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Abstract

We propose a method to measure the hadronic matter compressibility by means of the event-by-event analysis of
heavy-ion collisions at high energies. The method, which utilizes the thermodynamical relation between the compressibility
and the particle number fluctuations, requires a simultaneous measurement of the particle source size, temperature and
particle multiplicity. q 1998 Elsevier Science B.V. All rights reserved.
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Large acceptance detectors allows one for a detailed analysis of individual collisions of heavy-ions at
high-energies. Due to hundreds or even thousands of particles produced in these collisions, variety of powerful
statistical methods can be applied. Then, such event-by-event studies can provide valuable dynamical informa-

w x w xtion which is otherwise hardly available. For example, we have shown in 1 , see also 2 , that the correlation
between particle multiplicity and their average transverse momentum, which is observed in proton-proton
interactions, causes sizeable fluctuations of the total transverse momentum of particles produced in a single
nucleus-nucleus collision if such a collision is a superposition of independent nucleon-nucleon interactions. The
fluctuations from Pb-Pb collisions at 158 GeV per nucleon studied in NA49 experiment have appeared to be
noticeably smaller than the properly normalized fluctuations from the proton-proton interactions at the same

w xcollision energy 3 . Thus, a substantial role of the secondary interactions in heavy-ion collisions has been
proven without a reference to any collision model.

w x w xStodolsky 4 and Shuryak 5 have made another interesting proposal of the event-by-event analysis. They
have adopted a standard assumption that the hadron matter from the nuclear collisions is in thermodynamical
equilibrium. Then, according to the well known thermodynamical relation, the temperature fluctuations can be

w xtreated as a measure of the heat capacity of the hadronic matter. Shuryak 5 has also briefly considered the
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relation, which couples the particle number fluctuations to the particle number derivative with respect to the
chemical potential. In this paper we follow a similar line of reasoning and present a method to determine the
hadronic matter compressibility via the multiplicity fluctuations.

w xThe method is based on the thermodynamical relation, see e.g. 6,7 , which expresses the dispersion of the
particle number N in a volume V through the isothermal compressibility as

² :2 2N V E p
sy , 1Ž .22 ž /T E V² : ² : ² :N y N T , N

Ž .where T is the temperature and p the pressure. In principle, the relation 1 allows one to find E prE V as a
² :function of N , V and T and then to reconstruct the equation of state. Below we discuss how to realize this

program in heavy-ion reactions.
q 0 y 0 0Ž .There are many sorts of hadrons p , p , p , K , K ,..... in the final state of nuclear collisions. Therefore,

Ž .our first task is to generalize Eq. 1 to the system of k components. To solve this problem one has to assume
that the hadron system at freeze-out is not only in the thermal but in the chemical equilibrium as well. The
distinction between the thermal and the chemical freeze-out is discussed at the end of this paper. The extensive

w xanalysis 8,9 of the experimental data from AGS and SPS accelerators shows that the assumption of the
chemical equilibrium is very well satisfied in heavy-ion collisions at least for nonstrange particles.

Ž . w xTo derive the relation analogous to 1 we follow 6 and write the grand canonical sum for the k-component
system as

J z ,... z ,V ,T s z N1 ... z Nk Q V ,T ,Ž . Ž .Ý1 k 1 k N ,... N1 k
N ,... N1 k

Ž .where z is the fugacity of the i-th component and Q V,T is the canonical partition function. Keeping ini N ,... N1 k

mind that

Q V ,T seyb F ŽN1 ,... Nk ,V ,T .Ž .N ,... N1 k

y1 Ž .with b'T and F N ,... N ,V,T being the system free energy, one finds that the probability P to find1 k N ,... N1 k

� 4N ,... N particles is proportional to1 k

P ;z N1 ... z Nk eyb F ŽN1 ,... Nk ,V ,T . .N ,... N 1 k1 k

� 4In the case of a hadronic system the particle numbers N ,... N are not conserved. Nevertheless the free1 k
Ž . � 4energy F N ,... N ,V,T with the numbers of particles N ,... N being fixed is still of physical meaning.1 k 1 k

Ž² : ² : . Ž .However, this is F N ,... N ,V,T , which corresponds to the thermodynamical thermal and chemical1 k
�² : ² :4 Ž .equilibrium. The average particle numbers N ,... N are found as a minimum of F N ,... N ,V,T . If the1 k 1 k

² q:particles carry charges, say q and y, and the total charge Q is conserved, then the average values N and
² y: ² q: ² y:N are also found as a minimum of F but the additional constraint N y N sQ must be imposed.

When we deal with the particles obeying quantum statistics, the approach described above, where the average
Ž .particle numbers are found as a minimum of F N ,... N ,V,T is rather inconvenient because there is no1 k

Ž .compact expression for F N ,... N ,V,T even for the ideal gas. Then, we introduce the chemical potentials.1 k

However, this is a technical problem and not the matter of principles.
After this comment we expand the free energy around the average particle numbers and take into account

only the first three terms i.e.

E F N ,... N ,V ,TŽ .1 k² : ² : ² :F N ,... N ,V ,T (F N ,... N ,V ,T q N y NŽ . Ž . Ž .Ý1 k 1 k i iE Ni ² : ² :N s N ,... N s Ni 1 1 k k

21 E F N ,... N ,V ,TŽ .1 k ² : ² :q N y N N y N . 2Ž .Ž . Ž .Ý i i j j2 E N E Ni ji , j ² : ² :N s N ,... N s N1 1 k k
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Due to the relations

E F N ,... N ,V ,TŽ .def 1 k bm im s and z 'e ,i iE N ² : ² :i N s N ,... N s N1 1 k k

where m is the chemical potential of the i-th component, one findsi

1
² : ² :P ;exp y L N y N N y N , 3Ž .Ž . Ž .ÝN ,... N i j i i j j1 k 2 i , j

with the matrix L given as

2E F N ,... N ,V ,TŽ .1 k
L sb . 4Ž .i j E N E Ni j ² : ² :N s N ,... N s N1 1 k k

w x Ž .As well known, see e.g. 10 , the moment matrix M of the normal distribution 3 equalsi j

² ² : ² : : y1M ' N y N N y N s L . 5Ž . Ž .Ž . Ž . i ji j i i j j

We are now going to relate the matrix L to the compressibility. Since the free energy is an extensive
quantity, which can be expressed as

F N ,... N ,V ,T sV f r ,... r ,T ,Ž . Ž .1 k 1 1

with r 'N rV, one shows thati i

E F N ,... N ,V ,T F N ,... N ,V ,T E F N ,... N ,V ,TŽ . Ž . Ž .def 1 k 1 k 1 k
p N ,... N ,V ,T s y sy q rŽ . Ý1 k iE V V E Nii

and then

E p N ,... N ,V ,T E 2F N ,... N ,V ,TŽ . Ž .1 k 1 k
y s r r . 6Ž .Ý i jE V E N E Ni ji , j

Ž . Ž .Using Eqs. 5 and 6 we get the final result

V 2 E p
y1² :² :N N M sy . 7Ž . Ž .i jÝ i j ž /T E V ² : ² :T , N ,... N ,1 ki , j

Ž .The relation 7 essentially simplifies when the system components are independent from each other. Then, the
Ž . Ž . Ž .matrices L 4 and M 5 are diagonal M sL s0 for i/ j andi j i j

² :2 2N V E pi
sy . 8Ž .Ý 22 ž /T E V² : ² : ² : ² :N y N T , N ,... N ,1 ki i i

²Ž ² :.Ž ² :.:The question whether N y N N y N s0 for i/ j can be answered experimentally.i i j j

As already mentioned it is somewhat unusual in the statistical hadron physics to consider the thermodynamic
Ž . Ž .quantities, like the compressibility from Eqs. 7 , 8 , at the fixed hadron average numbers. Computation of such

quantities is straightforward if the hadrons are assumed to obey the Boltzmann statistics. In fact, this is a quite
good approximation at the freeze-out stage when the hadron gas is expected to be rather dilute.

We consider as an example the classical multi-component van der Waals gas. The equation of state is taken
in the form

² : ² :p Vy N Õ s N T ,Ý Ýi i jž /
i j
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Ž . Ž .where the parameter Õ is related the volume of the iysort hadron. The r.h.s. of Eq. 7 or 8 then equalsi

² :NÝ j2 ² :V E p N Õj i i ² :y s ( 1q2 N , 9Ž .Ý Ý j2ž / ž /T E V V² : ² : ² :T , N ,... N , N Õ1 k j ji i
1yÝž /Vi

where the last approximate equality assumes smallness of the van der Waals correction. When Õ ™0 we get thei
Ž .ideal gas limit. The compressibility of the classical ideal gas is obtained from the relation 7 if the moment

Ž . i j² :matrix M 5 equals M sd N .i j i

When the particles obey quantum statistics one usually introduces the chemical potentials to compute the
� 4 Ž �² : ² :4.thermodynamical quantities. Then, the pressure is a function of m ,..... m not of N ,... N and we1 k 1 k

�² : ² :4 Ž . Ž .express the derivative at fixed N ,... N , which is present in Eqs. 7 , 8 , through the derivative at fixed1 k
� 4 w xm ,..... m . This is done by means of the respective jacobians, see e.g. 7 . We give here the formula for a1 k

single component system

² :E p E Nž /ž /E p E p Em E V T ,mT ,Vs y ,ž / ž / ² :E NE V E V² : T ,mT , N ž /Em T ,V

and apply it to the ideal gas of pions which are bosons with three internal degrees of freedom. Then,

d3p y1b ŽE ym .p² :N m ,V ,T s3V e y1 ,Ž . Ž .H 32pŽ .

d3p
yb ŽE ym .pp m ,V ,T sy3T ln 1ye ,Ž . Ž .H 32pŽ .

2 2(where E ' m qp with m being the pion mass and p its momentum. For massless pions with ms0, whichp
Ž .corresponds to the chemical equilibrium, we get the r.h.s of eq. 1 in the form

V 2 E p 18z 2 3 6z 3Ž . Ž .
3 ² : ² :y s VT s N (0.71 N , 10Ž .4 2ž /T E V p p² :T , N

Ž . Ž . Ž . Ž .where z z is the Riemann function and z 3 (1.202. Comparing Eqs. 9 and 10 one sees that the particle
number fluctuations are larger in the ideal gas of bosons than in the classical one.

Ž . Ž .Let us now discuss how to use Eq. 7 or 8 to determine the hadron matter compressibility. The l.h.s. of
these equations is fully determined by the particle multiplicity but to extract E prE V one also needs to deduce T
and V in individual collisions. It is not a trivial task to get these three quantities.

One should first realize that the final state characteristics correspond to the so-called thermal freeze-out when
the whole system disintegrates due to the switching-off the inter-particle interactions. However, the system
chemical composition is fixed earlier, at the so-called chemical freeze-out when the interactions, which change
the particle numbers, are no longer effective. The particle multiplicity, the system volume and temperature,

Ž . Ž .which enter Eqs. 7 , 8 refer to the chemical freeze-out. Therefore, these quantities, which are obtained from
the final state characteristics and consequently correspond to the thermal freeze-out, should be further
recalculated to get their values at the chemical freeze-out. One can refer here to the procedure described in e.g.
w x9 , where the system volume and temperature at the chemical freeze-out are inferred from the multiplicities of
the different sort particles.
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The second but related difficulty lies in the fact that a sizeable fraction of the final state particles originate
Ž . Ž .from the decays of hadron resonances. Since the particle multiplicity from Eqs. 7 , 8 is that at the chemical

freeze-out, the final state multiplicity should be recalculated to reconstruct the resonance contribution. This can
w xbe achieved within the thermodynamical model which takes into account hadron resonances, see e.g. 8,9 .

The system temperature at the thermal freeze-out is usually found as an inverse slope of the transverse mass
2 2Ž .(spectrum m s m qp with p being the particle transverse momentum . This is however the ‘effective’T T T

w xtemperature which incorporates the effect of transverse collective motion of the hadronic matter 11 and that of
w xthe resonance decays 12 . The actual temperature can be disentangled by the simultaneous analysis of different

w xsort particles 11,12 . The procedure is not very exact but the temperature is presumably measurable within 10%
accuracy.

The system volume in nuclear reactions is controlled due to the collision centrality selection. In this way one
can change the volume in a rather broad range. One usually deduces the particle source size at the thermal

w xfreeze-out by means of the particle interferometry measurements, see e.g. 13 . The high multiplicity of
relativistic nuclear collisions allows one for the event-by-event interferometry analysis. However, one should
keep in mind that the hadron system decay is a dynamic process and the concept of the system volume is then

w xnot very precise. The hadron resonances also complicate the analysis, see e.g. 14 . In spite of these difficulties,
we still believe that the system volume can be measured with an accuracy which enables one to extract the

Ž .hadron matter compressibility from Eq. 7 .
How the data should be collected and processed? First of all one should eliminate or at least reduce the trivial

fluctuations due to the impact parameter variation. This can be achieved by the trigger condition. The collision
centrality is well known to be strongly correlated to the transverse or forward energy observed in the collision.
Therefore, selecting the transverse orrand forward energy from a narrow interval we can collect a sample of
collisions of a similar geometry. Then, one determines the system volume, temperature and hadron multiplicity
for every event. The events are split into subsamples in such a way that a subsample contains the events with
coinciding or close temperatures and volumes. For every subsample one constructs the multiplicity distribution

Ž . Ž .and computes the l.h.s. of Eq. 7 or 8 . Then, one gets the compressibility for a given V and T. Combining the
results obtained for several subsamples we get the compressibility as a function of volume and temperature. The
range of V and T will be presumably rather small. To get E prE V in a broader domain one should vary the
collision geometry by means of the trigger, change the projectile-target system and the collision energy.

In summary, we have proposed a method to determine the hadronic matter compressibility due to the
event-by-event analysis of the particle multiplicity fluctuations in heavy-ion collisions. The thermodynamical
relation, which connects the two quantities in the multi-component system, has been derived. As an illustration
we have considered the compressibility of the classical van der Waals gas and the quantum gas of massless
pions. Since the method requires not only the measurement of the particle multiplicity but of the system volume
and its temperature as well, the problems related to such measurements have been briefly discussed. Finally, the
procedure of data analysis has been suggested.

I am very grateful to Marek Gazdzicki, Mark I. Gorenstein and Edward V. Shuryak for critical reading of the´
manuscript and fruitful discussions.
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