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Abstract

The F-measure of event-by-event fluctuations in high-energy heavy-ion collisions corresponds to the second moment of
the fluctuating quantity distribution of interest. It is shown that the measure based on the third moment preserves the
properties of F but those related to the higher moments do not. In particular, only the second and third moment measures
are intensive as thermodynamic quantities. The F - and F -measure of p -fluctuations are computed for the hadron gas in2 3 H
equilibrium and the results are analyzed in context of the experimental data. q 1999 Published by Elsevier Science B.V. All
rights reserved.
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Large acceptance detectors allow one for a de-
tailed analysis of individual collisions of heavy-ions
at high-energies. Due to hundreds or even thousands
of particles produced in these collisions, variety of
statistical methods can be applied. There are several

w xinteresting proposals 1–5 to use the fluctuation
measurements as a potential source of information
on the collision dynamics. However, one faces a
problem how to disentangle the ‘dynamical’ fluctua-
tions from the ‘trivial’ geometrical ones due to the
impact parameter variation. The latter fluctuations
are large and dominate the fluctuations of all exten-
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sive event characteristics such as multiplicity or
Žtransverse energy. Using the fluctuation or correla-

.tion measure F , which was introduced in our paper
w x1 , resolves the problem in a specific way. By
construction, F is exactly the same for nucleon-

Ž . Ž .nucleon N–N and nucleus-nucleus A–A colli-
sions if the A–A collision is a simple superposition
of N–N interactions. Consequently, F is indepen-
dent of the centrality of A–A collision in such a
case. On the other hand, F equals zero when the
inter-particle correlations are entirely absent. The
F-measure can be applied to the fluctuations of
kinematical quantities such as the event energy or
transverse momentum and to the fluctuations of event

w xchemical composition 6,7 .
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The NA49 Collaboration plans to study the chem-
w xical fluctuations in a near future 8 while the data on

the transverse momentum fluctuations have been al-
w xready published 9,10 . The value of F in thep H

central Pb–Pb collisions at 158 GeV per nucleon has
appeared to be smaller than expected. It has been

w xalso claimed 10 that the correlations, which are of
short range in the momentum space, are responsible
for the nonzero positive value of F being ob-p H

w xserved. The result has been widely discussed 11–16 .
In particular, our calculations of F in the equilib-p H

w xrium hadron gas show 14 that the positive value of
F appears due to the boson statistics of pions.p H

When the hadronic system at freeze-out is identified
with the pion gas, the calculated F slightly overes-p H

w xtimates the experimental value 10 but, as discussed
here, the inclusion of the pions which come from the
resonance decays removes the discrepancy.

The F-measure corresponds to the second mo-
ment of the fluctuating quantity, say the event trans-
verse momentum. Recently, it has been suggested
w x17 to use the higher moments in an analogous way.

w xHowever, the authors of 17 have not realized that
the fluctuation measures based on the higher mo-
ments, except that of the third one, do not possess a
key property of F which has been mentioned above.
Namely, F sF if the A–A collision is a sim-NN AA

ple superposition of N–N interactions. When treated
as thermodynamic quantities, the second and third
moment measures are intensive while the higher
moment ones are not. The aim of this note is to
substantiate the comment and to discuss usefulness
of the third moment measure. We focus our attention
on the p -fluctuations which have been alreadyH

w xstudied experimentally 9,10 .
Let us first introduce the F-measure. One defines

def
the single-particle variable z s xyx with the over-
line denoting averaging over a single particle inclu-
sive distribution. The event variable Z, which is a

def N Žmultiparticle analog of z, is defined as Z sÝ xis1 i
.yx , where the summation runs over particles from

² :a given event. By construction, Z s0, where
² :. . . represents averaging over events. Finally, the
F-measure is defined in the following way

2² :Zdef 2(F s y z . 1Ž .( ² :N

There is an obvious generalization of the definition
Ž . w x1 suggested in 17 . Namely,

1rnn² :Zdef 1rnnF s y z . 2Ž .Ž .n ž /² :N

The fact that F s0, when no inter-particle corre-n
w xlations are present, is evident 1,17 . We are now

going to show that F as F , in contrast to F with3 2 n

n)3, possesses another nontrivial property which is
so useful in the data analysis. Namely, F and F2 3

are independent of the source number distribution if
the particles originate from several identical sources.
Then, F and F are independent of the impact2 3

parameter if the A–A collision is a superposition of
N–N interactions. Let us prove this property.

Ž .P X is the normalized distribution of1
def NX sÝ x , when the particles come from the sin-is1 i

gle source. If we have k sources distributed accord-
ing to p , the X-distribution readsk

`

P X s p dX . . . dX P X . . . P XŽ . Ž . Ž .Ý Hk 1 k 1 1 1 k
ks1

=d Xy X q . . . qX .Ž .Ž .1 k

Ž .The moments of P X are

nddef nn n² :X s dX X P X s yi FF Q ,Ž . Ž . Ž .H ndQ Qs 0

3Ž .

where the generating function FF equals

`
def kiQ XFF Q s dX e P X s p FF QŽ . Ž . Ž .ÝH k 1

ks1

with

def iQ XFF Q s dX e P X .Ž . Ž .H1 1
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Ž .Using Eq. 3 , one computes the first five moments
Ž .of P X as

² : ² : ² :X s k X ,1

² 2: ² : ² 2: ² : ² :2X s k X q k ky1 X ,Ž .1 1

² 3: ² : ² 3: ² : ² 2: ² :X s k X q3 k ky1 X XŽ .1 1 1

² : ² :3q k ky1 ky2 X ,Ž . Ž . 1

² 4: ² : ² 4: ² : ² 3: ² :X s k X q4 k ky1 X XŽ .1 1 1

² : ² 2:2q3 k ky1 XŽ . 1

² : ² 2: ² :2q3 k ky1 ky2 X XŽ . Ž . 1 1

² : ² :4q k ky1 ky2 ky3 X ,Ž . Ž . Ž . 1

² 5: ² : ² 5: ² : ² 4: ² :X s k X q5 k ky1 X XŽ .1 1 1

² : ² 3: ² 2:q10 k ky1 X XŽ . 1 1

² : ² 3: ² :2q7 k ky1 ky2 X XŽ . Ž . 1 1

² : ² 2:2² :q9 k ky1 ky2 X XŽ . Ž . 1 1

² :q7 k ky1 ky2 ky3Ž . Ž . Ž .

=² 2: ² :3X X1 1

² :q k ky1 ky2 ky3 ky4Ž . Ž . Ž . Ž .

=² :5X ,1

where

`
def defn n n n² : ² :X s dX X P X and k s k p .Ž . Ý1 H 1 k

ks1

Applying these formulas to the variable Z and taking
² : ² :into account that by definition Z s Z s0, we1

get

² 2: ² : ² 2: ² 3: ² : ² 3:Z s k Z , Z s k Z ,1 1

² 4: ² : ² 4: ² : ² 2:2Z s k Z q3 k ky1 Z ,Ž .1 1

² 5: ² : ² 5: ² : ² 3: ² 2:Z s k Z q10 k ky1 Z Z .Ž .1 1 1

² : ² : ² :Since N s k N , one finds that1

² 2: ² 2: ² 3: ² 3:Z Z Z Z1 1
s , s ,² : ² : ² : ² :N N N N1 1

² 4:but analogous formulas do not hold for Z and
² 5:Z . Instead,

² 4: ² 4: ² : ² 2:2Z Z k ky1 ZŽ .1 1
s q3 ,² : ² : ² : ² :N N k N1 1

² 5: ² 5: ² : ² 3: ² 2:Z Z k ky1 Z ZŽ .1 1 1
s q10 .² : ² : ² : ² :N N k N1 1

Therefore, F and F are independent of the source2 3

number distribution while F , F and, obviously,4 5

F with n)5 do depend on p . The inclusiven k
ndistribution, which determines z , is, of course, inde-

pendent of the source distribution. The above results
also show that F and F are intensive quantities,2 3

i.e. they are independent of the system size, while Fn

with n)3 are not. Indeed, when the source number
² l: lis fixed, k sk and one observes that only F 2

and F do not dependent on k. Let us note here that3

the independence of k is, in principle, a weaker
requirement than the independence of p .k

The F -measure is sensitive to the fluctuations or2

correlations of various origin. For example, it ac-
quires a finite value, which is positive for bosons and
negative for fermions, due to the quantum statistics
w x14 . The correlation between the particle multiplicity
and their kinematical characteristics also influences

w xF 1 . The energy-momentum conservation and2

presence of the collective motion introduces addi-
tional inter-particle correlations. Thus, one concludes
that the nonvanishing value of F signals the exis-2

tence of the correlations in the system but it does not
explain their origin. In such a situation, F seems to3

be very useful. Indeed, simultaneous measurements
of F and F might help to identify the fluctuations2 3

which dominate in the system. For this purpose one
should theoretically estimate contributions of various
correlations to F and F2 3

w xIn our paper 14 we have discussed how to
compute F in the ideal quantum gas. Now, we are2

going to extend these calculations to the case of F .3

For comparison, we also present here the earlier
w xpublished 14 results on F . At first, the energy2

fluctuations are considered. Therefore, the single
particle variable x is identified with the particle
energy E. Then, one immediately finds that

1 d3p 1n
nz s EyE , 4Ž . Ž .H 3 y1 b Er l e "12pŽ .
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where the single particle average energy is

1 d3p E
Es ,H 3 y1 b Er l e "12pŽ .

while the particle density r equals

d3p 1
rs ; 5Ž .H 3 y1 b El e "12pŽ .

b'Ty1 is the inverse temperature; l'e bm denotes
the fugacity and m the chemical potential; E

2 2(' m qp with m being the particle mass and p
its momentum; the upper sign is for fermions while
the lower one for bosons.

Since ZsUyNE, where U is the system en-
² 2: ² 3:ergy, Z and Z are computed as

2 21 E E
2² :Z s q2 E l2J Eb ElEb

2E
2qE l J V ,T ,l ,Ž .ž /El

3 21 E E E
3² :Z sy q3E l3 2J ElEb Eb

2E E
2q3E lž /Eb El

3E
3qE l J V ,T ,l , 6Ž . Ž .ž /El

Ž .where J V,T ,l is the grand canonical partition
w xfunction 18 defined as

J V ,T ,l s lNeyb Ua ,Ž . Ý Ý
aN

with V denoting the system volume and the index a

numerating the system quantum states 2. As well

2 w x Ž . Ž .The formulas from 14 analogous to 6 and 7 are erro-
neously written but the final results are correct.

w xknown 18 , the grand canonical partition function of
the quantum ideal gas equals

d3p
yb Ew xln J V ,T ,l s"g V ln 1"l e ,Ž . H 32pŽ .

7Ž .

with g being the number of the particle internal
degrees of freedom. After a rather lengthy calcula-
tion, one finds

² 2: 3 y1 b EZ 1 d p l e2
s EyE ,Ž .H 3 2y1 b E² :N r 2pŽ . l e "1Ž .

8Ž .

and

² 3: 3Z 1 d p 3
s EyEŽ .H 3² :N r 2pŽ .

=
ly1e bE ly1e bE .1Ž .

. 9Ž .3y1 b El e "1Ž .

As expected, F and F , which are given by the2 3
Ž . Ž . Ž .formulas 4 , 8 , 9 , are intensive thermodynamic

quantities, i.e. they are independent of the system
volume. We also note that F and F are indepen-2 3

dent of g. One observes that the sign of F is2

definite i.e. F -0 for fermions, F )0 for bosons2 2
Ž y1 . w xand F s0 in the classical limit l 41 14 .2

The sign of F is not definite but F still vanishes3 3

for the classical particles.
When the particles are massless and their chemi-

Ž .cal potential vanish ls1 , the calculations can be
Ž . Ž .performed analytically to the end. Then, Eqs. 4 , 8

Ž .and 9 give

y0.07 0.11
F ( T , F ( T ,2 3 ž /ž / y`0.40

where the upper case is for fermions and the lower
one for bosons. For msms0 the bosonic F 3

Ž .appears to be logarithmically divergent due to the
Ž bE .y3singular character of the function e y1 at

E™0.
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Ž . Ž . Ž .One immediately modifies Eqs. 4 , 8 and 9
for the case of the transverse momentum. The re-
spective equations read:

1 d3p 1nnz s p yp , 10Ž .Ž .H H H3 y1 b Er l e "12pŽ .
² 2: 3 y1 b EZ 1 d p l e2s p yp ,Ž .H H H3 2y1 b E² :N r 2pŽ . l e "1Ž .

11Ž .

² 3: 3Z 1 d p 3s p ypŽ .H H H3² :N r 2pŽ .

=
ly1e bE ly1e bE .1Ž .

, 12Ž .3y1 b El e "1Ž .
< <where p sp sinQ with p' p and Q being theH
Ž .angle between p and the beam z axis, and

1 d3p pH
p s .HH 3 y1 b Er l e "12pŽ .

In Figs. 1 and 2 we present with dashed lines the
F - and F -measure of p -fluctuations in the ideal2 3 H

Žpion gas. The pions are, of course, massive m sp

.140 MeV , so F and F are found numerically2 3
Ž . Ž .from Eqs. 10 – 12 . The calculations are performed

for several values of the pion chemical potential. In
the chemical equilibrium ms0. As seen, F is2

positive but F is negative. At T(200 MeV and3

ms70 MeV, F experiences a rapid growth. This3
Ž .happens because the first term from Eq. 2 changes

the sign from positive to negative at T(200 MeV.
It is a far going idealization to treat a fireball at

freeze-out as an ideal gas of pions. A substantial
fraction of the final state pions come from the hadron
resonances. These pions do not ‘feel’ the Bose-Ein-
stein statistics at freeze-out and consequently the
values of F and F should be significantly re-2 3

duced. We estimate the role of resonances in the
following way. The spectrum of pions, which origi-
nate from the resonance decays, is not dramatically
different than that given by the equilibrium distribu-

w xtion 19 . Therefore, we treat the fireball at freeze-out
as a mixture of ‘quantum’ pions – those called
‘direct’ – and the ‘classical’ pions which come from
the resonance decays. Since the weighting functions

Ž . Ž . yb Ein Eqs. 10 – 12 are all equal to le in the
Ž . Ž .classical limit, the formulas analogous to 10 , 11 ,

Ž .12 are

1 d3p nnz s p ypŽ .H H H3r 2pŽ .

=
1

yb Eql e , 13Ž .ry1 b El e y1

² 2: 3Z 1 d p 2s p ypŽ .H H H3² :N r 2pŽ .

=

y1 b El e
yb Eql e , 14Ž .r2y1 b El e y1Ž .

² 3: 3Z 1 d p 3s p ypŽ .H H H3² :N r 2pŽ .

=

y1 b E y1 b El e l e q1Ž .
yb Eql e ,r3y1 b El e y1Ž .

15Ž .
with

31 d p 1
yb Ep s p ql e ,HH H r3 y1 b Er l e y12pŽ .

3d p 1
yb Ers ql e .H r3 y1 b El e y12pŽ .

The parameter l is chosen is such a way that ther

number of ‘classical’ pions equals to the number of
pions from the resonance decays. Thus, l is tem-r

perature dependent. In the actual calculations, we
have taken into account the lightest resonances:
Ž . Ž .r 770 and v 782 which give the dominant contri-

bution. The life time of r, which is 1.3 fmrc, is not
much longer than the time of the fireball decoupling
and some pions from the r decays can still ‘feel’ the
effect of Bose statistics. Therefore, the contribution
of r to the ‘classical’ pions is presumably overesti-
mated in our calculations. Since we neglect the
heavier resonances and weakly decaying particles,
which also contribute to the final state pions, the two
effects partially compensate each other. In any case,
our calculations show that the resonances do not
change the values of F and F dramatically in the2 3

domain of temperatures of interest.
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Fig. 1. F -measure of p -fluctuations in the hadron gas as a2 H
function of temperature for four values of the chemical potential.

Ž .The resonances are either neglected dashed lines or taken into
Ž .account solid lines . The most upper dashed and solid lines

correspond to ms70 MeV, the lower ones to ms0, etc.

In Figs. 1 and 2 the solid lines represents F - and2

F -measure which include the resonances. The3

chemical potentials of r and v are assumed to be
equal to that of pions. As seen, the role of the
resonances is negligible at the temperatures below
100 MeV but above this temperature the resonances
reduce the fluctuations noticeably. As already men-
tioned, F -measure of p -fluctuations has been2 H
experimentally measured in the central Pb–Pb colli-
sions by the NA49 collaboration. The first result has

w xbeen published as F s0.7"0.5 MeV 9 but the2

value of F is increased to 4.6"1.5 MeV when the2

two-track resolution effect is properly taken into
w xaccount 10 . If we identify the system freeze-out

temperature with the slope parameter deduced from
the pion transverse momentum distribution T(180

w xMeV 20 . Then, the value of F , which is read out2

from Fig. 1 for ms0, equals 15 MeV for no reso-
nances and F s8.7 MeV when the resonances are2

included. The temperature is significantly reduced if
the transverse hydrodynamic expansion is taken into
account. The freeze-out temperature obtained by

means of the simultaneous analysis of the single
particle spectra and the two-particle correlations is

w xabout 120 MeV 20 . Then, the value of F for2

ms0 equals 6.5 MeV for the case of no resonances
and F s5.6 MeV when the resonances are in-2

cluded. The latter number agrees perfectly well with
the mentioned above experimental value. This

w xstrongly supports the claim 10 that the short range
correlations due to the Bose-Einstein statistics of
pions play a dominant role in the hadronic system
produced in central heavy-ion collisions. However, it
would be very interesting to check whether the ex-
periment also confirms our prediction on F which3

is presented in Fig. 2. As seen, F sy12.3 MeV3

for Ts120 MeV and ms0 when the resonances
are taken into account.

Let us close this paper with a technical remark.
When the F-measure is applied to the real data or
simulated events, it is rather inconvenient to use the

Ž .formula 1 because then one has to process the data
twice; in the first run one evaluates the inclusive
average x and then computes the moments of Z and

Fig. 2. F -measure of p -fluctuations in the hadron gas as a3 H
function of temperature for four values of the chemical potential.

Ž .The resonances are either neglected dashed lines or taken into
Ž .account solid lines . The most upper dashed and solid lines

correspond to ms70 MeV, the lower ones to ms0, etc.
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z. To avoid the double data processing one can use
w xthe formula derived in 12 which is

1r222 2² : ² : ² : ² : ² :X 2 X XN X N
F s y q2 2 3² :ž /N ² : ² :N N

1r22² : ² :X X2
y y , 16Ž .2² :ž /N ² :N

where the event variable X is defined as2
def

N 2X sÝ x . The expression of F , which is analo-2 is1 i 3
Ž .gous to 16 , reads

² 3: ² : ² 2 :X 3 X X N
F s y3 2² :ž N ² :N

1r32 32 3² : ² : ² : ² :3 X XN X N
q y3 4 /² : ² :N N

1r33² : ² : ² : ² :X 3 X X 2 X3 2
y y q ,2 3² :ž /N ² : ² :N N

def N 3with X sÝ x .3 is1 i

We conclude our study as follows. The F -mea-3

sure, which is based on the third moment of the
fluctuating quantity distribution, preserves the advan-
tageous properties of F while the higher moment2

measures do not. Simultaneous usage of F and F2 3

may help in identifying the origin of correlations
observed in the final state of heavy-ion collisions at
high-energies. In particular, the measurement of F 3

of p -fluctuations can decisively confirm that theH

dominant correlations in the central collisions are
those of the quantum statistics.
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