time
expansion depends crucially on the order of the expansion.
The properties of the glasma which are derived from the
energy-momentum tensor in Refs. [12,13] were obtained to
sixth order. These results hold for 0 < τ � 0.05 fm/c. Jet
quenching was studied in Refs. [15,16] to fifth order but the
radius of convergence is bigger in this case and our results
hold for 0 < τ � 0.07 fm/c. In this paper we work up to
eighth order in the τ expansion, which extends the interval
of τ where results are reliable. In Sec. III we will show that, at
eighth order in the expansion, results obtained from the energy
momentum tensor are valid to approximately 0.06 fm/c, and
the momentum broadening coefficient q̂ we have calculated is
reliable to about 0.08 fm/c.

The calculation of the chromoelectric and chromomagnetic
field correlators at high orders in the proper-time expansion
is challenging in terms of both computation time and mem-
ory. When the fields are written as a sum of terms involving

precollision potentials, the number of terms grows rapidly
with the order of the expansion. For example, at order τ 8 the
z component of the magnetic field has 15 964 128 terms. In
addition, the number of factors of precollision potentials in
a single term grows with the order of the expansion, which
means that the number of two-point functions produced by
applying Wick’s theorem also grows quickly. The number of
possible contractions of four factors of precollision potentials
is 3. For 12 precollision potentials there are 10 395 possible
contractions. A correlator of two field components at order
τ 8 is a sum of approximately 2.6 × 1018 terms. Each of these
terms is then summed over color indices.

The calculation clearly requires the use of computer al-
gebra. Mathematica is powerful and easy to use, but since
glasma potentials are SU(3) valued and therefore noncom-
mutative, Mathematica (which is heavily based on a built-in
ordering algorithm) is not well suited to these calculations.
There is a package called NCALGEBRA but it is too slow to be
useful for our purposes. For this reason we have developed a
hybrid procedure. The first steps are done using Mathematica.
At each order in the proper-time expansion, for pair of squared
field components, terms that have an even number of poten-
tials from each nucleus are selected and stored in ordered lists.
The remainder of the calculation is done in JULIA, a relatively
new language that combines the symbolic features and ease of
use of Mathematica’s functional programming with the speed
of C. Separate modules are used to apply Wick’s theorem
and perform the traces over the color indices. Up to seventh
order, the complete result for each correlator of the form
〈X iX j〉, where X i and X j denote a component of either the
chromoelectric or the chromomagnetic field, can be computed
and stored, running parallel on 32 cores, in about six days. The
resulting 6 × 6 symmetric matrix has 21 independent compo-
nents and requires about 6 GB to store. Beyond seventh order
the field correlators are too large to store when they are written
in the form of sums of products of precollision correlators. It is
necessary to write the correlators of the precollision potentials
in terms of charge density functions, and use numerical values
for the coupling constant and the infra-red and ultra-violet
regulators introduced in this correlator, before summing all
terms and storing the final result. This removes our ability to
study the dependence of our results on the gradient expansion,
and the values of the confinement and saturation scales, be-
yond seventh order, without complete recalculation. All field
correlators at eighth order can be calculated in two weeks and
the final expression is about 10 MB.

In addition to extending our calculations to higher or-
ders in the proper-time expansion, we have also improved
the calculation presented in [14–16] in a different way that
is particularly important. In [12,13] we included the effects
of varying nuclear density in our calculation of the energy
momentum tensor using a gradient expansion, similar to the
method of Refs. [9,10]. The application of the same method in
the momentum broadening and collisional energy loss calcu-
lations is considerably more difficult. The basic reason is that
the calculation of the energy momentum tensor requires one-
point correlators while two-point correlators are needed to
calculate transport coefficients. For this reason we calculated
q̂ and dE/dx in [14–16] only in the case of a homogeneous
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glasma where the incoming nuclei are assumed to be infinitely
extended and homogeneous in the plane transverse to the
beam direction. A realistic modeling of jet quenching in rela-
tivistic heavy-ion collisions obviously requires treating nuclei
as finite objects of varying density. This issue is particularly
important because the Fokker-Planck formalism that we use
relies on some assumptions about the approximate translation
invariance of the glasma. In this work we have verified that
these assumptions are justified. We have modified and ex-
tended our calculations of q̂ and dE/dx so that the glasma
under consideration is produced in collisions of finite nuclei
with a Woods-Saxon density distribution. The field correlators
are computed using the first order gradient expansion and to
seventh order in the proper-time expansion.

Throughout the paper we use the natural system of units
with c = h̄ = kB = 1.

II. SUMMARY OF COMPUTATIONAL METHOD

We consider a collision of two heavy ions moving with
the speed of light towards each other along the z axis and
colliding at t = z = 0. The vector potential of the gluon field
is described with the ansatz [18]

A+(x) = �(x+)�(x−)x+α(τ, �x⊥),

A−(x) = −�(x+)�(x−)x−α(τ, �x⊥),

Ai(x) = �(x+)�(x−)αi
⊥(τ, �x⊥) + �(−x+)�(x−)β i

1(x−, �x⊥)

+�(x+)�(−x−)β i
2(x+, �x⊥), (2.1)

where the functions β i
1(x−, �x⊥) and β i

2(x+, �x⊥) represent
the precollision potentials, and the functions α(τ, �x⊥) and
αi

⊥(τ, �x⊥) give the postcollision potentials.
In the forward light cone the vector potential satisfies the

sourceless Yang-Mills equations but the sources enter through
the boundary conditions that connect the precollision and
postcollision potentials. The boundary conditions are

αi
⊥(0, �x⊥) = α

i(0)
⊥ (�x⊥) = lim

w→0

(
β i

1(x−, �x⊥) + β i
2(x+, �x⊥)

)
,

(2.2)

α(0, �x⊥) = α(0)(�x⊥) = − ig

2
lim
w→0

[
β i

1(x−, �x⊥), β i
2(x+, �x⊥)

]
,

(2.3)

where the notation limw→0 indicates that the width of the
sources across the light-cone is taken to zero, as the colliding
nuclei are infinitely contracted.

We find solutions valid for early postcollision times by
expanding the Yang-Mills equations in the proper time τ .
Using these solutions we can write the postcollision field-
strength tensor and energy-momentum tensor in terms of the
initial potentials α(0, �x⊥) and �α⊥(0, �x⊥) and their derivatives,
which in turn are expressed through the precollision potentials
�β1(x−, �x⊥) and �β2(x+, �x⊥) and their derivatives.

The next step is to use the Yang-Mills equations to write
the precollision potentials in terms of the color charge dis-
tributions of the incoming ions. One then averages over a
Gaussian distribution of color charges within each nucleus.
The average of a product of color charges can be written

as a sum of terms that combine the averages of all possible
pairs, which is called Wick’s theorem. We use the glasma
graph approximation [19], which means that we apply Wick’s
theorem not to color charges but to gauge potentials. The
correlator of two precollision potentials from different ions is
assumed to be zero as the potentials are not correlated to each
other. The building blocks of all physical quantities we study
are the correlators for two potentials from the same ion,

δabBi j
n (�x⊥, �y⊥) ≡ lim

w→0

〈
β i

n a(x−, �x⊥)β j
n b(y−, �y⊥)

〉
, n = 1, 2,

(2.4)

and their derivatives. In our calculation we use an expres-
sion for the correlators (2.4) that has the standard MV form
(see [12] for a detailed derivation), but also includes surface
density functions that depend on position in the transverse
plane, using the method of Ref. [9]. Other analytic forms for
these correlation functions have been studied; for example
see [20,21] for expressions applicable to dilute systems. The
surface density functions for the two ions μ1(�x⊥) or μ2(�x⊥)
are a phenomenological input to our calculations, and we
have used a Woods-Saxon distribution projected on the plane
transverse to the collision axis of the form

μ(�x⊥) =
(

A

207

)1/3
μ̄

2a ln(1 + eRA/a)

×
∫ ∞

−∞

dz

1 + exp[(
√

(�x⊥)2 + z2 − RA)/a]
. (2.5)

The parameters RA and a give the radius and skin thickness
of a nucleus of mass number A. We use a = 0.5 fm and RA =
A1/3r0 fm with r0 = 1.25 and A = 207. The integral in (2.5) is
normalized so μ̄ is the value of the charge density at the center
of the nucleus. This parameter is related to the saturation scale
Qs and we make the standard choice μ̄ = Q2

s /g4.
All of our results are obtained for the SU(3) gauge group,

g = 1, saturation scale Qs = 2 GeV, and infrared cutoff
m = 0.2 GeV.

III. RESULTS

In the following four subsections we present results for
Pb-Pb collisions at different impact parameters �b. A space
and time position in a glasma is determined by the proper
time τ , the space-time rapidity η, and the transverse vector
�R. The centers of the two infinitely contracted nuclei at the
moment of collision are at �R = �b/2 and �R = −�b/2. The vector
�R is often written in polar coordinates as �R = (R, φ). When
the collision is central and �b = 0, the glasma system has
cylindrical symmetry. Since we are mostly interested in the
glasma at midrapidity, the space-time rapidity η is set to zero
for all calculations presented in this paper.

A. Anisotropy

The transverse and longitudinal pressures pT , pL and the
energy density E are defined through the energy-momentum
tensor in Minkowski coordinates T μν as

E ≡ T 00, pT ≡ T xx, pL ≡ T zz. (3.1)
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FIG. 1. The anisotropy measure AT L versus τ at R = 5 fm in
central collisions (b = 0).

To observe the temporal evolution of the glasma anisotropy,
one can use a measure defined as [22]

AT L ≡ 3(pT − pL )

2pT + pL
. (3.2)

Initially the energy-momentum tensor is diagonal and pT =
E0 = −pL, where E0 is the initial energy density. At τ = 0 the
initial value of the anisotropy measure is therefore 6. As τ

increases we expect it to evolve towards zero as the glasma
isotropizes. Since the energy momentum tensor is a local
quantity and the colliding nuclei are finite and of varying den-
sity in the transverse plane, the measure AT L and its temporal
evolution can nontrivially depend on position.

In Refs. [12,13] we worked to sixth order in the proper-
time expansion and showed that the anisotropy measure
AT L decreases as τ grows up until τ ≈ 0.05 fm when the
proper-time expansion breaks down. Figure 1 presents our
calculations of central collisions with b = 0 and R = 5 fm
to eighth order. One sees that the radius of convergence is
extended to about 0.06 fm. We note that the nth order result is
a sum of all contributions up to nth order.

It is interesting to see how the anisotropy measure AT L

changes as a function of R and τ at different orders in the
proper-time expansion. Figure 2 shows contour plots of AT L

in central collisions (b = 0) at different orders in the τ ex-

FIG. 3. Radial flow to seventh order in the proper-time expansion
at R = 3 fm and φ = π/2 in collisions with b = 6 fm.

pansion. The vertical axis corresponds to R in fm and the
horizontal axis to τ in fm. The figure shows that AT L is lowest
at the center of the incoming nucleus, and that it decreases
with τ up to the point that the expansion breaks down. There
is almost no isotropization in the outer part of the system.
The sixth order result gives a lower minimum AT L but, as
can be seen in Fig. 1, this happens because the sixth order
calculation diverges towards negative values when the expan-
sion breaks down. The eighth order result decreases more
uniformly across the same range of R and τ , which shows that
the system is closer to an isotropic state at eighth order.

B. Radial flow

To characterize the radial flow of the expanding glasma
we compute the radial projection of the transverse Poynting
vector P ≡ R̂iT i0, where R̂i ≡ Ri/| �R|. In Fig. 3 we show this
quantity for fairly peripheral collisions with b = 6 fm at R = 3
fm and φ = π/2, at different orders in the τ expansion. Our
previous work included only the fifth order contribution. One
observes that, when seventh order contributions are taken into
account, our result for radial flow can be trusted to τ � 0.06
fm. Figure 4 shows the same quantity P at R = 3 fm for a
range of azimuthal angles φ in collisions with b = 6 fm. The

FIG. 2. The anisotropy measure AT L at three different orders in the τ expansion in central collisions (b = 0). The left panel shows the result
at fourth order in the expansion, the middle is sixth order, and the right panel shows the eighth order result. See text for further discussion.
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FIG. 4. Radial flow to seventh order in the proper-time expansion
at R = 3 fm for a range of azimuthal angles φ in collisions with
b = 6 fm.

flow is seen to be significantly stronger in the reaction plane
(φ = 0) than in the direction perpendicular to it (φ = π/2).

When the impact parameter is nonzero, we expect that the
radial flow in the plane transverse to the beam direction will
not be azimuthally symmetric. In our coordinate system the
x-y plane is transverse to the beam axis, and we always choose
the impact parameter along the x axis. The left panel of Fig. 5
shows the radial flow of the glasma for a fairly peripheral
collision with b = 6 fm, and the right panel is a more central
collision with b = 2 fm. The flow is greater in the x than in
the y direction, as expected, up to R ≈ 5 fm in the peripheral
collision and up to R ≈ 7 fm in the more central collision. At
bigger distances there is a slight increase in the radial flow
at larger azimuthal angles, but since the gradient expansion is
not reliable at distances comparable to the nuclear radii, the
accuracy of the calculation is much lower in this region. The
effect is difficult to see from the figures, and the black arcs that

FIG. 6. Elliptic flow coefficient v2 versus proper time at different
orders in the proper-time expansion in collisions at b = 2 fm.

represent quarter circles are intended to make it more easily
visible.

C. Fourier coefficients of azimuthally asymmetric flow

The azimuthal asymmetry of the collective flow is usually
quantified in terms of Fourier coefficients v1, v2, v3 . . . . In
Appendix C of our paper [13] we explain in detail how these
coefficients are defined and how they are expressed in terms of
the components T 0x and T 0y of the energy-momentum tensor.
Below we discuss only the elliptic flow coefficient v2 and the
eccentricity of the energy density ε, which are defined as

v2 =
∫

d2R
T 2

0x−T 2
0y√

T 2
0x+T 2

0y∫
d2R

√
T 2

0x + T 2
0y

and ε = −
∫

d2R
R2

x−R2
y√

R2
x+R2

y

T 00

∫
d2R

√
R2

x + R2
y T 00

.

(3.3)

In Fig. 6 we show the coefficient v2 as a function of τ

at orders 1, 3, 5, and 7 of the expansion, for collisions with

FIG. 5. Radial flow in the transverse plane at τ = 0.05 fm at seventh order in the proper-time expansion in collisions with b = 6 fm (left
panel) and with b = 2 fm (right panel). The black curves mark lines of constant radius. See text for further explanation.
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FIG. 7. Eccentricity ε versus proper time at different orders in
the proper-time expansion in collisions at b = 2 fm.

impact parameter b = 2 fm. The coefficient v2 is constant in
time at first order in the expansion, since both the numerator
and denominator are linear in τ . The seventh order result
clearly shows that v2 does not saturate at τ � 0.05 fm, as the
fifth order result might suggest, but it continues to grow with
time. We note that the calculation of v2 at very small times is
numerically difficult because the numerator and denominator
both approach zero as τ → 0.

It is usually assumed that the experimentally observed
azimuthal anisotropy in momentum space of a hadronic final
state is caused by the azimuthal anisotropy in coordinate space
of the energy density and pressure of the initial state. Phys-
ically the idea is that the final state momentum anisotropy
is generated by pressure gradients, and it is expected that
this takes place mostly during the hydrodynamic evolution
of the system [23]. To investigate if this behavior is seen in
our calculation, we computed the eccentricity ε as a function
of τ at orders 2, 4, 6, and 8 of the expansion, for collisions
with impact parameter b = 2 fm. The results are presented in
Fig. 7, and together with Fig. 6 they show that the collective
elliptic flow increases in time while the spatial eccentricity
decreases, which resembles hydrodynamical behavior even
though the glasma is far from a local equilibrium state. One
sees also that the eccentricity changes much more slowly than
the elliptic flow coefficient.

It is interesting to consider the dependence of the glasma
elliptic flow on the system’s initial eccentricity, which in
turn depends on impact parameter. We show in Fig. 8 the
coefficient v2 at τ = 0.06 fm computed at seventh order of
the proper-time expansion and the initial eccentricity, both as
functions of impact parameter. In Fig. 9 the coefficient v2 is
divided by the initial eccentricity ε. One sees that the relative
change in v2 when the impact parameter grows from 1 to 6
fm is much greater than the relative change in the ratio v2/ε.
This behavior indicates that the initial spatial asymmetry of
the glasma is transmitted to the momentum asymmetry of the
system, which mimics the behavior of hydrodynamics.

We comment that in Ref. [13] we performed a similar
analysis (at lower order in the proper-time expansion), but the
coefficient v2 calculated for τ = 0.04 fm was compared, not
with the initial value of ε, but with its value at the same proper
time τ = 0.04 fm. Since the initial value of ε differs by less
than 1% from its value at τ � 0.04 fm, the numerical results

FIG. 8. v2 at τ = 0.06 fm and ε at τ = 0 versus impact parameter.

and the conclusions we draw from them are unaffected by this
issue.

D. Angular momentum

A system of relativistic heavy ions colliding at a finite
impact parameter has initially a huge angular momentum
which is perpendicular to the reaction plane. The value of the
initial angular momentum carried by the nucleons which will
participate in the collision is of order 105 at maximum RHIC
energies [24,25] and even larger at energies available at the
CERN Large Hadron Collider (LHC). We would like to know
how much of this initial angular momentum is transferred to
the glasma that is produced in the collision. Since the glasma
in our approach is boost invariant, we cannot compute the total
angular momentum of the system which, strictly speaking,
extends in rapidity from minus to plus infinity. Instead we
compute the angular momentum per unit rapidity, which can
be obtained from the formula [13]

dLy

dη
= −τ 2

∫
d2 �R RxT 01. (3.4)

FIG. 9. Ratio of v2 at τ = 0.06 fm over ε at τ = 0 versus impact
parameter.
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FIG. 10. Left panel: angular momentum versus impact parameter at different times to fourth (dotted lines), sixth (dashed lines), and eighth
(solid lines) order of the proper-time expansion. Right panel: angular momentum versus time at different orders in the τ expansion with
b = 2.0 fm.

In the first graph in Fig. 10 we show the glasma angular
momentum at five different impact parameters from b = 0.5
fm to b = 2.5 fm and at five different proper times from
τ = 0.02 fm to τ = 0.06 fm. We displace the ion moving
in the positive z direction a distance b/2 in the positive x
direction, and the ion that is moving in the negative z direction
is shifted the same amount in the negative x direction. The
collision therefore produces angular momentum in the nega-
tive y direction. The results are obtained at fourth, sixth and
eighth order of the proper-time expansion. The second graph
in Fig. 10 shows the angular momentum computed at these
three orders as a function of τ . One sees that the eighth order
results are very close to those of sixth order for τ � 0.06 fm,
which means that the time interval under consideration is well
within the radius of convergence of the expansion.

The integral over Rx in Eq. (3.4) is taken up to Rx
max =

5.9 fm. We note that the dominant contribution to the angular
momentum comes from the parts of the nuclei that are far-
thest from the collision center, with respect to which angular
momentum is calculated. These are the regions where the
gradient expansion we use is to be trusted the least. Our results
for the angular momentum therefore do depend on the upper
limit of the integral, and should only be considered order-of-
magnitude estimates for the glasma angular momentum. In
Ref. [13] we give a more detailed analysis of the extent to
which our results for the angular momentum of the glasma
depend on the integration region that is used to do the cal-
culation. It is important to note that the physical significance
of our result is unaffected by these considerations. Our eighth
order results confirm and reinforce our earlier finding that only
a small fraction of the very large angular momentum of the
incoming nuclei is transferred to the glasma.

E. Jet quenching

We study jet quenching using a Fokker-Planck equation of
hard probes in a system populated with strong chromody-
namic fields [26]:(D − ∇α

p X αβ (�v)∇β
p − ∇α

pY α (�v)
)
n(t, �x, �p) = 0, (3.5)

where n(t, �x, �p) is the distribution function of hard or heavy
partons, �v = �p/Ep is the parton’s velocity, �p is the momentum

and Ep is the energy. The parton’s four-momentum is assumed
to be on mass-shell and D ≡ ∂

∂t + �v · ∇ is the substantial
derivative. The tensor X αβ (�v) is

X αβ (�v) ≡ 1

2Nc

∫ t

0
dt ′ Tr[〈Fα (t, �x)Fβ (t − t ′, �x − �vt ′)〉],

(3.6)

where �F (t, �x) ≡ g( �E (t, �x) + �v × �B(t, �x)) is the Lorentz color
force and g is the coupling constant. The chromoelectric
�E (t, �x) and chromomagnetic �B(t, �x) fields are given in the
fundamental representation of the SU(Nc) group. The vector
Y α (�v) can found from the relation

Y α (�v) = vβ

T
X αβ (�v), (3.7)

where T is the temperature of an equilibrated quark-gluon
plasma that has the same energy density as the glasma. The
collisional energy loss dE/dx of a high-energy parton travers-
ing the glasma and the momentum broadening coefficient q̂
which determines a hard parton’s radiative energy loss are
determined by the tensor X αβ (�v) as

dE

dx
= − v

T

vαvβ

v2
X αβ (�v), (3.8)

q̂ = 2

v

(
δαβ − vαvβ

v2

)
X αβ (�v). (3.9)

We mention that the field correlators in Eq. (3.6) are nonlo-
cal and consequently they are not gauge invariant. In principle
this problem could be fixed by inserting a link operator be-
tween the two fields but practically this procedure is difficult
to realize. In Ref. [16] [see Eqs. (26)–(28)] we gave an argu-
ment that the effect of omitting this link operator is probably
not very large in our calculation. The key observation is that
due to the short time interval the link operator is not much
different from unity. The generalization of our method to a
gauge invariant formulation is an important open question that
we intend to return to in a future publication.

The correlators of gauge potentials that we have calcu-
lated using the small τ expansion provide the correlators of
chromoelectric and chromomagnetic fields which determine
the tensor (3.6) and in turn give dE/dx and q̂. In our earlier
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FIG. 11. The momentum broadening coefficient q̂ as a function
of τ at different orders of the proper-time expansion. The seventh
order result cannot be seen because it lies directly under the sixth
order one.

works [15,16] calculations were done to fifth order in the
proper-time expansion. We present below the results of our
latest seventh order calculations. We consider only the case
where the ultrarelativistic hard probe moves perpendicularly
to the beam axis, with v = v⊥ = 1, and we note that this
means the energy loss gets contributions only from even or-
ders in the τ expansion. In Ref. [15], working at fifth order
in the proper-time expansion, we studied the dependence of
the momentum broadening parameter on the magnitude and
direction of the probe’s velocity. The size of the momentum
broadening parallel and perpendicular to the beam was studied
in [27].

In Fig. 11 we show the momentum broadening coefficient
q̂ as a function of τ at different orders of the proper-time
expansion up to sixth order. The seventh order result is not
seen because it lies directly under the sixth order one, which
indicates that the proper-time expansion converges to high
accuracy up to approximately τ = 0.08 fm. We comment that
for q̂ different orders in the expansion do not exhibit a simple
behavior of alternately increasing and decreasing the result,
as seen in quantities obtained from the energy-momentum
tensor, for example in Figs. 1 and 3.

Recently calculations of q̂ were done using a kinetic theory
description of an anisotropic quark-gluon plasma [28], which
is valid between the very early times where the glasma exits
and the onset of hydrodynamics. The results of this calcula-
tion smoothly connect the two regimes, and support the idea
that the preequilibrium phase plays an important role in jet
quenching.

The collisional energy loss −dE/dx of a hard parton mov-
ing with v = v⊥ = 1 is shown as a function of τ in the first
graph in Fig. 12. In order to calculate dE/dx we need the
temperature T of an equilibrated quark-gluon plasma whose
energy density is the same as the energy density of the glasma.
Using the formula for the energy density of an equilibrium
noninteracting quark-gluon plasma, the effective temperature
of the glasma can be estimated from the glasma energy den-
sity. The temperature obtained from the eighth order energy
density is shown in the second graph in Fig. 12, and the curves
for which the order of the expansion is indicated with a prime
are obtained using this temperature. The lighter curves on the
left side plot are obtained using a constant value T = 1 GeV,
which is not as well motivated from a physics point of view
but has the advantage of not mixing the dependence of the two
calculations, −dE/dx and E , on the proper-time expansion.
The figure shows that the results at different orders converge
well up to τ ≈ 0.06 fm for both calculations. We comment
that the results in our previous paper were obtained using an
effective temperature calculated from the sixth order energy
density (instead of our current eighth order result) and for this
reason the region of validity of the expansion was significantly
smaller.

In our earlier works [14–16] the momentum broadening
coefficient q̂ and the collisional energy loss dE/dx were
computed only in the simple case of a homogeneous glasma,
which means that the incoming nuclei were assumed to be
infinitely extended and homogeneous in the plane transverse
to the beam direction. A realistic modeling of jet quenching
in relativistic heavy-ion collisions requires treating nuclei as
finite objects of varying density. We have generalized our
previous calculations of q̂ and dE/dx so that the glasma under

FIG. 12. Left panel: the energy loss as a function of τ at different orders of the proper-time expansion up to sixth order. The dashed lines
are divided by an effective temperature obtained from the glasma energy density (see text for details) and the lighter colored solid curves are
made with T = 1 GeV. Right panel: the effective temperature as a function of the proper time, determined by comparison with an equilibrium
system with the same energy density.
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FIG. 13. q̂ versus R for central collisions at τ = 0.04 fm and different orders of the proper-time expansion from 3 to 6. The left panel
shows a close up of the region R < 4 fm.

consideration is produced in collisions of finite nuclei with a
Woods-Saxon density distribution. The field correlators are
computed using a first order gradient expansion. The cor-
relator 〈β i

n(�x⊥) β
j
n (�y⊥)〉 is expanded around �R ± �b/2, where

�R = 1
2 (�x⊥ + �y⊥) and only the first two terms of the expansion

are included. We note that the correlator 〈β i
n(�x⊥) β

j
n (�y⊥)〉 is

independent of �R if the system is translationally invariant in
the transverse plane.

Figure 13 shows q̂ versus R for central collisions (b = 0) at
τ = 0.06 fm at different orders of the proper-time expansion
up to sixth order. The calculation is done for a lead nucleus
with radius RA = 7.4 fm. In the outer part of the system the
charge density drops rapidly to zero and the gradient expan-
sion is not reliable. In the region 0 < R � 4 fm, which covers
most of the glasma’s volume, q̂ depends on R only weakly.
This means that the assumption of translation invariance in
the transverse plane is valid to good accuracy in this domain.

IV. SUMMARY AND CONCLUSIONS

We have extended and generalized our earlier calcula-
tions [12–16]. The characteristics of glasma derived from the
energy-momentum tensor, which were studied up to fifth or
sixth order in the proper-time expansion, have been calcu-
lated to eighth order for all quantities that can be obtained
from the energy momentum tensor. The calculations of the
transport coefficients associated with collisional energy loss
and momentum broadening have been extended from fifth
to seventh order. The calculations presented in this paper
enlarge the interval of τ where our results are reliable to 0 <

τ � 0.07 fm. Our results have allowed us to study in detail
the isotropization of the system and its radial flow. We have
improved our analysis of the Fourier coefficients of azimuthal
distribution, which reveals that the evolution of the glasma
has some features that mimic hydrodynamics. We have also
studied the transfer of the angular momentum from valence
quarks to glasma.

Our calculations of the jet quenching parameters q̂ and
dE/dx, which were obtained previously up to fifth order, have
been now extended to seventh order and they are significantly

more precise. These calculations have also been generalized
and made more physically relevant in an important way. In
our original approach, transport coefficients were calculated
with the simplifying assumption that the incoming nuclei were
translationally invariant in the plane transverse to the beam
direction, and consequently the glasma was homogeneous. In
this work we have included some of the effects of nuclear
structure by representing the charge density functions of the
nuclei with a Woods-Saxon distribution, and the effect of
varying nuclear density has been taken into account using a
gradient expansion up to first order. We note that the momen-
tum broadening and collisional energy loss calculations are
considerably more difficult than those of the energy momen-
tum tensor because the latter requires one-point correlators
while two-point correlators are needed to calculate transport
coefficients. Our results show that the density dependent pa-
rameters q̂ and dE/dx depend only weakly on position in
the transverse plane, except in the outer region of the glasma
system. These results justify the assumption of approximate
translation invariance in the transverse plane, which is re-
quired for the applicability of the Fokker-Planck approach that
we have developed.

The results presented in this paper confirm and reinforce
our earlier findings from [12–16], extend the radius of con-
vergence of the proper-time expansion, and verify that the
method we have developed to calculate transport coefficients
is compatible with realistically varying nuclear charge den-
sities. This work establishes more firmly the validity of
proper-time expansions as a calculational method to study
glasma properties, and motivates future projects using the
methods we have developed. Specifically, the density depen-
dent transport coefficients we have obtained allow for a more
realistic modeling of jet quenching in nuclear collisions.
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