
Volume 152B, number 5,6 PHYSICS LETTERS 14 March 1985 

DIBARYONS IN NUCLEI 

St. MR~)WCZYlqSKI 1 
JINR, Laboratory of High Energies, Dubna, USSR 

Received 23 October 1984 

Nuclear matter with an admixture of dibaryons at zero temperature is studied. The short-range nuclear forces are repre- 
sented by a delta-like pseudopotential. The concentration of dibaryons as a function of the dibaryon mass is found. 

Some results of  high energy nuclear collision experiments and more recently the so-called EMC effect has led 
many authors, see e.g. refs. [1,2], to the conclusion of  a significant admixture of  multiquark, mainly six-quark, 
states in nuclei. The aim of  this paper is to study such admixtures in the frame of  a simple statistical model of  the 
nucleus. The gas of  baryons and dibaryons in chemical and thermodynamical equifibrium at zero temperature is 
considered. The concentration of  dibaryons in ideal and nonideal gas approximations as a function of  the di- 
baryon mass is found. 

The nuclear matter with multibaryon admixtures at zero temperature has earlier been studied in ref. [3], 
where the interaction has been taken into account through the Van der Waals correction to the volume. In this 
paper we try to make a step towards a more realistic description of  the problem introducing the interaction into 
the system with the help of  a delta-like pseudopotential, see e.g. ref. [4]. 

Let us consider an ideal gas of  nucleons (fermions) and dibaryons (bosons) at zero temperature. Dibaryons 
occur in the system as a Bose-Einstein condensate. Baryon number conservation and the assumption of  chemical 
equilibrium lead to the following relation 

/d D = 2/a, 

where/d D and ~u are chemical potentials of  dibaryons and nucleons, respectively. At zero temperature one finds 
(in non-relativistic approximation) the following equation for/a [4] 

B = ] ( V / n 2 ) [ 2 m ( ~  - m)] 3/2 + 2g lira [(exp[/3(M - 20)] - 1) - 1  ] , (1) 
~--+~ 

where B is the total baryon number of  the system, V the volume of  the system, m the nucleon mass,M the di- 
baryon mass, g the number of  internal degrees of  freedom of the dibaryon, and/3 the inverse temperature. We 
use the units where c = k = ~ = 1. The above equation expresses the baryon number conservation. The first term 
comes from the nucleons while the second one comes from the dibaryons. It is seen that there are two kinds o f  
solution of  (1) 

la =M/2  f o r M <  2(m + E F ) ,  

= E F + m  for M > 2(m + EF ) , 

where E F is the Fermi energy of  a pure nucleon gas, and 

1. Permanent address: Institute for Nuclear Studies, High Energy Department, Ho~a 69, 00-681 Warsaw, Poland. 

(2) 

299 



Volume 152B, number 5,6 PHYSICS LETTERS 14 March 1985 

I. 

O. 

2___p_D 
B 

interact ion 
I 

I I 

ideot gas ! i ~, X 
I i \ %, 

M 1 M2 Fig. 1. The concentration of d~aryons versus the dibaryon mass. 

EF=P2F/2m, pF=(}Tr2BIV) 113. 

From (1) and (2) it follows that the number of dibaryons, D, in the gas is 

D = 0 f o r M > 2 ( m  +EF) , 

= ~ B ( 1 -  [ (M-2m)/2EF]3/2} f o r 2 ( m + E F ) > M > 2 m ,  

= ~B for 2m > M .  

At a fixed dibaryon mass the above expression describes the dibaryon concentration as a function Of density ex- 
pressed through the Fermi energy. The ratio 2D/B as a function of M is illustrated in fig. 1. 

Let us now discuss how the results are modified due to the interaction present in nuclei. The short-range re- 
pulsive forces are crucial for properties of nuclear matter. In particular, these forces, in contrast to long-range 
attractive ones, increase the Fermi level and consequently can lead to an increase of dibaryon admixture. The 
short-range forces for not too high densities can be represented by a delta.like pseudopotential [4]. In such a case 
the hamiltonian of the system looks as follows 

B-2D D 
H= ~ (p2/2m+m)+k~=l (p2/2M+M) 

i = 1  = 

B-2D B-2D B-2D D D D 
+ ~ .  ~(4na /~n) f (3 ) ( r i_ r j  ) + ~ ~ "" 3 ' (27ra/mR)6( )(r i -- rk) + ~ ~ (41raD/M)8(3)(r k -- rl) , 

i---1 /=1 i=I k=l  k=l  1=1 
i<j k<l 

where a,~,  a D are scattering lengths (diameters of a hard core potential) in nucleon-nucleon, nucleon-dibaryon 
and dibaryon-dibaryon interactions, m R = mM/(m + M) is the reduced mass of a nucleon-dibaryon system. 
Assuming that the numbers of nucleons with opposite spin are equal, one finds [4] the energy of the system 

E = ~ (p212m + m)Np + ~ (p212M + M)Dp 
P P 

+ l l r a ( B  - 7D)2/mV + 2~'~(B - 2D)DIm R V+ (4~raDIMV) (D 2 - ~ D~ I '  (3) 
\ P 1 

where Np and Dp are the numbers of nucleons and dibaryons, respectively, with momentum p. Using (3) one gets 
the following analogue of eq. (1) 

300 



Volume 152B, number 5,6 PHYSICS LETTERS 14 March 1985 

B = ](V'/rr 2) [2m(p - m)] 3/2 {1 - [rt/(g, - m ) V ]  [(3a/m)(B - 2D) + ( 2 " ~ / m R ) D  ] }3/2 

+ 2g lim [(exp (/3[M + ( 2 r [ ~ / m R ) ( B  - 2 D ) / V  + ( 2 n a D / M ) D / V  -- 2p] } - 1)-  1 ] . (4) 

To diminish the number o f  parameters, we make an assumption, justified in the bag model [5], that  the radius of  
a hard core in the third power is proport ional  to the particle's mass. Thus, 

a D = a ( M / m )  1/3 , ~ = ~ a [ 1  + ( M / m )  1/3] . 

We shall now determine the critical values of  the dibaryon mass denoted in fig. 1 as M 1 and M 2 . For  M < M  1 
there are no nucleons in the system while f o r M > M  2 there are no dibaryons. For  a fixed value of  dibaryon mass 
M 1 and M 2 are related to the critical values of  density. The values o f M  1 and M 2 can be found as follows. For  M = 
M 1 (M = M2) the nucleon (dibaryon) contribution to the total  baryon number (4) has to vanish. On the other 
hand, the value of/a has to be compatible with the existence of  the dibaryon condensation. Both conditions pro- 
vide equations for M 1 and M 2: 

p = ~M 1 + 7raDD/M 1 V = m + 27r'a'D/m R V ,  p = ~M 2 + rr'~B/m R V = m + E F + 3rraB/m V .  

The above equations can approximately be solved by  putt ing the values o f M  1 and M 2 found in the ideal gas ap- 
proximation in the terms containing the small parameter a. It proves to be enough to put M 1,2 = 2m. In this way 
one finds 

M 1 -~2m + ( 3 . 7 / r O E F P F a ,  M 2 ~ 2 m  + 2 E  F [1 + ( 1 . 7 / n ) P F a  ] . 

The values for the critical masses M 1 and M 2 can also be found in another way. The state of  a system is determined 
by  a minimum of  free energy, which coincides with the energy of  the system for zero temperature.  Thus, the di- 
baryon admixture occurs when the total  energy (including mass and interaction with surrounding nucleons) of  
two nucleons at the Fermi level is equal to the total  energy of  the dibaryon at rest. On the other hand, the 
nucleons disappear when the total  energy of  two nucleons at rest is equal to the dibaryon energy. 

For  an ideal gas the value of  the chemical potential  for non-zero dibaryon admixture does not  depend on the 
concentration of  dibaryons. This is not  the case for a nonideal gas. I n t w o  limits, D = 0 and D = B/2,  one finds re- 
spectively 

la -~ ½M + (2.3/Tr)EFPFa , la ~ ~M + (0.4/Tr)EFPFa . 

Our final results are the formulae for dibaryon concentration as a function of  the dibaryon mass for two 
limiting cases: 

( 1 ) D + O .  

D ~ 0  f o r m  > M  2 , 

~ B { 1  - [ ( M -  2m)/2E F - ( 1 . 7 / l r ) P F a ] 3 / 2 )  f o r M < M  2 , 

and 

(2)  D - ,  

D ~ - B ( l  - [(M - 2 m ) / 2 E  F - - (1 .8 /rr )PFa]3/2  ) f o r M > M  1, 

~ , 1  
----- ~B for M <: M 1 . (5) 

It is seen that in both limits the values of  the function D(M) f o r M  1 < M  < M  2 are very close. For  a fixed di- 
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baryon mass the above formulae can be understood as a dependence of  the dibaryon concentration on the nuclear 
density. However, our results cannot be extrapolated to the densities significantly higher than the normal one. 

For  normal nuclear density E F = 42 MeV while pF a = 0.57 [6]. The critical masses are M 1 ~ 2m + 30 MeV, 
M 2 ~ 2m + 110 MeV. There are two experimental  candidates for dibaryon states with mass less than M2, namely 
M = 1936 MeV a n d M  = 1962 MeV [7]. The decay width of  both  states reported in ref. [7] is 2 MeV. The ratio 
2D/B is about 0.8 f o r M  = 1936 MeV and about 0.4 f o r M  = 1962 MeV. We have taken the mass of  free nucleons 
for these estimations. I f  we would take into account the mass defect of  the nucleon - the dibaryon mass, conse- 
quently, would be decreased by a value of  two times the nucleon mass - the above estimations would remain un- 
changed. Such a big admixtures seem to be unreasonable, what makes the dibaryon signal observed in the experi- 

ment [7],  in our opinion, doubtful .  
There are heavier dibaryon candiates with masses 2020 MeV [8], 2024 MeV [9],  2025 MeV [10] and 2035 

MeV [ 11 ], and decay widths between 3 and 15 MeV. The value of  the critical mass M 2 is about 2060 MeV for 
twice the normal density. Thus, if one assumes fluctuations of  nuclear density, the above states can contribute 
to the dibaryon admixture in nuclei. 

Besides the rather poor experimental  states of  dibaryons and the uncertainties of  their masses one has to re- 
member that  our calculations do not  provide a quite realistic basis for dibaryon admixture estimations in nuclei. 
The reasons are the following: 

(1) Our calculations are valid in the lowest order of  the pF a parameter which is not  much less than unity. 
(2) The nucleus is assumed to be an infinite system. 
(3) Dibaryons are treated as stable particles. More precisely, for validity of  our calculations the dibaryon decay 

width has to be much less than the Fermi energy. However, dibaryons in the nucleus can be very short-lived par- 
t ides  with a decay width o f  some hundred MeV. 

In conclusion, let us stress the importance of  the problem considered here for neutron-star physics. The point  is 
that the admixture of  dibaryons in nuclear matter  or finally the transition to pure dibaryon matter  makes the 
equation of  state significantly softer. On the other hand, there are arguments [12] that  the equation of  state 
cannot be softer than the so.called Moszkowski one [13] where dibaryons are not  taken into account.  Both facts 
can give constraints on the density of  the nudeus  of  neutron start or the mass of  dibaryons. The problem, how- 
ever, needs further investigations. 
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