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CHROMOHYDRODYNAMICS OF THE QUARK PLASMA 
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The equations of ideal hydrodynamics of the quark plasma interacting with the chromodynamic mean field are derived from 
kinetic theory. It is shown that the non-abelian effects disappear from the equations. 

Several versions of the hydrodynamical model have 
been extensively used to study the evolution of a 
quark-gluon plasma produced (if  indeed produced) 
in ultrarelativistic heavy-ion collisions (for a review 
see ref. [ 1 ]). In these studies the plasma has been as- 
sumed locally colorless and the chromodynamic 
forces have not influenced the liquid motion. On the 
other hand it is commonly believed that at the initial 
stages of hadron collisions there is color separation 
(in space), and the chromodynamic fields play a non- 
trivial role leading, in particular, to parton-pair gen- 
eration from vacuum. The latter effects have been 
considered in the Low-Nussinov [2] or Lund [3] 
type models of  hadron collisions, which have been 
recently adopted [ 4,5 ] to nuclear interactions at very 
high energies. 

The chromohydrodynamics joins both approaches 
quoted above since it describes the evolution of the 
colored quark-gluon liquid interacting with the self- 
consistently generated chromodynamic field. Very 
recently the chromohydrodynamic model has been 
applied to study the quark-gluon plasma [ 5 ]; how- 
ever, the equations of the electrodynamic plasma have 
been used there. 

In this letter we derive the equations of ideal hy- 
drodynamics of a quark plasma i.e. the system of col- 
ored quarks interacting via classical non-abelian 
potentials. Our starting point is the gauge covariant 
kinetic theory which has been recently formulated 
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[6]. The derivation of the chromohydrodynamic 
equations is given in ref. [ 7 ]. However, the approach 
is essentially gauge non-covariant since the hamil- 
tonian formalism is used and consequently the (tem- 
poral axial) gauge is fixed from the beginning. 
Furthermore, the authors of ref. [ 7 ] have exploited 
the concept of  the classical continuous color variable, 
which is, in our opinion, rather unfortunate since 
there is no analog of this variable in the microscopic 
field theory, i.e. QCD. 

Because the kinetic theory [ 6 ] forms the basis of 
our considerations, let us start with a brief presenta- 
tion of it. For simplicity we consider spinless quarks 
of  one flavour only. The (anti-)quark distribution 
function f (p,  x) (f(p, x))  is a 3 × 3 matrix in color 
space and transforms under local gauge transforma- 
tions as 

f(p, x) ~ U(x) f(p, x) U + (x) . (1) 

The trace of  the distribution function is, of  course, 
gauge invariant, f and f satisfy the transport equa- 
tions [the units are used where c=kB=h= 1; the sig- 
nature of  the metric tensor is ( + ,  , , )] 

p/'Duf(p, x) - ½gpU( O/Op~){Fu~(x),f(p, x)} 

= C [ f , f ] ,  (2a) 

pUDuf(p, x) + ½gp~'( O/Op~) {Fu~( x) , f (p ,  x)} 

= ~ [ f j z ] ,  (25)  

where pU=p= (E,p) ;  D ~ is the covariant derivate in 
adjoint representation which acts as 0u+ ig[A~(x), ]; 
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{, } denotes the anticommutator and 
Fu~=OUAV-&AU+ig[AU, A ~] is the stress tensor of 
the chromodynamic field generated by the color- 
quark current 

DuFU"(x) =i f ( x )  , (3) 

where 

d3/7 u 
g f {f(p,x)--7(p,x) jU(x) = "~ 

- }Tr[tip, x)-]'(/7, x)]}. (4) 

(If  matrix and scalar quantities are added to one an- 
other it is understood that the scalar quantity is mul- 
tiplied by the unit matrix.) C and ~ are the collision 
terms, certain gauge-covariant forms of which have 
been discussed in our very recent papers [ 8 ]. 

In fact, eqs. (2) form only the classical limit of the 
exact quantum equations derived by Elze, Gyulassy 
and Vasak [6]. Therefore, we consequently treat 
quarks as classical particles with Boltzmann statis- 
tics. However, as briefly discussed at the end of the 
paper, some effects of Fermi statistics of quarks can 
be easily taken into account in our considerations. 

The ideal hydrodynamics, which is discussed in this 
paper, corresponds to the plasma in local equilib- 
rium, while the local equilibrium is determined by 
the maximum of the entropy density. We define the 
gauge-invariant entropy four-flow as 

S~(x) = f 
d3p 

( 2 ~  pu {Tr f(p, x)[ ln Tr f(p, x) - 1] 

+ Tr f (p ,x )[ lnTry(p ,x ) -  1 ]}. 

Then, using eqs. (2) and assuming that the distribu- 
tion functions vanish at infinite momenta, one easily 
finds that 0uSU=0 i fTr  C = T r  ~ = 0 .  Here we do not 
specify C and C since it is enough for our purposes 
only to demand that Tr  C = 0  and Tr ~ = 0  if 

f(/7,, x)  tiP2, x) =f(/73, x) f(/74, x) , (5a) 

tip,, x) Y(/72, x) =f(/73, x) f(P4, X) , (5b) 

?(/7,, X) 7(/72, X) ----7(/73, X) 7(04, X), (5C) 
where p~ +/72 =/73 +/74. 

Using standard arguments [9], one finds the local 
equilibrium distribution functions 

ffq(p, x) =p(x )  exp[ - u ' ( x )  p#T(x)] , (6) 

.~eq(p, x) =fi(x) exp [ - uU(x) pu/T(x)] , (6 cont'd) 

where uU(x) is the hydrodynamic velocity and T(x) 
is the temperature measured in the local rest frame. 
Because ti/7,x) and f(/7, x) are matrices in color 
space, so arep(x), fi(x) and uU(x). However, all these 
matrices have to commute with one another to sat- 
isfy eqs. (5). 

Because the distribution functions are gauge de- 
pendent, the same holds for the matrices p(x), fi(x) 
and uU(x). Assuming that these matrices transform 
under gauge transformation as tensors, i.e. according 
to (1), one finds that the local equilibrium distribu- 
tion functions transform as is required by eq. (1). 

Additionally we assume that 

f d3/7 . . . .  c[f,?] =0,  

f d3 p ~ . . .  ( 2 ~ A ( p )  (?[f,]] = 0 ,  (7) 

where X(/7) denotes a quantity conserved in binary 
collisions of quarks and antiquarks. 

Integrating eqs. (2) over d3p/(2n)3E one gets 

DuN%(x)=O, DuNC(x) = 0 ,  (8) 

where 

N~+ (x) = f 
d3p 

/7uti/7, x ) , 

= f  d3/7 ~7't NU(x) ( 2 ~ p  J~p,x). (9) 

We have used eqs. (7) with X = ~ =  1 which corre- 
sponds to the particle number conservation in a bi- 
nary collision. It has also been assumed that the 
distribution functions vanish at infinite four-mo- 
menta. Taking the trace ofeqs. (8) one finds the bar- 
yon current conservation equation 

Ouj~(x ) = 0 ,  (10) 

with 

j~(x) = ~Tr NU(x) , 

where 

NU(x) =NU+ (x) -NU__ (x) . 

Combining eqs. ( 8 ) and (10) one finds the covariant 
conservation of the quark color current (4), namely 
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Duj*'(x) = O, 

since 

jU(x) = ½g[ NU(x) - ½Tr NU(x) ] . (11 ) 

Adding the left-hand and the right-hand sides of 
eqs. (2a) and (2b), multiplying the resulting equa- 
tion by p and performing the integration over 
d3p/( 2 ~) 3E, one gets the second-moment equation 

DUOu~(X) + ½g{Fu~(x), NU(x) } = 0 ,  (12) 

where 

d 3 

Eqs. (8) and (13) constitute the ideal hydrodynamic 
equations if the moments are calculated with the lo- 
cal equilibrium distribution functions given in eq. 
(6). 

Repeating simple considerations from ref. [ 9 ] one 
gets 

N~+ (x)  = n+ (x)  uU(x) , 

NU_(x)=n_(x)  uU(x),  (14) 

where n+ (x) and n_ (x) are the (matrix) densities 
of quarks and antiquarks, respectively. Then, 

O u~ (x) = {e(x) [ n+ (x) + n_ (x)] +p(x )  }uU(x) u~(x) 

- p ( x )  g " ,  (15) 

where e(x)  is the (scalar) energy density per particle 
and 

K, (m /T (x ) )  
e(x)  =rn + 3 T ( x ) ,  (16) 

K2(m/T(x) )  

rn is the quark mass and K~ are the so-called 
MacDonald functions. For massless quarks 
e(x) = 3T(x);  p(x)  is the matrix pressure related to 
the quark density by the ideal gas equation of state 

p(x)  = [n+ (x) +n_  (x)] T(x)  . (17) 

It can be surprising that the pressure is a gauge-de- 
pendent matrix. However, one should note that the 
mechanical pressure P ( x ) =  Tr p(x ) ,  and it is gauge 
invariant. Therefore, as in the case of the mixture of 
ideal gases, the pressure is a sum of terms related to 
the mixture components. 

Eqs. (8), (12) and (3) with eqs. (14)-(17) and 

(11 ) form the gauge-covariant set of hydrodynamic 
equations of an ideal quark plasma. To make the set 
complete one has to add the equation expressing the 
isotropic character of an ideal fluid motion. The set 
can be essentially simplified by the proper choice of 
a gauge. 

As quoted previously, the matricesp(x),/~(x), and 
u u (x) ,  which are hermitian, transform under unitary 
gauge transformations according to eq. (1). There- 
fore they can be diagonalized simultaneously (be- 
cause they commute with one another) by means of 
a gauge transformation. This is just our gauge condi- 
tion. Further, one finds that having the diagonal 
Nu+ (x) and N u _ (x), eqs. (8) are decomposed into the 
differential equations, where enter the diagonal com- 
ponents of AU(x), and into the algebraic equations 
with the off-diagonal components of the four-poten- 
tial. Then, it follows from these algebraic equations 
that the off-diagonal components of AU(x) have to 
vanish. Therefore, except n(x)  and uU(x), A~(x)  is 
also diagonal and so is the stress tensor. 

If we introduce the indices i, j which run over the 
diagonal components (1,2,3) of all quantities of in- 
terest, the hydrodynamic equations read (summa- 
tion over repeated i, j indices is not implied here) 

OuNf+(x)=O, OuNf_(x)=O, (18) 

O,,Of"(x) +gFfV(x)  Nu,(x) = 0 ,  (19) 

OuFU~'(x) 

= ½g{N'i(x) - ~ [N~(x) +N~(x)  +N](x ) ]} ,  (20) 

where 

Nf+ (x) = hi+ (x) u f (x )  , 

Nf_ (x)  = ni_ (x) u f (x )  , (21 ) 

N f ( x )  =Nf+ (x)  - N f _  (x)  , (22) 

O'F (x) 

= {e(x) [ ni+ (x)  + ni_ (x)] +pi(x)  }u~(x) u~(x) 

-Pi(X)  gU, , (23) 

and 

pi(x) = [ n~+ (x)  + n~_ (x)] T(x)  . (24) 

Eq. (16) remains unchanged. Because the stress ten- 
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sor and  color current  are traceless, only two among 
three equat ions (20)  are independen t  f rom each 
other. Therefore,  eqs. (20)  connect  two componen t s  
(F~  ~ and F~" in adjo in t  representa t ion)  of  F u~ with 
three components  o f  N u. Eqs. (18 ) - ( 2 4 )  const i tute  
the non-covar ian t  vers ion of  the chromohydrody-  
namic  equations.  

In our considera t ions  quarks have been t rea ted  as 
classical part icles admi t t ing  Bol tzmann statistics. I f  
one uses the F e r m i - D i r a c  d is t r ibut ion  functions of  
local equi l ibr ium instead of  the Maxwel l -Bo l t zmann  
ones (6) ,  then the set of  hydrodynamic  equat ions re- 
mains  unchanged,  except eqs. (16) and  (17),  which 
are modi f ied  in a well-known way. 

In the paper  by Gatoff ,  K e r m a n  and  Matsui  [5 ] 
the ch romohydrodynamic  evolut ion of  the q u a r k -  
gluon p lasma produced  in ul t rarelat ivis t ic  heavy- ion 
collisions has been s tudied in the f lux-tube model ,  
which assumes that  the initial  nuclei are color charged 
at the instant  o f  coll ision due to the exchange of  some 
soft gluons. In the light o f  the discussion presented  
here it is clear how to improve  that  study. Ins tead  o f  
the one-component  e lec t rodynamic  equations,  one 
should use eqs. (19),  (20)  with two ch romodynamic  
fields generated by the three-color currents. Then, the 
approach  would be more  adequate  for the 
quark-g luon  plasma. 

Let us recapi tulate  our considerat ions.  Start ing 
from the gauge covar iant  set o f  quark p lasma kinetic 
equat ions we have der ived  the ideal  chromohydro-  
dynamics .  We have not  specified the coll ision terms; 
however, it has been assumed that  they have the same 
proper t ies  [eqs. (5)  and  (7)]  as the coll ision te rm of  
the Bol tzmann equation.  The quark density,  hydro-  
dynamic  veloci ty and pressure o f  the quark p lasma 
are gauge-dependent  3 × 3 hermi t ian  matr ices  in the 
color  space. Observing that  the d is t r ibut ion  func- 
t ions o f  local equi l ibr ium provide  the quark densi ty  
and hydrodynamic  velocity which commute  with each 
other, one can diagonalize them due to the gauge 

t ransformat ion.  Using the diagonal  densi ty and ve- 
locity matr ices  one finds the hydrodynamic  equa- 
t ions where non-abel ian effects disappear .  

The author  is very grateful to Mar ia  Ekiel-Je- 
2ewska for i l luminat ing discussion on the der iva t ion  
o f  hydrodynamics ,  to Hans -Thomas  Elze and Kei jo  
Kajan t ie  for comments  and careful reading o f  the 
manuscr ipt ,  and  to the Research Inst i tute  for Theo-  
retical  Physics, Univers i ty  of  Helsinki ,  for k ind  
hospitali ty.  
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