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Summary. — The phase space of quantized systems that contain tachyons
has been investigated. Interpretation difficulties and unexpected diver-
gences are found when we consider the volume of Lorentz-invariant
phase space. These problems can be overcome, however, at the expense
of Lorentz invariance.

PACS. 14.80. — Other and hypothetical particles.

1. — Introduction.

The aim of this paper is to discuss the phase space (PS) of quantized
systems that contain bradyons and tachyons, slower and faster than light
particles (**). At the beginning we present essential features of the concept
of tachyons that we assume in thig paper (). We would like to introduce the
nonpractitioners and to avoid possible misunderstandings that could arise since
several methods of solving the well-known causal paradoxes were found and
several concepts of tachyons were consequently proposed (%4).

(*) To speed up publication, the author of this paper has agreed to not receive the
proofs for correction. :

(**) Some results of this paper were presented in our previous article: ST. MROW-
czYNsKI: Lett. Nuovo Oimento, 36, 340 (1983).

() E. Recami and R. MienaN1: Riv. Nuove Cimento, 4, 209 (1974).

(3 O. M. P. BiraNivuk, V. K. Desgranpz and E. C. G. Suparsuan: Am. J. Phys.,
30, 718 (1962). :

(3) A. F. Axtippa: Nuovo Cimento A, 10, 389 (1972).

(*) H.LeMxE: Phys. Lett. A, 72, 409 (1979).
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The tachyon is described by the spacelike four-momentum p lying on the
single-sheeted hyperboloid

Prpu=—m?,

where m is the real tachyon mass. From the above statement it follows that
the tachyon energy

B =+p*—m?

is real because |p|>m. The reinterpretation prineiple (RP) (2) is assumed
according to which the negative-energy tachyon travelling backward in time
has to be regarded as a positive-energy antitachyon travelling forward in time.
In the version more suitable for this paperthe RP can be formulated as follows:
the negative-energy tachyon in the final (initial) state of the reaction has to
be treated as a positive-energy antitachyon in the initial (final) state of the
reaction.

Although progress towards understanding the tachyon dynamics has been
made (5}, no satisfactory field-theoretical model has been found. For a rewiev
of this interesting problem see ref. (7). In such a situation it could be valuable
to study the PS properties of tachyons, since some problems of field models
arise in these considerations, but in a strongly simplified version. On the other
hand, in the absence of a dynamical theory the knowledge of PS could be
interesting because in the threshold regions PS effects are expected to be
dominant.

~ The Lorentz-invariant phase-space.

We define the volume of the Lorentz-invariant PS in the following ex-
plicitly invariant form:

(1) LN(Sy j:mi, ) i‘mN = Hd4p1 pzzF m?) 6(4)( zpz)
=1 i=1
with P#P,= 8§,
Pi== PiDy, -

Upper signs are for bradyons and lower ones for tachyons.

(5) Proceedings of Session « Tachyons, Monopols and Related Topics » Erice 1976, edited
by E. Recami (Amsterdam, 1978).

(¢) K. Kawmor and 8, KamerucHi: Prog. Theor. Phys., 43, 1646 (1971), .

(") A. L. Cagey, C. M. EY and C. A, Hurst: Hadronic J., 2, 1021 (1979).
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The deltas under multiplication mark «keep » particles on the mass shell,
while the four-dimensional delta secures the conservation of four-momentum P,
In (1) we have to integrate over positive and negative energies of particles.
In the case of bradyons the distinction of particles with negative and positive
energies is Lorentz invariant, since bradyons and antibradyons lie on two
separated sheets of the hyperboloid. 8o, we can, without destroying invar-
iance, neglect the negative-energy part. Using the equality

8(po— VP* £ m?) + 8(p,+ VP* + m?)
2'\/1_02 + m?

d(p*F m?) =
after integration over p,, we get the well-known definition of invariant PS

N 2 2 A dsp i s pu < u“
L (‘87 My ooey My) = ;LIE—ET 0 (P _glpi) ’
where E, =p, = Vp?+ m?.

In the tachyon case it is not possible to remove the negative energies
without violation of Liorentz invariance, since the hyperboloid of the tachyon is
single-sheeted. By invoking the RP, we transfer the negative energies from the
final to the initial state. However, PS defined in (1) by such a procedure loses its
finalstates of the reaction where the four-momentum P#is conserved. Letus con-

time
—
t, b ‘{1 s
S
b t, 1,
t, i, s b
A B C

Fig. 1. — The decay of a bradyon b into tachyons t, and t, seen by three different
observers A, B and C. Due to the RP, the tachyon can be transformed from the final
to the initial state by Lorentz transformations.

sider the reaction which for different observers could be presented by the graphs
shown in fig. 1. The two-particle PS defined in (1) suitable for this situation
is a measure of the states of a system of two tachyons which can occur in the
final and the initial states as well. The four-momenta of tachyons fulfil the
condition

(£ Py PENE Dy L1, = 8.
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We see that Mandelstam variable 8§ has different meanings for different ob-
servers; for A it is the square of energy of tachyons in their centre-of-mass
frame (c¢.m.), while for B and C it is the four-momentum transfer between
tachyons.

For symmetrically treating tachyons and bradyons we do not exclude the
negative energies of bradyons from (1). Such an exclusion does not violate
the Lorentz invariance of (1). However, covariance under superluminal
transformations (boosts over the light velocity barrier that change spacelike
to timelike vectors and wvice versa, see, e.g., ref. ()) would be lost, since such
transformations do not conserve the sign of the zero component of the four-
vector. In the next section we consider PS that has an ordinary meaning;
however, it is neither Lorentz invariant nor covariant under superluminal
transformations.

In the case of two particles L? is decomposed into four parts:

=D, + I+ + I,

where the marks -+, — indicate the sign of the energy of each particle. The
final results are:

1) Bradyon-bradyon

A(S, m3, m3) , (my+ my)2< S,
L*(8, mi, m}) = b (s —m)? <8 < (my - my)?,
y My, My A(S, mﬁ,mﬁ), 0<8 < (my—my)?,
+ oo, S<o0,
where
A, o, ey = ST T A )

2) Bradyon-tachyon or tachyon-tachyon

L8, +m3, +m;) =

A(S, :i:m%, img), S>0,
+ oo, §<0.

The divergences that arise at § < 0 are linear and come from L?_ and L*
terms. For finding L¥ with N > 2, the recurrence formula (2) is introduced

(2) L8, Lmi, ..., +mi, Emyy,) =

:fd4pw+1 6(p12‘7+1 + m12v+1)LN(Sy imi’ ) i'mzzv) ’
where P*P,=— §. . ’
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The divergences found for L2 make that L¥ for N > 2 is divergent for any S.
This unexpected result shows that there arise not only the interpretation
difficulties quoted previously when we try to build the formalism of tachyons
which is a simple extension of methods for particles slower than light. The above
divergence are of a completely different nature than those in QED, for example,
since they come from pure kinematics, but do not depend on interaction phe-
nomena. They arise for tachyons and bradyons as well, because such divergences
are related to the way the negative energies are taken into account.

3. — The noninvariant phase space.

We consider PS that has an ordinary meaning and has been obtained
from (1) by removing the negative-energy parts:

LZ(P*, +m 8y = TSt 00(pr— 3 pi
>( ’imly'--yimﬂ)— H2E ( Z.’pz)
=1 Z =1

As noted, when N particles are bradyons and luxons (massless particles),
L¥ is Lorentz invariant. The results for L¥, where N equals merely two, are
so complicated in form that we present here some particular cases only, and
general results (any two-particle system in any reference frame) are confined
to the appendix. In the centre-of-mass frame (P*= (v/§,0), § in c.m. is
always positive for any kind of particles), we have the following:

. A8, £ m3, £mj), <8,
L>((VE, 0), & miy + m%) =
0, S < Ej,
where F, iy the threshold energy and
(my + m,)? for two bradyons,
B:= 1 mi-+ m3 for bradyon and tachyon,
|mi— m3| for two tachyons .

The function 4 has been determined previously.

The existence of threshold in the systems containing tachyons is connected
with the fact that the momentum of the tachyon cannot be smaller than its mass;
this corresponds to the property of the bradyon the energy of which is always
larger than its mass. The volume of PS for bradyons is a continuous and
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increasing function of energy, but when the system contains at least one tachyon,
this funetion « jumps » at thresholds from zero to a finite value and then decreases
with energy. In fig. 2 it is shown the volume of PS when the masses of particles
are the same and equal to m. Let us notice that in this case there is no threshold
in the two-tachyon system and L? goes to infinity when S reduces to zero.

24
L tachyon-tachyon
P bradyon-tachyon
1
I
n/2f————
|
] luxon-Lluxon
L |
: bradyon~-bradyon
! . .
0 10 7 20 3.0 4.0 \/g/;

Fig. 2. — The volume of PS L% in e.m. for particles with equal masses as a function
of energy.

Such a property can lead to peculiar vacuum instability, since the vacuum
could decay into real (not virtual) tachyons, say tachyon-antitachyon pairs.
These tachyons carry nearly zero energy but momenta higher than their
masses. The possibility and some consequences of this vacuum instability
have been discussed previously (8), but this PS aspect of the quoted phenomena
has not been examined.

The volume of PS for bradyon-luxon and tachyon-luxon systems is pre-
sented in fig. 3. When we consider the reaction

B—~>T+L,

where B denotes bradyon, T tachyon and L luxon, we find that the most
favourable configuration from the point of view of kinematics arises when
the rest masses of B and T are the same and the velocity of the tachyon is
infinite (the tachyon carries zero energy). If there exists the « tachyon elec-
tron », e,, as an analog of the «bradyon electron», e,, i.e. the ordinary elec-
tron, the above observation means that the following transitions or even

(®) R. Mienant and E. REcami: Phys. Lett. B, 65, 148 (1976).
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Fig. 3. — The volume of P8 L in c.m. for tachyon-luxon and bradyon-luxon systems
as a function of energy.

oscillations, noticed in (°),

<> €,y

could occur. y denotes the photon or, more generally, the luxon.

We have to stress that the above physical interpretation is valid in the
c¢.m. only.

As an example of the volume of PS in any reference frame, we present
a system of two tachyons with equal masses:

L2>(gw’ _,mz’ _mz) =

8<0,
g%’ 824 Amrer<ame P2,
Q2 L Am2 N

%LBS-]—'\/S'@—{S—' 4m 89’7 S2cdm Pr< 824 dm2e?,
_lo dm2 P82,

8>0,

T E

2P dme P25 8,

T 4m?
A(S, —m?, —me) = 2 Vl + —S—1 dm? P2 < 82’

8S=PP,, Pui=(c,P), P

il

(®) H. LemkE: Phys. Rev. D, 22, 1342 (1980).
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The differences of the volume of PS for the same reaction in different
frames come from the fact that the energy of one or more particles in the
configuration which conserves P# can be positive in one frame and negative
in another one. So in one frame such a configuration is taken into consideration,
while in the other one it is not. We see that the condition, for example

E

/ bradyon

luxon

tachyon

Fig. 4. — The decay of a bradyon with mass M into a luxon and a tachyon with
mass m in the rest frame of the bradyon (c.m. of tachyons) and in the other moving
frame. We see that the energy of the tachyon in the second frame is negative.

4m P* > 8, defines the reference frame, more precisely the class of reference
frames. This situation is shown in fig. 4. However, LL is noninvariant, there
are some reference frames where LY is the same.

For example,
m2
(1 + F) ’

if (6 — #)2>m?* and §>0. See the appendix.
IZ for N> 2 can be calculated from the following recurrence formula:

LA (P*, —m? 0) =

NI

dspN-;.l
2EN+1

3) LINPH, £ mi, ey M) =f LY(PH— Dy LM,y oy Lm)

We see that, for finding L7 even in one frame, e.g. ¢.m., we have to know
L7 in any frame. Let us consider the two simplest cases of three-particle PSS,
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namely two luxons and a bradyon and two luxons and & tachyon in the c.m.
dzp
13((V8,0), 0, 0, 4-m2) f I%(P*—p*, 0,0).
But L2 (P* 0, 0) = =/2, so, after integration, we get

13((v5,0),0,0, £m3) =% s( 7;:3:2%2111%—2).

For luxons LZ can be found for any N. The recurrence formula (3) is
simplified to the form

V2
L¥Y(S,0,...,0) = 2nf dE ELL(8 —2VS E, 0, ..., 0)

and by induction it can be proved that

¥ 2 —1 SN—2
I%(8,0, ..., 0) ,—_(%) T F—Di"

We conclude that it is easy to construet PS that is free of the difficulties
discussed in the previous section, however at the expense of Lorentz invariance.
We accept the view of the authors of (7) that «the first major problem to be
overcome in developing a quantum theory of tachyons is in reconciling the
apparent conflict between Lorentz invariance and the need to have only pos-
itive energies capable of being observed to the theory ».

® %k Xk

The author would like to express his thanks to Prof. I. BIRULA-BIALYNICKI
for helpful discussions.
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® RIASSUNTO (V)

E stato studiato lo spazio delle fasi dei sistemi quantizzati che contengono tachioni,
8i trovano difficoltd d’interpretazione e divergenze inaspettate quando si considera
il volume dello spazio delle fasi invariante di Lorentz. Questi problemi si possono su-
perare, comunque, a spese dell’invarianza di Lorentz.

(*) Traduzione a cura della Redazione.

®azoB0e NPOCTPAHCTBO TAXHOHOB.

Pesrome (*). — Uccnenyercs ta30BOe OpPOCTPAHCTBO KBAHTOBAHHBIX CHCTEM, KOTODEIE
coOmepXaT TaxWOHBI. BO3HUKAIOT TPYAHOCTH HMHTEPHNPETALNA M HEOXHIOAHHBIE PAaCXo-
JUMOCTH, KOrga MBI paccMaTpupacM 00beM JlopeHn-MHBapHaHTHOTO (ha3oBOTO IPOCT-
paHcTBa. OxHako 3TH OpobieMBI MOTryT OBITH HpeofOJIeHBI 3a cyeT JlopeHU-MHBapuan-
THOCTH.

(*) Iepesedeno pedaryueil.



