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Energy loss of a high-energy parton in the quark-gluon plasma 
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The energy loss of a high-energy parton (quark or gluon) traversing the equilibrium quark-gluon plasma is discussed. The 
collisions with the thermalized plasma partons and the plasma polarization effects are considered in detail. The calculations and 
the final results are confronted with those of previous papers. 

Hadron  jets  p roduced  in ul t rarelat ivis t ic  nucleus-nucleus  collisions have been suggested to carry informat ion 
about  possible generat ion of  quark -g luon  p lasma ( Q G P )  in these collisions [1,2].  In this context  the energy 
loss of  a high-energy par ton  t raversing the Q G P  is of  crucial importance.  The first es t imate [ 1 ] of  this quant i ty  
has taken into account  the energy loss due to elastic collisions with p lasma partons.  Later  on the role of  collective 
p lasma modes,  or  equivalent ly  - the p lasma polar iza t ion  effects, has been discussed [ 3 ]. The aim of  this paper  
is to reconsider  the problem and to give a complete ly  analyt ical  solut ion which exploits general proper t ies  of  the 
p lasma chromodie lec t r ic  tensor. Based on this approach we clarify some points,  which, in our opinion,  have 
been mis in te rpre ted  in ref. [ 3],  and  provide  numerica l  es t imates  of  the par ton energy loss ~1. 

The problem of  energy loss of  a test part icle  t raversing the p lasma is, in fact, very complex, see e.g. ref. [5 ], 
even in the case o f  an equi l ibr ium p lasma considered here. It is usually solved in the following way [5 ]. The test 
part icle  interact ions in the p lasma are split into two classes: those with high-momentum t ransfer  corresponding 
to the collisions with p lasma part icles and those with low-momentum t ransfer  domina ted  by the interact ions 
with p lasma collective modes.  The lat ter  processes, which can be t reated in a classical way, are often called the 
processes of  p lasma polar izat ion.  In principle,  one can study the part icle energy loss in the approach which 
s imul taneously  treats the low- and high-momentum t ransfer  processes. However,  such an approach is rather  
compl ica ted  and we will consider  here these processes separately. When  the test part icle energy (E)  is compa-  
rable to the p lasma tempera ture  (T)  one should also take into account  the interact ion with field f luctuations 
[ 5 ]. However ,  we assume E>> T th roughou t  and  neglect this. Let us start  with the energy loss due to the p lasma 
polar iza t ion  effects. 

The classical ( n o n q u a n t u m )  expression for par ton  energy loss per  unit  t ime reads 

( d ~ )  = f d 3 x j a ( x ) E a ( x ) ,  (1)  
P 

where E a, a =  1, ..., 8 is the chromoelect r ic  field induced in the p lasma by the test part icle  current  j a. Assuming 
that  the field E a is weak, it can be calculated by means o f  the (abel ian)  Maxwell  equations.  After  e l iminat ing 
the chromomagnet ic  field one finds the following equat ion in the m o m e n t u m  space: 
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lea(k)-  k2 (6iJ- ~ ) ] E ~ ( k ) =  l J ~ (  , (2) 

where i,j= 1, 2, 3 are the space indices, k =  (o~, k) is the wave four-vector and eo(k) is the plasma chromodi- 
electric tensor. As discussed in e.g. ref. [6], it is a color independent quantity, which for an isotropic medium 
can be decomposed as 

k, kj ( k, kj) 
~ 0 ( k ) = ~ t . ( k ) ~ - + ~ f ( k )  6 a - ~ - j ,  

with eLx(k ) the longitudinal and transversel chromodielectric functions. With such a form of the dielectric 
tensor one can easily invert the matrix in the left-hand side of eq. (2). 

The color current of the classical parton is 

]a(X) =qavc~(3)(X--Vt) , (3) 

where v is the parton velocity, which is supposed to be constant; the quantity qa is the color charge of the test 
parton and qaqa=g2C v when the test parton is a quark and qaq~=g2CA for a gluon; Cv, CA are the so-called 

4 Casimir invariants, which for the SU (3) group equal 3 and 3, respectively; g is the QCD coupling constant, 
O~s = g2/4rC. 

Substituting the chromodielectric field found from eq. (2) and the Fourier transformed current (3) into eq. 
( 1 ), one finds 

~ -  p=--ig2CF.A ~ ~ + ¢O[(v(k)_k2/o)2]j, (4) 

where ~o=kv. There is in eq. (4) a contribution from the test parton self-interaction, which, in fact, does not 
contribute to the parton energy loss. The simplest way to get ride of this effect is to subtract from the field 
generated in the plasma the field generated in the vacuum where eL.r(k) = 1. Then, one gets 

09 1 /~2 - -  (.0 2 / k  2 // 1 1 
(~f~) =--ig2Cv.Alf d3k [~(EL~ ~ 1)'q- • l_k~/(/)2) ] (5) , ~ - ~ \~T(k) Ck2/oJ 2 ' 

where the energy loss per unit time has been changed into the energy loss per unit length; v -  Iv]. 
At this step Thoma and Gyulassy [ 3 ] substituted into eq. ( 5 ) the explicit form of the dielectric function taken 

from ref. [7], see also refs. [6,8-10],  and performed a numerical integration. It appears, however, that this 
problem can be resolved in a simpler and more elegant analytical way. 

Let us introduce the cylindrical coordinates (kT, kL) with kL along the test parton velocity. Because kL = o J/v, 
eq. (5) can be rewritten as 

k0 +~ 
( d E )  2 1 fdkxkv  f dco o~ [ 1 .2 2[ 1 1 ) ]  

dx =g CV.A~S j ~ 2ztikZ +~2/v2 e L ~ - - I + k T V  ~O92ef(~)_k2 oJ2Lk2 , (6) 
P 0 --oo 

where k2= k2v + co2/v 2. As will be seen below, the integral over kv is logarithmically divergent, and consequently 
one has to introduce a cut-off k0. The appearance of this divergency is not surprising. The point is that the 
classical approach based on eq. ( 1 ) breaks for large kx. When the wavelength of the electric field is comparable 
to the test parton de Broglie wavelength, the classical current expression (3) cannot be used. Further, the chro- 
moelectric field given by eq. ( 1 ) is of macroscopic character, and consequently, it is meaningless to consider the 
field with a wavelength shorter than the average distance between plasma partons. We postpone the discussion 
of the parameter k0 and proceed considering separately the contributions to the energy loss (6) due to the 
longitudinal and transversel fields. The longitudinal part reads 
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(7) 

We change the integration over w, which extends from --co to +q into a contour integration in the complex 
w-plane. The contour runs along the real axis and a large circle in the upper half-plane. The dielectric function 
E~( k) has zeros only in the lower half-plane of w [ 111. It means that the plasma oscillations around the global 
equilibrium state are damped. We assume that the antidamped modes found by several authors [ 121 are of 
nonphysical character. For the discussion of this controversial point see ref. [ 131. Since all zeros of cL( k) are in 
the lower half-plane, the only pole of the function under the integral (7) appears in the upper half-plane at ik,v, 
when k2 = k+ + w 2/v2 = 0. Performing the integration along the contour, eq. (7 ) yields 

dk, kT 1 -tL(co=ikTv, k=O) 

2e,(o=ik,v, k=O) 

The explicit form of the dielectric function in the long wave limit (k-0) is well known as 

(8) 

where o. is the so-called plasma frequency, which for the baryonless plasma with the SU( 3) gauge group is (see 

e.g. ref. [ 61 ) 

o;=&g2(Nf+6)T2, (lOa) 

with Nf being the number of quark flavors. Eq. (9a) assumes that the imaginary part of the dielectric function 
is infinitesimally small. Such an assumption is correct as long as the coupling constant is small, because the 
imaginary part of the dielectric function is of higher order in the perturbative expansion than the real part (see 
below). Since the value of (Y, is not smaller than 0.1 at the plasma temperature of interest (200-400 MeV), it 
might be important to take into account the finite imaginary part of E ,_. Using the transport equations with the 

collision terms in the relaxation time approximation one easily finds the following form of the dielectric function 
in the long-wave limit (see e.g. ref. [ 6 ] ): 

E~(w, k=O) = l- 
4 

o(o+iv) ’ 

where the parameter v has been estimated as [ 6, lo] 

2 

v&T. 
47L 

Substituting the dielectric function (9b) into eq. (8) one finds 
ko 

(lob) 

Let us observe here that the absolute value of the energy loss reaches maximum when v+O. After integration 
over kT we obtain the following result: 
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dEL'] _ 2re CFA(I+~Nf)o~T 2 
dx  Jp 3V 2 ' 

cog +kov+k g 2u (a rc tg-  ~ = =  arctg 
× In co2 4x/4O~o 2 - -  112 ~, X/4co( ~ -- V2 4x/~O 2 -- U2 " 

Let us now discuss the energy loss due to the transversal  electric field which is 
k0 + ~  

(d~_)p=g2Cv,Av2 fdkTk~_3 ~ dco co ( 1 1 ) 
• 2g 27ri kZv2+ co 2 o . ) 2 [ e T ( k ) - l / p 2 ] - k  2 co2(1- 1 / d ) - k 2  
0 - -oo  

11) 

12) 

The si tuat ion here is more  complicated,  when compared  to the longitudinal  field case, because the functions 
(j) 2 ( 1 - 1 / v 2 ) - k 2 and co 2 [ er (k)  - 1 / v 2 ] - k~ have, in contrast  to ec (k ) ,  zeros in the upper  half-plane of  co. The 

zero of  interest  of  the first function is iTvkx with y -  ( 1 - v 2) - ~/2. The posi t ions of  zeros of  the second function 
can be de te rmined  only numerical ly  due to a compl ica ted  form of  the dielectric function, see e.g. refs. [6,8 ]. 
Fortunately,  there is an approx imate  way to calculate the integral in eq. ( 12 ). 

When Icol ~ o o  the two terms in eq. (12)  cancel each other  because ev--, 1 in this limit.  Therefore,  the main  
contr ibut ion  to the integral (12)  can come from the small-co region. Let us also observe that the two functions 
under  the integral (12)  are large when co2-k2 and co2eT(k) - k  2 are close to zero. Therefore,  we consider  the 
cont r ibut ion  to the integral (12)  from the region where co and k are both small. In this region the dielectric 
function weakly depends  on k and can be approx imated  by ev(co, k = 0 ) .  As is well known, 

co~, 
(T(CO, k=0) =tSL(CO, k=0) ~ I -  co~. (13)  

With  the dielectr ic function ( 13 ) one finds the zeros of  co 2 [ (T (k)  - 1 / v: ] - k 2 as co + = _+ i y v ~ .  Know- 
ing all zeros in the upper  half-plane of  the function from eq. (12) ,  the integral over  co can be performed.  An 
e lementary  calculat ion shows that  this integral equals exactly zero. Therefore,  we conclude that  the transversal  
field provides  a negligible cont r ibut ion  to the energy loss. It corresponds to a well-known result [5] on the 
absence of  Cherenkov radia t ion  in an equi l ibr ium e lec t ron- ion  plasma. 

In their  numerical  calculat ions T h o m a  and Gyulassy [ 3 ] ident if ied the paramete r  ko with a test par ton initial  
m o m e n t u m  and called the result "full  expression for the energy loss". As discussed under  eq. (6) ,  the classical 
formula  ( 1 ) fails for large wave vectors of  the chromodielect r ic  field. Therefore,  one gets a full expression of  
energy loss combining  eq. ( 11 ) with that  one o f  energy loss due to test par ton collisions with thermal ized plasma 
partons.  This p roblem has been s tudied by Bjorken [ 1 ] and below we repeat  his considerat ions  with several 
minor  improvements .  

The energy loss per  unit  length of  a pa t ton  due to collisions with p lasma quarks and gluons is 

( d E )  d3k d~ i 
c = ~, f ~ n , (k)  [flux factor]  f dt-d~-v , (14)  

where the summat ion  runs over  quarks,  ant iquarks  and gluons; ni(k) is the Bose-Einste in ,  or F e r m i - D i r a c  
d is t r ibut ion  of  the p lasma partons,  u = E - E '  is the energy transfer  from the fast test par ton to the thermal ized 
one and dai/dt is the p a t t o n - p a t t o n  cross section, which in the l imit  s >> t (s, t are the s tandard  Mandels tam 
var iables)  reads 

da i 27rc~ 
d~ = C' t ~  , 

where C, equals 4, 1 and 9 for q -q ,  q -g  and g-g  collisions, respectively. Following Bjorken one introduces the 
2 3 effective par ton d is t r ibut ion  n = 5rtq + 5 ng and the effective cross section da/dt= Cvsrc< 2/t 2 with Cv and CA 
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equal, as previously, 4 for a test quark and 3 for a test gluon. 
When all partons are massless, there is, in the limit E, E'>>k, several kinematical simplifications: 

s = 2 kE ( 1 - cos 0), where 0 is the angle between momenta  of  colliding partons and k denotes [k I, (not the wave 
four-vector as previously),  [ flux factor ] = 1 - cos 0 and I t I = s v/E.  Thus, eq. ( 14 ) can be manipulated to 

( d E )  f d 3 k n ( k )  vma,, 
= - C v a n o z ~  (27r) 3 2 ~ l n - - '  (15) 

c " / ) m i n  

where the/)max and v~m are maximal and minimal energy transfers. When the partons collide in vacuum the 
minimal energy transfer is zero. It happens when the collision proceeds at infinite impact parameter. In the 
plasma, however, the interaction is screened at distances exceeding the Debye radius, and consequently there 
appears a finite minimal energy transfer. We choose the minimal momentum transfer ( x / ~ ) m i n  equal ko, which 
has appeared previously as a maximal wave vector of  the classical chromodielectric field. Therefore, 

Ek~ k~ 
/ ) m i n  - -  - -  s - 2 k ( 1 - c o s 0 ) '  

and the lower limit of  the integration over k is taken as ko. Bjorken [ 1 ] assumed that Vm,x = ½E. Now we integrate 
over k in eq. ( 15 ) substituting an average momentum ( k )  equal 

fd3k n ( k )  
( k )  - f d 3 k  n ( k ) / k  

instead of  k and cos 0=  0 under the logarithm. Assuming T>> ko one finds 

( d E )  2 ( k ) E  
= + ~Nf)o~ In ~ , (16) c --Cv,ATr(1 l 2T2 k~ 

where ( k )  ~ 2 T. As previously the plasma is assumed baryonless. As will be shown below, k0 >/T and then the 
right-hand side of  eq. (16) should be multiplied by a factor approximately equal to 

( 12Nf+ 1 6 ) f ~  dk k e -k/w 1 2 ( 3 N f + 4 )  e_ko/r 
12Nff~ dkk(e~./-r+l ) ~ + 1 6 f ~ d k k ( e k / T _ l  ) i -- 7r2(3Nf+8) ( l + k o / T )  . 

In this case the average momentum can be approximated as 

2 T 2 + 2 k o T + k o  
( k > =  T+ko (17) 

The parameter ko represents a maximal momentum transfer in interactions with collective modes, on the 
other hand, a minimal momentum transfer in collisions with thermalized patrons. The natural choice o f  ko is 
the inverse screening (Debye)  radius. Thus, ko=x/3OOo (see e.g. ref. [6] ), and eq. (10) yields 

1 "~ k~=4rr( l + ~Nf)o~sT-. (18) 

Let us observe that for two quark flavors ko> Tas  long as c~s> 0.06. 
Combining eqs. ( 11 ) and ( 16 ) (the latter with the correction factor) we can write down the complete expres- 

sion for the energy loss of  an ultrarelativistic parton in the equilibrium QGP. Namely, 

dE  ~ f _ 3 ( 3 N f + 4 ) . ,  k o ' ~ l n 2 ( k ) E + A  ] 
dx Cv,AO~sk~)kTr2(3Nf+8 ) e -k°/J ( 1 +  (19) 

- T ]  ~ J k ~ -  ' 

where ko and ( k )  are given by eqs. (18) and (17),  respectively, and 

387 



Volume 269, number 3,4 PHYSICS LETTERS B 31 October 1991 

1 [ l n ( 4 + x / 3  x ) _  2x /" 2 x / 3 + x  x ) ]  A /arc tg  ~ - arctg 
x / 4 - x  ~ \ ~ / 4 - x  z ~ 

with 

X ~  - - - - ~  
O)o 4n(1 + -~ Nr),] " 

The authors of ref. [ 3 ] have made two steps, which are not quite correct in our opinion. They have identified 
the parameter ko with energy E, and then have treated the polarization energy loss as a complete energy loss. 
However, their numerical  results are not very different from that given by eq. (19).  For example, eq. (19) 
predicts dE/dx-~  0.19 G e V / f m  for a 20 GeV light quark at oq= 0.2, N~-= 2 and T =  0.25 GeV, while the respec- 
tive number  given in ref. [3] approximately equals 0.24 GeV/fm.  Thus, the conclusion of refs. [ 1,3] remains 
unchanged: the energy loss of the parton in the equi l ibr ium QGP is much smaller than the parton energy loss in 

vacuum, which appears due to confining forces. The latter can be identified with the string tension equal about 
1 GeV/fm.  The situation probably changes when one deals with a strongly turbulent  plasma, which might be 
the case for the plasma produced in nuclear collisions. Then one expects a much larger energy loss [ 5 ]. 

Let us briefly summarize our considerations. The energy loss of a high-energy parton (quark or gluon) going 
through the baryonless quark-g luon plasma in equi l ibr ium has been discussed. The elastic collisions with ther- 
malized partons and the interactions with plasma collective modes have been considered in detail. In both cases 
completely analytical solutions have been found. It has been argued that the transversal modes provide a negli- 
gible contr ibution.  Several points have been treated in a different way than in the previous study but the numer-  
ical results are rather similar and confirm the conclusion of a very small parton energy loss in the deconfined 
phase. 

The author is grateful to Marek Gaidzicki ,  Peter Koch and Grzegorz Wilk for discussions and to Ulrich Heinz 
for informat ion about ref. [4]. 
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