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Abstract

Ž .The so-called F parameter, which measures the transverse momentum or energy correlations fluctuations in high-en-
ergy collisions independently of the particle multiplicity, is computed for the equilibrium ideal gas. As expected, F vanishes
for the particles obeying Boltzmann statistics but is finite for the quantum particles, positive for bosons and negative for
fermions. F , which is found for the pions gas, significantly exceeds the value of F measured by the NA49 experiment.p pH H

The discrepancy is discussed. q 1998 Elsevier Science B.V. All rights reserved.
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There is a variety of correlations observed in
proton–proton or proton–antiproton interactions at
high energies. In particular, it has been found that
the average particle transverse momentum depends

w xon the particle multiplicity in a given collision 1,2 .
These correlations should be also present in nu-

Ž .cleus–nucleus A–A collisions if such a collision is
Ž .a superposition of nucleon–nucleon N–N interac-

tions. However, there is no straightforward method
to observe them since the final state particles in A–A
collisions originate from the various N–N interac-
tions while the correlated particles come only from
the same N–N interaction.

1 Electronic address: mrow@fuw.edu.pl

w xIn our earlier paper 3 we have introduced a
Ž .rather tricky quantity later called F which appears

to be sensitive to the correlations independently of
the particle multiplicity. If the A–A collision is a
superposition of N–N interactions with no secondary
collisions, the value of F is exactly the same for the
N–N and A–A case. If the secondary interactions
play an important role in nucleus–nucleus collisions,

w xthe correlation of interest is reduced 4 and in the
limiting case, when the final sate particles are inde-
pendent from each other, F equals zero. The method

w xdeveloped in Ref. 3 has been recently applied to the
w xexperimental data and it has been found 5,6 that the

correlation, which is present in N–N collisions, sur-
vives in proton–nucleus ones but is significantly
reduced in the central Pb–Pb collisions. This result
appears to be a very restrictive test of the models
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describing the N–N and A–A collisions. For exam-
w xple, the so-called random walk model 8 is ruled out

because it has been shown to produce, in contrast to
the data, the stronger correlations in A–A than N–N

w xcase 7 .
Reduction of the correlations measured by F in

the central A–A collisions is naturally associated
with the evolution of the system produced in these
collisions towards the thermodynamical equilibrium.

w xHowever, it has been correctly observed in Ref. 7
that in the thermodynamical equilibrium the rudi-
mentary correlation should be present. Our aim is to
substantiate this observation.

ŽLet us first introduce the correlation or fluctua-
.tion measure F , where x is a single particle char-x

acteristics such as the particle energy or transverse
def

momentum. We define the variable z s xyx withx

the overline denoting averaging over a single particle
inclusive distribution. As seen z s0. We now in-x

troduce the variable Z, which is a multiparticle ana-
def N Ž .log of z, defined as Z sÝ x yx , where thex is1 i

summation runs over particles from a given event i.e.
the particles which are produced in the collision. One

² : ² :observes that Z s0, where ... represents aver-x
Ž .aging over events collisions . Finally, we define the

measure F in the following wayx

2² :Zdef x 2(F s y z . 1Ž .(x x² :N

Our purpose is to calculate F in the ideal quan-x

tum gas. At the beginning we identify x with the
particle energy E and then we consider the particle
transverse momentum p .H

One immediately finds that

31 d p 122z s EyE , 2Ž . Ž .HE 3 y1 b Er l e "12pŽ .

where the single particle average energy is

1 d3p E
Es H 3 y1 b Er l e "12pŽ .

while r equals

d3p 1
rs ; 3Ž .H 3 y1 b El e "12pŽ .
b'Ty1 is the inverse temperature; l'e bm denotes
the fugacity and m the chemical potential; E'

2 2(m qp with m being the particle mass and p its
momentum; the upper sign is for fermions while the
lower one for bosons. It is worth noting that the

Ž .result 2 does not depend on the number of the
particle internal degrees of freedom.

Since Z sUyNE, where U is the system en-E
² 2:ergy, Z is computed asE

2 2E E E E
2 2² :Z s q2 E l qE l lE 2 ž /Eb El El ElEb

=ln J V ,T ,l ,Ž .
Ž .where J V,T ,l is the grand canonical partition

w xfunction 9 defined as

J V ,T ,l s lNeyb Ua ,Ž . Ý Ý
aN

with V denoting the system volume and the index a

numerating the system quantum states. As well
w xknown 9 , the grand canonical partition function of

the quantum ideal gas equals

d3p
yb Ew xJ V ,T ,l s"g V ln 1"l e ,Ž . H 32pŽ .

with g being the number of the particle internal
degrees of freedom. Consequently,

² 2: 3Z 1 d p 2E
s EyEŽ .H 3² :N r 2pŽ .

=
ly1e bE

. 4Ž .2y1 b El e "1Ž .
As previously the result is independent of g. One
observes that

² 2:ZE 2- z andF -0E E² :N

for fermions,

² 2:ZE 2) z andF )0E E² :N
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for bosons and

² 2:ZE 2s z andF s0E E² :N

in the classical limit i.e. when ly1
41.

In the case of massless particles with vanishing
Ž .chemical potential which corresponds to ls1 , one

finds F analytically. Namely,E

z 3Ž . 3r4 0.093 3rs T ( T2 ž /ž / 0.121p

and

p 4
7r6 3.153Es T ( T ,ž /ž / 2.70130z 3Ž .

Ž . Ž Ž .where z x is the Riemann zeta function z 3 (
Ž . .1.202, z 5 (1.037 ; the upper case is for fermions

and the lower one for bosons. Further one computes

12z 5Ž . 5r4 3.012 2 2 2z s T yE ( T , 5Ž .E ž /ž / 3.061z 3Ž .
2 2² :Z 1 2p 6z 3Ž .7r8 3r4E 5 4s T y E T2ž / ž /² : 1 1N r 15 p

1r21 2 3q E T6 ž /1

2.77 2( T , 6Ž .ž /4.59

which finally give

y0.07
F ( T .E ž /0.40

When the system is composed of the equal mass
fermions and bosons with the numbers of the internal
degrees of freedom g and, respectively, g , thef b

Ž . Ž .analogs of the formulas 2 and 4 read

31 d p 22z s EyEŽ .HE 3g r qg r 2pŽ .f f b b

=
g gf b

q , 7Ž .y1 b E y1 b El e q1 l e y1f b

² 2: 3Z 1 d p 2E
s EyEŽ .H 3² :N g r qg r 2pŽ .f f b b

=

y1 b E y1 b Eg l e g l ef f b b
q .2 2y1 b Ey1 b E l e y1l e q1 Ž .Ž . bf

8Ž .

Ž . Ž . Ž . Ž .Using Eqs. 5 , 6 and 7 , 8 one easily com-
putes F for the baryonless quark-gluon plasma ofE

two flavours where g s24 and g s16; F (f b E

0.17 T.
Ž . Ž .Eqs. 2 , 4 can be used to get the measure Fp H

of the transverse momentum fluctuations. Since
< <p sp sinQ with p' p and Q being the angleH
Ž .between p and the beam z axis one gets

31 d p 122z s p ypŽ .Hp H H3 y1 b EH r l e "12pŽ .

1 d3p p
2 2 2s p y p pqpH H H33 ž /r 22pŽ .

=
1

, 9Ž .y1 b El e "1

² 2 : 3 y1 b EZ 1 d p l ep 2H s p ypŽ .H H H3 2y1 b E² :N r 2pŽ . l e "1Ž .

1 d3p p
2 2 2s p y p pqpH H H33 ž /r 22pŽ .

=
ly1e bE

, 10Ž .2y1 b El e "1Ž .
where

1 d3p pH
p s HH 3 y1 b Er l e "12pŽ .

1 d3p p sinQ
s H 3 y1 b Er l e "12pŽ .

p d3p p
s . 11Ž .H 3 y1 b E4r l e "12pŽ .

Let us observe that F is invariant under thep H

Lorentz boosts along the beam axis. This is evident
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Ž . Ž . Ž . Ž .when Eqs. 9 , 10 and 3 , 11 are written in the
from which reveals the transformation properties.
We consider as an example the average transverse
momentum which can be expressed as

1 d2 p dp pH I H
p s ,nHH 3 y1 b u pnr l e "12pŽ .

with

d2 p dp 1H I
rs ,nH 3 y1 b u pnl e "12pŽ .

where un is the four-velocity which determines the
n Ž .reference frame; u s 1,0,0,0 corresponds to the

thermostat rest frame. One sees that the two inte-
grals, which determine p , are both frame depen-H
dent due to the presence of dp . However, theI
dependence cancels out in the ratio of the integrals.
Analogously one shows that F is invariant.p H

We consider again the case of massless particles
with vanishing chemical potential. As previously the
calculations are performed in the thermostat rest
frame. Then,

p 5
7r6 2.483p s T ( T ,H ž /ž / 2.121120z 3Ž .

8z 5Ž . 5r4 2.502 2 2 2z s T yp ( T ,p HH ž /ž / 2.401z 3Ž .
2 2² :Z 1 4p 3z 3Ž .p 7r8 3r4H 5s T yž / ž /² : 1 1N r 45 2p

=
1r214 2 3p T q p TH H6 ž /1

2.33 2( T ,ž /3.37

which provide

y0.05
F ( T .p H ž /0.29

When the gas particles are massive andror the
chemical potential is finite, the correlation measure
F can be numerically computed directly fromp H

Ž . Ž .Eqs. 9 and 10 . In Figs. 1 and 2 we show F asp H

function of T and m for the pion gas. The pions are,

Fig. 1. The correlation measure F as a function of temperaturep H

T for four values of the chemical potential m. The most upper line
is for ms70 MeV, the second one for ms0, etc.

of course, massive with ms140 MeV. One sees
that the presence of the finite mass reduces the
correlation measure F when compared to thep H

massless case.
As already mentioned F has been experimen-p H

tally measured in the central Pb–Pb collisions by the
NA49 collaboration. The result is F s0.7"0.5p H

w xMeV 5 . If we identify the system freeze-out tem-
perature with the slope parameter deduced from the
pion transverse momentum distribution T(180 MeV
w x10 . Then, the value of F , which is read out fromp H

Fig. 1 for Ts180 MeV and ms0, equals 15 MeV
and drastically exceeds the experimental value. The
temperature is significantly reduced if the transverse
hydrodynamic expansion is taken into account. The
freeze-out temperature obtained by means of the
simultaneous analysis of the single particle spectra
and Bose-Einstein correlations is about 120 MeV
w x10 . The value of F for Ts120 MeV and ms0p H

equals 6.5 MeV and is still much larger than the
experimental value. Let us discuss this puzzling dis-
crepancy.

F has been measured for pions which comep H

form the limited phase-space region: 0.005-p -T
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Fig. 2. The correlation measure F as a function of chemicalp H

potential m for four values of the temperature T. The most upper
line is for T s200 MeV, the second one for T s160 MeV, etc.

w x1.5 GeV and 4-y-5.5 5 . However, it should not
distort the value of F noticeably. First of all, onep H

sees that the acceptance domain of p covers theT

p y region which contributes to the integrals fromT
Ž . Ž .Eqs. 9 and 10 . One notes that the average pT

approximately equals 2T. Secondly, we observe that
the system longitudinal expansion influence the value
of F insignificantly as long as the transversep H

momentum distribution weakly depends on the parti-
cle rapidities. Finally, one notes that the size of the
longitudinal momentum domain does not matter very
much for the value of F . Therefore, we concludep H

that the finite acceptance of the NA49 measurement
cannot be responsible for the discussed discrepancy.

We have considered three other ways to reconcile
the experimental and theoretical values of F .p H

Ø The pions are out of chemical equilibrium and the
chemical potential is negative. It appears however
that m must acquire an unrealistically large nega-

Ž .tive value msy 245 MeV to get F s0.7p H

MeV.
Ø A substantial fraction of the final state pions

come from the hadron resonances. These pions do
not ‘feel’ the Bose-Einstein statistics at freeze-out
and should be treated as particles which obey the

Boltzmann statistics. Then, they do not contribute
to F . Assuming that the fraction k of the finalp H

state pions come from the resonances, F isp H'reduced approximately by a factor 1yk . The
value of k must be again unrealistically large to
reduce F sufficiently.p H

Ø The Coulomb repulsion among the like-sign pions
is known to significantly diminish the bosonic

w xcorrelations, see e.g. 11 . However, taking into
account the electromagnetic interaction should not
change the value of F noticeably. The point isp H

that the Coulomb repulsion moderates the effect
of boson statistics but the attraction among the
unlike-sign pions generates the positive correla-

w xtion of the similar size 11 .
It is possible that the combination of the three

effects considered above sufficiently reduces the the-
oretical value of F . However, it is not a simplep H

problem to perform a numerically reliable analysis.
Therefore, we leave it for the future studies.

At the end let us comment on a somewhat para-
doxical implication of our study. When the correla-

w xtion measure F was introduced 3 , we expected that
the value of F would be smaller in A–A than in
p–p interactions. We shared a rather common opin-
ion that the correlations observed in p–p case were
of a dynamical origin and tended to be washed out in
A–A by rescatterings. The recently obtained experi-

w xmental data 5,6 comply with our expectation. In-
deed, F s4.2"0.5 MeV from p–p is about 6p H

times larger than that one from the central Pb–Pb
w xcollisions at the same energy 158 APGeV 5,6 .

However, we have now found that the equilibrium
value of F , which significantly exceeds F fromp pH H

Pb–Pb, is close to that one from p–p. This implies
that even in p–p collisions the origin of the correla-
tions is poorly understood. Therefore, a complete
solution of the puzzle raised by our equilibrium
calculation requires a better understanding of the
effects which control the value of F at N–N level.

Acknowledgements

I am indebted to Marek Gazdzicki for initiating´
this study and numerous fruitful discussions. The



( )S. MrowczynskirPhysics Letters B 439 1998 6–11´ ´ 11

suggestion by Gunther Roland to consider the elec-
tromagnetic effects is also gratefully acknowleged.

References

w x Ž .1 T. Kafka et al., Phys. Rev. D 16 1977 1261.
w x Ž .2 G. Arnison et al., Phys. Lett. B 118 1982 167.
w x Ž .3 M. Gazdzicki, St. Mrowczynski, Z. Phys. C 54 1992 127.´ ´ ´
w x4 M. Bleicher et al., hep-phr9803346, submitted to Phys. Lett.

B.

w x5 G. Roland, in: H. Feldmeier, J. Knoll, W. Norenberg, J.¨
Ž .Wambach Eds. , Proc. Workshop QCD Phase Transitions,

January 1997, Hirschegg, Austria, GSI, Darmstadt, 1997.
w x6 C. Adler et al., GSI report, GSI 98-1, Darmstadt, 1998.
w x7 M. Gazdzicki, A. Leonidov, G. Roland, hep-phr9711422, to´

appear in Euro. Phys. J.C.
w x Ž .8 A. Leonidov, M. Nardi, H. Staz, Z. Phys. C 74 1992 535.
w x9 K. Huang, Statistical Mechanics, Wiley, New York, 1963.

w x Ž .10 H. Appelshauser et al., Euro. Phys. J. C 2 1998 661.¨
w x Ž .11 G. Baym, P. Braun-Munzinger, Nucl. Phys. A 610 1996

286c.


