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The contourGreenfunction techniqueis usedto derive the relativistictransportequations
of neutraland chargedscalarfields with the interactionlagrangiandensitiesproportionalto ~
and (~4*)2, respectively.Themeanfield and the collision termsin theequationsarediscussed
in detail.

1. Introduction

Transporttheory basedon kinetic Boltzmann-typeequationsoffers a natural
framework to study nonequilibrium phenomena,whereasquantum field theory
(QFT) providesthe underlyingdynamicsfor mostphysical systems.Therefore,the
Lagrange equationsof OFT should be the starting point for a derivation of
transporttheory, and we shall here perform such an analysisof the relativistic
kinetic equations.

There are several fields of application of these equationsin cosmologyand
astrophysics.However, of particular importanceare nuclear collisions, where at
low and intermediateinitial energiesone dealswith hadrondegreesof freedom
(seee.g. ref. [1]), while at high energiesthe dynamicsshouldbe describedin terms
of quarksand gluons [21.In fact, transporttheorymethodshavebeensuccessfully
usedfor a long time in the physicsof nucleus—nucleuscollisionsovera wide range
of energies[1,2], althoughoneusually makesdrasticsimplificationsor approxima-
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tions to make the problem tractable, and quite often ad hoc assumptionsare
introducedto obtain an adequatedescriptionof experimentaldata.Thus, thereis
a double motivation for the derivation of the equations:firstly, the derivation
shows which assumptionsand approximationslead to the transporttheory, and
henceto what systemsthe theorycanbe applied.Secondly,thederivationindicates
how to improve the theoryby going beyondthe approximations.This latter aspect

is particularly importantin the caseof thesystemswith highly nontrivial dynamics,
e.g. quark—gluonplasmaswhich are governedby quantumchromodynamicsand
wherethesimpleintuitive argumentsusuallyusedto advocateoneor anotherform
of transportequation fail, and one has to employ a formal schemeto find the
equation[2].

Although we are interestedin physical theorieslike quantumelectrodynamics,
quantumchromodynamics,or the Waleckamodel of nuclearforces,we startwith
much simpler modelsof scalarfields to elucidatethe problem andto form a basis

for future considerations.Therefore,our presentstudyis mainlyof methodological
character.

Thederivation of relativistic transportequationsby meansof so-calledreduction
formulae hasbeendescribedin detail by de Groot et al. [3]. In our studywe use
the Greenfunction techniquedevelopedby Kadanoff andBaym [4], seealso ref.
[5]. There are only a few paperswhere this technique has been applied to
relativisticsystems:DuBois andBezzerideshavestudiedthe electrodynamicplasma
[6], the Waleckamodel has beenanalyzedby Li et al. [8] andby Botermansand
Malfliet [81,andLi andMcLerranconsideredthe ~ model [7]. However,we find

the studies[7,81 far from complete.Recently,the (~~*)2 model hasbeencarefully
studiedby Calzettaand Hu [9]. In a somewhatdifferent context the transportof
scalar fields hasbeen also discussedby Carruthersand Zachariasen[101and by

CooperandFeigenbaum[11].
The generalschemeof our derivation is as follows: we start with the definition

of the contourGreenfunction, the time argumentsof which lie on thecontourin a
spaceof complextime. After discussingits propertiesandrelevanceto the studyof
nonequilibrium systems,we write down the exact Green function equationsof
motion — the Dyson—Schwingerequations, which are the direct consequence
of the Lagrangefield equations.Assumingthe macroscopicquasi-homogeneityof
the systemdescribed,we perform the gradientexpansionof the Dyson—Schwinger
equations,i.e. expandin macroscopicvariations.To make the resultingequations
useful we must approximatethe self-energies.Two types of approximationsare
discussed— the so-called pairing approximationand a perturbativeexpansionin
the coupling constant.We discussthe latter case in detail and find significant
differencesbetweenthe ~ and (~4*)2 models.The problemof renormalizationis
treated rather superficially since the only divergent expressions,which explicitly
appearin our considerationsare thoserelatedto tadpolediagrams.Theseinfinite
termscanbe removedby meansof simple physical argumentswithout referringto



S. Mrówczyñski,P. Danielewicz / Transporttheoryofscalarfields 347

a moreformal renormalizationapproach.We arenot facedwith the characteristic
self-energydivergencesknown from vacuumfield theory, becausein our scheme
only the finite imaginaryparts of self-energiesenter the quantity of interest.
Further in our derivation we define the distribution functions and discusstheir
connectionwith the Green functions. Finally, we obtain the transportequations
satisfiedby the distribution functions.With the aid of the definitionsintroducedin
sects.2 and 3, more concreteformulation of the problemstudiedin this paper is
given at the endof sect.3.

In summary,we developa schemeto derive the relativistic transportequations
from OFT, andapply it to the simplestcaseof scalarfields. Although the scheme

is a first approximationto the problem, it providesaninsight into transporttheory,
which might be very useful in studiesof more physical systems.Our work also
suggestsa method to improve the schemeto obtain more general transport
equations.

In this article we use the units where h = c = 1. The signatureof the metric
tensoris (+,—,—,— ).

2. Preliminaries

Since the lagrangiandensity is the starting point of OFT considerationslet us
begin by writing down the lagrangiansof the modelsof interest.We choosethe
lagrangiandensityof the scalarneutral (real)field 4(x) in the standardform [12]

L(x) = — ~m2~2~ (2.1)

where m is the massof the bosonrepresentedby the field q~and g is the coupling
constant.The lagrangiandensityof the charged(complex) field is [12]

1
L(x) = — m2~*~~ (2.2)

The lagrangians(2.1) and (2.2) leadto the field equations

[a~a~+m2]cb(x) =g~2(x) (2.3)

for a neutral field, and

[a~a~+m2I~(x)=g~cb2(x)cb*(x), (2.4a)

[a~a~+ m2]~*(x) =g~cb(x)cb*2(x), (2.4b)

for chargedfields.
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Due to the invarianceof the lagrangian(2.2) underU(1) global transformations,
thereis a conservedcurrentwhich reads

j~(x) j~*(X)34~(X) (2.5)

Let us also write down the energy—momentumtensorsof neutraland charged
fields, respectively:

T~(x)=a~çb(x)a~çb(x) —g~L(x),

T~(x)=a~q~*(x)a*q~(x)+a~*(x)a~(x)—g~L(x).

Subtractingfrom the above energy—momentumtensorsthe total derivativeterms

~a~0*(~2(x)) —g~~3°a~,(~2(x))

and

~ _g0ff3(~*(x)q~(x)),

respectively,we get the energy—momentumtensorswhich for noninteractingfields
areof the form convenientfor our purposes:

T~(x)= —~(x)~~i~(x), T~(x)= _ *(x)~~4~(x) (2.6a,b)

wherethe fields areassumedto satisfy eqs.(2.3) and(2.4), respectively.
The systemsof scalarfields arequantizedby postulatingthe following commuta-

tion relations[12]

[4(t,x),4(t,y)j = —i~3t(x—y),

[4(t,x),4(t,y)] =0

for real fields (the dotdenotesthe time derivative),and

[~4*(t x), f(t, y)] = —i~3~(x—y),

[4(x),~(y)] =0, [~*(x),4~*(y)} =0

for complexfields.
Let us also introducethe singularoperatorD(x, y) definedfor realandcomplex

fields, respectively,as

[cb(x),~(y)] = iD(x, y) [q~*(x)~(y)] = iD(x, y), (2.7),(2.8)
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Fig. 1. Thecontouralongthetime axisfor an evaluationof theoperatorexpectationvalues.

which for free fields is a c-numberfunction, and it equals[121

iD(x, y) = f d
4k_e~~2~(k2— m2)(e(k

0) — e( —ks))
(2~r)

d
3k

= f (e~ — e1k~_~) , (2.9)
(2~-) 2w

wherek~= (eu,k) and to = (m2 + k2)”2

3. Green functions, their properties and interpretation

The central role in our considerationsis played by the contourGreenfunction

i~(x,y)~‘(T~(x)~*(y)) - (~(x))(~*(y)), (3.1)

where (...~ denotesthe averageover an ensembleat time t
0, which is usually

identified with minus infinity; T is the time-orderingoperationon the directed
contourshown in fig. 1. The parametertmax is shifted to +~ in calculations.An
infinitesimal positiveor negativeimaginaryparameteris attributedto the real-time
argumentslocating them on the upperor on the lowerbranchof the contour. The
orderingoperationis definedas

~ +e(y0,x0)~*(y)~(x),

wheree(x0,y0) equals1 if x0 succeedsy0 on the contour,andit equals0 when X0

precedesy0. The needto introducecontourGreenfunctionsfor the descriptionof
nonequilibrium systemsis discussedin e.g. ref. [5]. As seenfrom eq. (3.1) the
productof the field expectation(classical)valuesis subtractedfrom <Tç~(x)4*(y))
in the Greenfunction’s definition. Therefore,the Greenfunction correspondsto

field fluctuationsaroundthe classicalvalue.
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Apart from the function (3.1) we use four other functionswith pure real-time
argumentsdefinedas follows:

i~>(x, y) ~K~(x)~*(y)) - K~(x))K~*(y)~, (3.2)

- (~(x))K~*(y)), (3.3)

~ (3.4)

j~a(~ ~) ~KT~(x)~~( y)~- K~(x))(~*(~)>~ (3.5)

whereTC is chronologicaltime orderingand T5 is antichronologicaltime ordering
definedas

T~(x)~*(y)~e(x
0 -y0)~(x)~(y)+ e(y0 _x0)~*(y)~(x),

~ +~(x0_y0)~*(y)~(x).

The definitionsof the Greenfunctionsfor the real fields are analogousto eqs.
(3.1)—(3.5)with ~*(y) beingreplacedeverywhereby q~(y).The functions(3.2)—(3.5)
are relatedto ~(x, y) in the following manner

~c(xy) ~(x,y) for x0,y0 fromtheupperbranch, (3.6)

~a(~ y) ~(x, y) for x0, ~ from the lowerbranch, (3.7)

~1>(x, y) ~(x, y) for x0 from the upperbranchand
y0 from thelower one, (3.8)

zl<(x, y) ~(x, y) for x0 from the lowerbranchand
y0 from the upperone. (3.9)

Onefurther finds the following relations

~C(Xy) =@(x0—y0)~1>(x,y)+ 9(y0—x0)~<(x,y), (3.10)

~ja(x y) = 9(y0—x0)4> (x, y) + e(x0 y0)~l (x, y), (3.11)

(ii> (x, y))t = i~> (x, y), (i~<(x, y))t = i~<(x, y), (3.12), (3.13)

(j~a(~ y))t = i~V~(x,y), (3.14)
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wheret denoteshermitianconjugation,i.e. complexconjugationwith an exchange
of the Greenfunction arguments.Becauseof the relations (2.7) and (2.8) the

following identity holds:

~>(x,y) —~<(x,y) =(D(x,y)). (3.15)

For the real fields the Greenfunctions havea specific property

(3.16)

The Greenfunction ~V(x, y) describesthe propagationof a disturbancein which

a single particleis addedto the many-particlesystemat space-timepoint y and
then is removedfrom it at a space-timepoint x. An antiparticle disturbanceis
propagatedbackwardin time. The meaningof Lla(x, y) is analogousbut particles
are propagatedbackward in time and antiparticlesforward. In the zero-density
limit ic(x, y) coincideswith the Feynmanpropagator[12].

The physical interpretationof functions ~1>(x, y) and ~i<(x, y) is more trans-
parentwhenoneconsidersWigner transformsdefinedas

~>((X,p)~fd4ue’P>(<)(X+~u,X_~u). (3.17)

One then finds that the current (2.5) and free-field energy—momentumtensors
(2.6) averagedover the ensemblecanbe expressedas

d4p
j~(X)= -f

4p~i~<(X,p)+i(~*(X))3~(X)), (3.18)
(2w)

d
4p

T~(X) = f
4p~p”i~<(X,p) — ~ (3.19a)

(2w)

d
4p

T~(X)=2f
4p~p*i~<(X,p)— l(~*(X))3~a~(~(x))(3.19b)

(2w)

Eq. (3.19a)applies to the real fields while eq.(3.19b)appliesto the complexones.
The meaningof thetermscontainingK4) is evident.They describethecurrent,or
the energy—momentumtensor related to the nonvanishingexpectation(classical)
values of the fields, or in other words, the current and the energy—momentum

carriedby classical fields.
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From eqs.(3.18) and(3.19) one seesthat iz~<(X,p)correspondsto the density

of particleswith four-momentump in a space-timepoint X, andconsequently,it
is a quantum analog of a classicaldistribution function. This interpretation is
supportedby the fact that iz.1<(X,p) is hermitian [eq. (3.13)], however it is not
positively definite and the probabilistic interpretationis only approximatelyvalid.
One should also observe that, in contrastto the classicaldistribution functions,
ii.~<(X,p)canbe nonzerofor the off-shell four-momenta.

Now we are in the position to explain the objective of our considerations.
Starting from the Lagrangeequations(2.3) and (2.4) we are going to derive the
equationswhich describe the evolution of Green functions ~1> <~, and then
convert the obtained equationsinto the transportequationssatisfiedby distribu-
tion functions.Our aim is realizedin severalsteps.First we write down the exact
equationof the function ~i(x, y). This equationgives us the equationsof ~i> <~.

We approximatethe self-energieswhich entertheseequationsandwe achieveour
goal on expandingthe equationsin macroscopicvariations.The discussionof the
self-energyapproximationsconstitutesthe essentialpart of our considerations.In
sect. 10 we discussthe assumptionsand approximationsleading to the transport
equations.

4. Green function equations of motion

From eqs.(2.3) and(2.4) and definition (3.1) onefinds two equationsof motion

of the contourGreenfunction

[~a~+ m2]~(x,y) = —~4~(x,y) + f d4x’TI(x,x’)L%(x’, y), (4.1)

[a~ +m2Ii(x, y) = —6~4~(x,y) +f d4x’~(x,x’)11(x’,y), (4.2)

wherethe integrationoverx~is performedon the contour.The function ~4kx, y)
is definedon the contouras

— y) for x
0, y0 from the upperbranch,

~
4~(x, y) = 0 for x

0, y0 from the differentbranches,

— ~
4~(x — y) for x

0, y0 from the lowerbranch.
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The self-energyH(x, x’) canbe definedas

fd4x’H(x, x’)~(x’,y) ~ -ig~((J~2(x)~(y))- ~~2(x))<~(y))) (4.3a)

for the real fields, and

fd4x’H(x, x’)~(x’,y) ~

- (~2(x)q~*(x))(~*(y))) (4.3b)

for the complex fields. Becausethe Green function of the free fields ~.t
0(x,y)

satisfiesthe equation

+ m2jL~~(x,y) = —~
4~(x,y)

we can now rewrite eqs.(4.1) and(4.2) in the symbolicoperatornotation

z1j*1=1—Hz~, ‘~1=1—~H

and obtain the familiar form of the Dyson—Schwingerequation

= ‘~o— L~QHL~. (4.4)

Let us split the self-energyinto threeparts accordingto the formula

H(x, y) = HMF(x)~4~(x,y) + H >(x, y)@(x
0,y0) + Ii <(x, y)@(y0,x0).

(4.5)

As we shall see later, HMF correspondsto the mean-fieldeffects while H >

providesthe collision terms in the transportequations.Therefore,we call HMF the
mean-fieldself-energyand H > <~ the collisional self-energy.

Using the relations (3.8), (3.9) and eq. (4.5), eqs. (4.1) and (4.2) can be
manipulatedto yield the equationsof motion of the functions ~> and~ <, known
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as the Kadanoff—Baymequations[4]:

[a~a~+m2_HMF(x)]~>(x,y)= JY0d4x~H>(x,x~)[~<(x,y) —~>(x’,y)]

+fX0d4x~[H>(x,x~)—H<(x,x’)]~>(x’,y),

(4.6)

[a~a~+m2 —HMF(x)I~<(x,y)=f0d4x~H <(x,x’)[~<(x, y’) —~>(x’,y)]

+f°d4x’[H>(x,x’) —H <(x,x’)]~<(x’,y),

(4.7)

[a~a~+m2—HMF(y)]~>(x,y)=fY0d4x~~>(x,x~)[H<(x~,y)—H>(x’,y)]

+fX0d4x[~>(x, x’) —~<(x,x’)]H > (x’, ~)

(4.8)

[a~a~+m2_HMF(y)1~<(x,y) =fY0d4x~~<(x,x~)[H<(x~,y)—H>(x’,y)]

+f°d4x’[~>(x,x’) —~<(x,x’)]H<(x’,y),

(4.9)

where the integrationlimits are for the timevariable.
Upon defining the functions

(4.10)

H(x, y) ~ — (H> (x, y) — H <(x, y))~(y
0 —x0) (4.11)

and functions ~ + and ~1- in the analogousway, the Kadanoff—Baymequations
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canbe rewritten in the form which is moreappropriatefor our purposes

+ m2 — HMF(x)]z1> (x, y)

= fd4x’[H> (x, x’)~(x’, y) + H~(x,x’)~>(x’, y)], (4.12)

[a~ + m2—HMF(x)Iz.1<(x, y)

= fd4x~[H+(x,x~)~<(x~,y)+H<(x,x’)~(x’,y)], (4.13)

[a~a~’+ m2 —HMF(y)]~> (x, y)

= fd4x’[~> (x, x’)H(x’, y) + ~(x, x’)H> (x’, y)], (4.14)

[a~a~+ m2 _HMF(y)1~1<(x,y)

=fd4x~[~(x,x~)H<(x~,y)+~<(x,x’)H(x’,y)], (4.15)

where the time integration runs from — co to + cc. Let us stress that the
Kadanoff—Baym equations (4.6)—(4.9) or (4.12)—(4.15) are exact and they are
equivalentto the field equationsof motion.

For further conveniencewe also write down the equations satisfied by the
functions ~ ±

[a~a~+m2]~±(x,y) = —ô/4~(x—y)+ fd4x’H~t(x,x’)~(x’,y), (4.16)

[a~a~+m2]~i±(x,y) = —~4~(x—y)+fd4x~zi±(x,x~)ri±(x~,y).(4.17)

5. Towards transport equations

The transport equations are derived under the assumptionthat the Green
functions ~i(x, y) and the self-energiesH(x, y) weakly dependon the sumsof
argumentsand that they are significantly different from zero only when the
differences of argumentsare close to zero. To expressthese properties it is
convenientto define a new set of variablesas

~i(X,u) ~i(X—~u,X+~u).
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Then, let us assumethat i(X, u) andH(X, u) vary slowly with X andarestrongly
peaked for u 0. Due to this assumptionone can, in particular, approximate
~(X+u,u) as

a
~1(X+ u,u) _~i.(X,u) + u’~—zi(X,u). (5.1)

This assumptionis discussedin sect. 11, wherewe analyzethe whole procedureof
the derivationof kinetic theory.

The Kadanoff—Baymequationsare convertedinto transportequationsimple-
menting the above approximation and performing the Wigner transformation
(3.17) of all Greenfunctionsand self-energies.

The approximationis introducedand thetransformationis performedautomati-
cally by meansof the following easily derivableformulas

fd~x’f(x,x’)g(x’, y)

1 hf(X,p) 8g(X,p) af(X,p) hg(X,p)

—sf(X,p)g(X,p)+t-- — ~ (5.2)

1 ah(X) 8g(X p)

h(x)g(x,y) —h(X)g(X,p) ~ ax~ öp~ (5.3)

1 ah(X) ag(X,p)

h(y)g(x,y) —‘h(X)g(X,p) ~ ax~ ap~ (5.4)

d~f(x,y) -i+~3~)f(X,p), (5.5)

a~f(x,y) ip~+~a~)f(X,p), (5.6)

where X = (x + y)/2 and the functions f(x, y) and g(x,y) satisfy the assumption
discussedabove.

Using the formulas (5.2)—(5.6)one canchangeeqs. (4.12)—(4.15) into the form

[~a~a~— ip~9,~—p2 +m2 —HMF(X) + i~a~HMF(x)a~]z1>(X,p)

=H>(X,p)(X,p)+H~(X,p)L1>(X,p), (5.7)

[~a~a~— ip~3,~—p2 + m2 —HMF(X) + i~a~HMF(X)a~]~1<(X,p)

=H~(X,p)~1<(X,p)+H<(X,p)~i(X,p), (5.8)

[~a~a~+ ip~a,~—p2 + m2 — HMF(X) — i~a~HMF(X)3~]z1>(X,p)

(5.9)

[+a’~a~+ ip~’3,~—p2 + m2— HMF(X) — i+a~HMF(X)a.~]~<(X,p)

=~Y(X,p)H<(X,p)+4<(X,p)H(X,p). (5.10)
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On the right-hand-sidesof eqs.(5.7)—(5.10)we haveneglectedthe gradientterms
like thosefrom eq.(5.2). This approximationis discussedin sect. 11.

Subtractingeq.(5.9) from eq.(5.7) andeq.(5.10)from eq.(5.8), respectively,one
finds

[p~a.~—

=i~[H<(X,p)z1>(X,p) —H>(X,p)L1<(X,p)], (5.11)

where we haveusedthe equality

H~(X,p)—H(X,p)=H>(X,p)—H<(X,p)

andan analogousequalityfor ~ ± and~ -, which follow from the definitions(4.10)
and(4.11).

Summingeq. (5.7) with eq. (5.9), and eq.(5.8) with eq.(5.10), respectively,one
finds

[~a~a~—p
2 + — TIMp(X)Pi><~(X,p)

= ~[H>(<~(X,p)[~(X,p) +~(X,p)]

+ [H~(X,p) +H(X, p)]~>~<)(X,p)]. (5.12)

The sum zl ~X, p) + ~ (X, p) canbe expressedas

1 ~~(X,w’,p)—~<(X w’,p)

~Tt to—U)

Thereis also an analogousformula for the self-energies.
Eqs. (5.11) and (5.12) are called the transport equation and the mass-shell

equation,respectively.In order to make them definite one has to determinethe
self-energies.This is the subjectof sects.6, 7 and8.

The conservationlaws satisfied in the models representedby the lagrangian
densities(2.1) and (2.2) imposecertainrestrictionson the approximationsin eqs.
(5.11) and (5.12).

Let us first discussthe conservationof current(2.5), that canbe representedas
in eq. (3.18).The two partsof current(3.18) — the fluctuation part andthe classical
part, areconservedseparatelywhen

- (~(x))(cb(x)~*2(x))= 0.

This relation holds in the case of the pairing approximationdiscussedin sect. 6
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and also follows from the perturbativeexpansionanalyzedin sects.7 and8. From
now on we assumethat the aboverelationholds.

Sincethe function ~> (X, p) satisfieseq.(5.11), the conservationof the fluctua-

tion currentleadsto the requirement

d
4pf

4[H<(X,p)~>(X,p)—H>(X,p)~<(X,p)]=0. (5.13)
(2~r)

Becausewe have assumedthat the functions LI> <kX, p) vanish at infinite
four-momenta,the mean-fieldself-energyhas beeneliminatedfrom eq. (5.13).

In kinetic theoryone usuallyassumes[31that the energy-momentumtensorcan

be approximatedonly by the kinetic part, which is given by eq. (2.6). Then, the
energy—momentumconservationprovidesthe relation

d
4pf

4p~[H<(X,p)LI>(X,p) —H>(X,p)LI<(X,p)] =0. (5.14)
(2w)

Beforeanalyzingfurthereqs.(5.11)and(5.12) let us briefly discussthe noninter-
acting fields. In this casethe transportandmass-shellequationsare

p~3~LI>~<~(X,p)=0, (5.15)

[~a~a~_p2+m2jLI>(<)(x p)=O. (5.16)

However, it shouldbe stressedthat for free fields eqs. (5.15) and (5.16) can be

obtainedfrom the Lagrangeequationswithout usingthe approximationsdiscussed
at the beginningof this section.

Eq. (5.15) might be identified with the classicalrelativistic kinetic equation(see

e.g. [3]), however, following eq. (5.16), the Green function LI> <kX, p) can be
nonzerofor the off-shellfour-momenta.Nonetheless,the kinetic theorydealswith
the systemcharacteristicsaveragedover scaleslarger than the particle Compton
wavelengthof the order of m ‘ Formally, we imposethe condition

1
LI>~<~(X,p)~~ (5.17)

which is further discussedin sect. 11. We thenget from (5.16)

(p
2 —m2)LI>~<~(X,p)= 0. (5.18)

Condition (5.17) makes the Green functions LI>’<~(X,p) zero for the four-
momentawhich do not satisfy the mass-shellequationp2 = m2.
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Let us also discuss the equations of Green functions LI~(X,p). For the
noninteractingfields the equationsanalogousto (5.15) and(5.16) are

p~a~LIc(x,p)=0, [~a~a~_p2+m2jLI(X,p) = —1. (5.19), (5.20)

For the function LIa(X, p) the right-hand-sideof an equationanalogousto (5.20)
equals1. Let us also mentionthat the functions LI~kX,p)are X-independentin
the vacuum OFT [121becauseof the translationalinvarianceassumed.Imposing
the condition (5.17) on the functions LI~(X,p), the solutionsof eqs. (5.19) and
(5.20) andthe analogoussolutions for function LIa(X,p), canbe written as

1
LIc(X, ~ = 2 2 + + @( —p0)LI> (x,p) + ~( p0)LI< (X, p), (5.21a)

p —m +10

—1
LI~(x, ~ = 2 2 + + 9( p(,)LI (x,~) + ~( p0)LI< (X, p) , (5.21b)p —m —tO

where the functions LI>
t<~(X,p)satisfy the equations (5.15) and (5.18). The

solution (5.21a)admits the standardFeynmanpropagatorinitial conditions[12].
The form of the solutions (5.21) has been chosen to satisfy the relations
(3.10)—(3.14).

From the solutions(5.21) onecan also find that

1 1
LI~(X,p)= 2 2 ± LI(X,p)= 2 2 ± (5.22a,b)p —m +lp

0O p —m —ip0O

wherewe haveusedthe identities

LI±(X,p)+LI(X,p)=LIc(X,p)_LIa(X,p)

LI~(X,p)—LI(X,p)=LI>(X,p)—LI<(X,p), (5.23)

which directly follow from the definitionsof functions LI + and LI —. In the case of
noninteractingfields, the relation(3.15)can be written as

iLI> (X, p) — iLI< (X, p) = 2~r5(p
2— m2)(e(p

0) — @( —p0)), (5.24)

cf. eq. (2.9).

6. The pairing approximation

Let us now go backto eq.(4.3) defining the self-energies.Following refs. [10,11]
we approximatethe expectationvaluesof the field operatorproductswith the sum
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of products of expectation values of productsof no more than two operators,i.e.
with the sumof all possiblepairings.Physicallyit meansthat interparticlecorrela-
tions are neglected.Then, for the real fields onefinds

(T~2(x)~(y)) (~(x))2(~(y))+ ((~2(x)) -

+ ~ - ~ (6.1)

and

f~d4x’11(x,x’)LI(x’,Y) =gA(x)LI(x,y),

where

A(x) ~(q~(x)).

Therefore

TI(x,y) =g~4~(x,y)A(x)

and one finds by means of eq. (4.5), that the approximation (6.1) gives

HMF(x) =gA(x) and TI>(x,y) =H<(x,y) =0. (6.2)

The analogous approximation to (6.1) for the complex field reads

-

+ ((~2(x)> -

+ 2((q5(x)~*(x))-

+ (~(x))2((T~*(x)~*(y))-

+ 2((T~(x)~*(y))- <~(x))(~*(y)>)(~(x))(~*(x))

+ 2((~(x)~*(x))-

x (Kf~(x)cb*(y)) -

+ ((~2(x)> - (çb(x)>2)(<Tçb*(x)çb*(y)) -

- <~(x))2<~*(x))(~*(y))- (K~2(x)) -

_2((çb(x)cb*(x)) -

= 2(<T~(x)~*(y)~- x))Kcb*(y)))~cb(x)cb*(x))

-
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In addition, we assume here that the commuting fields like 41*(x), 4~*(y)are
independent from each other, i.e. the expectation value of the product of such

fields equals the product of the expectation values of the fields. Then,

-

2((Tq~(x)~*(y))- (~(x)*(y)))(~(x)~*(x)) (6.3)

and

fd4x’H(x,x’)LI(x’,y) =g(iLI> (x,x) + A(x)12)LI(x,y),

where, as in the real field case,

A(x) ~(ç~(x)~.

The Green function LI(x, y) is not well defined for x = y and must be renormal-
ized. To fix the way in which the renormalization will be carried out, we substitute
the function LI < (x, x) for the function LI(x, x). As we shall see, using the function
LI> (x, x) instead of LI < (x, x) leads to the same result after renormalization.

The mean-field self-energy is

HMF(x) =g(iLI< (x, x) + A(x)12). (6.4)

The transport and the mass-shellequationsin the pairing approximationare

~ =0, (6.5a)

[~a~a~_p2+m2_gA(x)]LI><)(x,p)=o, (6.5b)

for the real fields and

[p~’a~— ~ga~(iLI<(X, X) + A(X)I2)a~ILI>(<)(X,p)= 0, (6.6a)

[~a~a~—p2+m2—g(iLI<(x,x) + A(X)12)]LI>(<)(X,p) = 0, (6.6b)

for the complex fields.
To make both sets of eqs. (6.5) and (6.6) complete,onehasto addthe equation

for the generation of the field A(x). In the case of real fields this equation, which
directly follows from eq. (2.3), is

[a~a~+m2]A(X) =g~[iLI<(X,X) +A2(X)] . (6.7)
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For the complex fields one has to approximate the right-hand-side of a similar

equation following from eq. (2.4) as in eq. (6.3). Then, one finds

[a/Las+ m2IA(X)=g~[2iLI<(X, X)A(X) +A*(X)A2(X)] , (6.8a)

[a~a~+m2IA*(x) =g~[2iLI<(x,x)A*(x) +A(X)A*2(X)} . (6.8b)

Eq. (6.8b) is conjugatedwith respectto eq.(6.8a).
It is interesting to consider eqs. (6.7) and (6.8) for homogenous (equilibrium)

systems. Then, the Green function LI < and the field A are X-independent. In this
case eq. (6.7) provides

2 4m m
A~=—± —~—iLI< . (6.9)

- g g
Solution A + should be rejected on the basis of the following physical argumenta-
tion. This solution gives a finite value of the field A in the limit of zerodensity,i.e.
when LI< = 0. To cure this the vacuum contribution equal to 2m2/g can be
subtracted from the solution A ~. However, another problem remains. The effec-
tive mass,definedaccordingto eq. (5.12)as

m*2 = m2 — 11MF’ (6.10)

has strange behaviour when a system densityand/or coupling constantincreases.
Namely, the real part of m*2 equals 2m2 at the point where the self-energy
acquires an imaginary part, cf. eqs. (6.2) and (6.9). On the contrary, the solution
A — behavesin agreementwith physical intuition. At zero densityA — = 0. When an

imaginary contribution to HMF appearsthe effective mass equals zero. Such
behaviour is well known in the theory of strong fields, see e.g. ref. [13]. The
appearanceof a self-energyimaginarypart signalsinstability dueto particle—anti-
particlepair generationfrom a vacuum.

Finally, themean-fieldself-energyof a homogenousneutral field systemis

HMF=m2— (m4_ig2LI<)11’2,

which in the small coupling limit gives

HMF = i~—~LI<. (6.11)

Let us now consider a homogenous complex field system. Then, one finds the
solution of eqs. (6.8) to be

m2
IA~2= 2— — 2iLI< , (6.12)g
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which should be renormalized to give a zero value of the field A at zero density. It
is an interesting feature of eq. (6.12) that after the renormalization, Al2 is
independent of the coupling constant, i.e. the field A does not vanish in the zero
coupling limit. However, the mean-field self-energy is coupling-constant dependent
andit equals

11MF —igLI< . (6.13)

7. Perturbative approach to the meanfield

As discussede.g. in refs. [5, 9], the contourGreenfunctionsadmit a perturbative

expansionverysimilar to that known from the vacuum QFT [12]. One difference is
that the time integrations do not run from — cc to + cc, but along the contour. The
top of the contour (tmax) must be above the largest time argument of the evaluated
Green function. In practice, t

0 is shifted to —cc and tmax to +cc. The second
difference is the appearance of the tadpoles, i.e. the loops formed by single lines
which do not appear in the vacuum OFT, because of the operator normal ordering
present in the Green function definition. A tadpole correspondsto the Green
function of space-time arguments equal to each other. However, the Green
function LI(x, x) is not well defined and we ascribe the function iLI < (x, x) to each
tadpole. One should note that LI < (x, x) = LI> (x, x), because the function D(x, y)
from eq. (2.9) equals zero for x = y. The renormalization of tadpole graphs is
briefly discussed in sect. 9.

The definition of a Green function (3.1) suggests that the perturbative expansion
should be constructed not around the zero value of field 4(x), but rather around
the zero value of field ~x) = q~(x)—A(x),where A(x) K~(x)). Substituting the
field ~(x) into the lagrangian densities (2.1) or (2.2) we find that the field 4(x)
interacts with the field A(x). For example, in the case of real fields we have the
couplings proportional to ~

2(x)A(x) and to ~(x)A2(x). A finite expectation value
of a field can appear for several reasons. It may happen due to symmetry
breakdown as in the Higgs model, see e.g. ref. [14], or due to finite particle density
as in the Walecka model [15]. However, as long as the field A(x), or more
precisely, the self-energy due to interaction with this field, is of perturbative
character, i.e. it disappears when the coupling constantgoesto zero, the perturba-
tive expansions around 4(x) — A(x) = 0 and around 4.(x) = 0 are expected equiva-
lent. Below we considerthe lattercase.

The Green functions which enter the Feynman diagrams correspond, as usual,
to the noninteracting fields and the respective free functions satisfy eqs. (5.15),
(5.16) and (5.19), (5.20). To simplify the notation we omit the index 0 everywhere.

It follows from eq. (5.18) that the functions LI>~<~(X, p) of noninteracting fields
are different from zero only for on-shell four-momenta. In the case of interacting
fields this is not strictly true, but one expects that this is approximately true when
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(a)

Fig. 2. The lowest-orderdiagramsfor theself-energyin the ct~model.

the perturbative expansion is justified. Then, on calculating the self energies

H>~<kX,p)we are interestedin their valuesonly for on-shell momenta.As we
will see below this situation essentially simplifies calculations. However it occurs
only in the case of massive fields studied here, see sect. 11.

In this section we consider the lowest-order (in coupling constant) contributions
to the self-energies. As we shall see these contributions correspond to the mean
field effects.

In the case of real fields the lowest-order self-energy, representedby the graph

shown in fig. 2a, is

Ha(x,y) = —i~(—ig)
2~/~~(x_y)fd4x~iLI(x,x~)iLI<(x~,x~).

It should be noted that the expression corresponding to a respective diagram
should be multiplied by a coefficient —i in order it gives the self-energy.

On locating the argument x on the upper branch of the contour, one finds

Ha(X,Y) = _i~g2~4)(x_y)fd4x1[LIc(x,x~)LI>(x,xl)—LI<(x,x’)LI<(x’,x’)],

(7.1)

where the time integration runs from —cc to +cc. On using eq. (5.21) one can
prove that an equivalent result is obtained if the x argument is located on the
lower branch.

Let us discuss the second term from eq. (7.1). On performing the Wigner
transformation, one finds that this term is proportional to

f d4x’LI< (x, x’)LI< (x’, x’)

d4p d4k x+x’
= f 4 4 d4x~etP’~LI< ( ~P)LI<(X’~ k). (7.2)

(2w) (2w)

One observes that the main contribution to the integral from (7.2) comes from x’
which is close to x. Therefore, in accordance with the approximations made in
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sect. 5, we expand the functions from eq. (7.2) around x’ = x, neglectingthe second
and higher gradients. Then, one finds

fd~x’LI<(x,x’)LI<(x’,x’)=f~4(LI<(x,p=o)LI<(x,k)

+i(a~a~LI<(x,p = O))LI<(x,k)

+ia~LI<(x,p = O)a~LI<(x,k)).

The function LI < (x, p = 0) and its momentum derivative equal zero if we impose
the mass-shellconstraintson the Greenfunctions.Consequently,the secondterm
from eq.(7.1) gives zerocontribution.Onefinds that the integral (7.2) differs from
zero when the characteristiclength of space-time variation of the functions
LI> <~(x,p) is comparablewith the characteristicinverseparticlefour-momentum.
However, as discussed in sect. 5, seealso sect. 11, such quickly varying functions
have been excluded from our considerations. Thus, the self-energy (7.1) gives the
mean field term as

HMF(x) = _i~g2fd4x~LIc(x, x’)LI<(x’, x’). (7.3)

Let us note that eq. (7.1) can be rewritten by means of the function LI ~, and

then the mean-field self-energy equals

HMF(x) = _i~g2fd4x~LI+(x,x~)LI<(x~,xP).

The graph from fig. 2b corresponds to

Hb(x,y) = —i~g
2LI(x,y)LI(y,x)

with no contribution to the mean-field self-energy, cf. eq. (4.5), and

~ (7.4)

One can notice that the self-energies (7.4) equal zero when the functions LI> <~

are nonzero only for the on-shell momenta.
The lowest-order contribution to the self-energy for complex fields which

correspondsto the graph from fig. 3 is

H(x, y) = —i( —ig)6~4~(x,y)iLI< (x, x)

0
Fig. 3. The lowest-orderdiagramfor theself-energyin the(M*)2 model.
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(a) )b)

B
Fig. 4. Thesecond-orderdiagramsfor the self-energyin the (cbq5*)

2model.

giving

HMF(x) = —igLI<(x,x). (7.5)

Let us comparethe results (7.3) and (7.5) with thoseobtainedin sect. 6. The
pairing approximation should be equivalent to the perturbative one when a
coupling constant goes to zero. One immediately finds that the self-energy(7.3)
calculated for a homogeneous system reproduces the result (6.11). Further, eq.
(7.5) coincides with eq. (6.13).

8. Higher-order self-energies

In this section we calculate next-to-lowest-order perturbative contributions to
self-energies (for the complex fields this is the contribution of order g2 while for

the real ones it is of order g4). In that way we will get the lowest-order
nonvanishing contributions to the collision self-energies.

8.1. COMPLEX FIELDS

The second order contributions to the self-energy are represented by the two
diagrams shown in fig. 4. One should remember that the self-energy defined as in
eq. (4.4) relates only to one-particle-irreducible diagrams. The graph from fig. 4a
correspondsto the meanfield, and is of higher order than (7.5); it is neglected
here. The diagram (b) gives

H~(x,y) = —i(—ig)2~iLI(x,y)iLI(x,y)iLI(y,x),

which provides

= ~

Upon introducing the Wigner transformation one obtains

d4k d4q d4r
Hb>~<~(X,p) = — ( —ig)2~f ~(2~)~~(p + k — q — r)

(2w) (2w) (2ir)

XLI>~<~(X,q)LI>’<~’(X,r)LI<~>~(X,k) . (8.1)
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(a) (b) (c)

(d) (e)

Fig. 5. The fourth-order diagramsfor theself-energyin the4~model.

It can be easily checked that the self-energies (8.1) satisfy the current and
energy—momentum conservation conditions (5.13) and (5.14).

8.2. REAL FIELDS

The fourth-ordercontributions to the self-energyare representedby five one-
particle-irreduciblegraphsshown in fig. 5. The contributions from diagrams(a)
and (b) give the higher-ordermean-field terms and are neglected.The other
diagramsin fig. 5 require morecareful analysis.

Up to now we havecalculatedthe contourself-energyand then useddefinition
(4.5) to extract the functions HMF, H> and H < expressedin termsof LIe, LI~,LI>
and LI <. In the case of more difficult diagrams, such as those from fig. 5, the latter
step can be quite difficult. Therefore it is better to calculate H> and H < from
the beginning by means of the following graphical method.

Wedraw a line dividing the planeinto parts,left and right, that correspondto
the two time-branches, the left part to the chronological (upper) branch and the
right part to the antichronological (lower) branch. Then we draw all topologically
distinct diagrams locating the interaction vertices on both half-planes in all
possibleways. For example,on calculatingthe self-energyH > (x, y) related to the
diagramfrom fig. Sc we placethe x point in the left half-planeandthe y point in
the right one.The remainingtwo verticescanbe placed in four possiblewaysas it
is shown in fig. 6. By virtue of the relations(3.6)—(3.9), the lines in the diagrams
are identifiedwith the functions iLI’, iLIa, iLI> and iLI < accordingto the following
rules:

(i) When both end points are at the left (right) side of the plane, the line
represents iLI’~ (jLIa)

(ii) When the start point is at the left (right) side of the plane and the end point
is at the right (left) side, the line represents iLI> (iLI<).
Weperform integrationover thevertexpositionswith the time integrationrunning
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Fig. 6. The diagramsfor the selfenergy11 > <~correspondingto thegraphfrom fig. Sc.

from — cc to + cc~With each integration of a vertex placed on the antichronological
(right) half-lane,thereis associateda factor — 1.

Becausethe functions H><kx,p) are only consideredfor momentum argu-
mentsthat satisfy the mass-shellconstraints,and the functions LI>~<kX,p)are
finite only for the argumentsthat satisfy such a constraint,it is possible to isolate
the diagramswhich give a zero contribution as a result of energy—momentum

conservation.
Now we can return to the analysisof the diagramsfrom fig. 5. The graphs for

the self-energy H> corresponding to the diagram from fig. Sc are shown in fig. 6.
One finds that each of them provides zero contribution if the arguments of the
functions represented with the lines crossing the plane division line, satisfy the
mass-shell constraints.

The graphs for the self-energy H> corresponding to the graphs from fig. Sd and
fig. Se are shown in fig. 7 and fig. 8, respectively. Weimmediately find that among
the eight graphs only three give a finite contribution. Namely, the graphs from fig.
7c, fig. 8c and fig. 8d. The sum of these graphs yields

d
4k d4q d4r

H>~<~(X,p)= —( _ig)4~f ~(2~)48~(p +k —q — r)
(2~r) (2i~) (27r)

X LI>~<~(X, q)LI> <~(X,r)LI<~> ‘( X, k)

x [2i)(x, p — r)LIa~(X,p — q)

— r)LIa~(X,p — r)] . (8.2)
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(c) )d)

Fig. 7. Thediagramsfor the self-energyII> <~ correspondingto thegraphfrom fig. Sd.

(a) )b)

-~---~-~

Fig. 8. Thediagramsfor theself-energy11 > <>correspondingto thegraphfrom fig. Se.

In the more involved but explicitly causal analysis [16], the functions LI’~~ are
replaced by the functions ~ All these functions differ only in their imaginary
parts [see eqs. (5.21) and (5.22)] that vanish for the off-shell function arguments,
making the distinction between the functions irrelevant for our purposes.

The perturbative expansion of contour Green functions, as other field-theory
perturbative expansions, suffers from the appearance of infinite expressions.The
specific divergences are due to the tadpole diagrams. We discuss them in sect. 9,
where the distribution functions are introduced. The renormalization is based on
the physical argument that the tadpole contributions should vanish in the vacuum
limit, i.e. thesecontributionshouldbe compensatedby respectivecounterterms.
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Divergences other than tadpole divergences have not explicitly appeared in our
considerations due to our practical approach to the problem. The mean-field
divergent diagrams from fig. 4a and fig. 5a have been neglected since they are not
of leading order. The contributions from the rest of graphs in figs. 4 and 5 were
finite because we imposed the mass-shell constraints.

The discussion of the renormalization procedure of the contour Green function
expansion for the ~4-model is given in ref. [9].

9. Distribution functions

The derivativeterm in eq. (5.12) and the term proportionalto H>~<~may be
considered as of higher order [51than the other terms in the mass-shell equation
within the gradient expansion (5.1). Upon dropping these terms, the mass-shell
equation can be written as

[p2_m2+ReH(X,p)]LI>(<)(X,p)=O, (9.1)

where ReH(X, p) = HMF(X,p) + ~.(1i*,(X, p) + H(X, p)).
The particle energy E~(X)is definedasthe positive solution, p = (Er,p), of the

equation

p2—m2+ReH(X,p)=0, (9.2a)

and the antiparticle energy ~~(X) as the positive solution of the equation

p2—m2+ReH(X, —p) =0, (9.2b)

with p = (Er, p). If only the mean field is retained, then E~= = (p2 +

wherem*2(X) = m2— HMF(X).
The distribution functions of particles f(X, p) and of antiparticles f(X, p)

definedonly for on-shell four-momenta,are introducedwith

@(p
0)iLI<(X,p) = 9(p0)2~-6(p

2— m2+ ReH(X,p))f(X,p)

Z,T

= —~----~(E~—p~)f(X,p), (9.3a)

@(p
0)iLI>(X, —p) = l9(p0)2ir~(p

2—m2 + ReH(X, —p))f(X,p)

ZIT -

= -j_~(E~—p
0)f(X,p). (9.3b)

Here the factors Z,~and are

1 aReH(X,p)
Z~=1+— , (9.4a)

2E~ 3p0 p~E~
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and

— 1 aReH(X,—p)
(9.4b)

2E
0 ap0

The function LI<(X,p) for p0 <0 and LI>(X,p) for p0>O, may be further
expressed with f(X, p) and f(X, p) by making use of the relation (5.23). Specifi-
cally, upon Wignertransformationanddroppingthe gradienttermseqs.(4.16)and

(4.17)provide

(p
2—m2+HMF(X)+H~(X,p))LI~(X,p)=1.

One further observes [5] that

ReH ~( X, p) = ~(H~(X, p) + H( X,p))

1 1

ImH~(X,p)=±~(H~(X,p)—H(X,p))=±~-(H>(X,p)—H<(X,p)).

However, the self-energiesH > <~ vanish at the zerothorder in the gradient
expansion,andconsequently

LI~(X,p) = (p2—m2+ReH(X,p) ±ip
00),

wherethe infinitesimal imaginary termsare the remanentsof Im H ~. Finally, one
finds from the relation (5.23)

iLI>(X,p) —iLI<(X,p) =2~r6(p
2—m2+ReH(X,p))(e(p

0) —

(9.5)

cf. eq. (5.24).

From relation (9.5) and definition (9.3), we obtain

e(p0)iLI>(x,p) = e(p0)2~6(p
2—m2+ReH(X,p))[f(X,p) + 1]

Z’W

= —~---~(E~—p
0)[f(X,p) + 1], (9.6a)

@(p0)iLI<(X, —p) = ~9(p~)2ir~(p
2 —m2+ ReH(X, —p))[f(X,p) + i]

Z7T -

= -f---~(E~_p
0)[f(X,p) + i]. (9.6b)
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In the case of real fields, particles and antiparticles are indistinguishable. The
relation (3.16) for the Wigner-transformed functions takes the form

LI>(X,p)=LI<(X,—p). (9.7)

Eqs. (4.1) and (4.2) may be used to show that H > <~ satisfy a relation analogous
to eq. (3.16). This further implies that

ReH>(X,p)=ReH<(X,—p). (9.8)

From eqs. (9.2), (9.7) and (9.8) we then have E~= and Z~= Z~,and finally

f(X,p) =f(x,p).

When only the mean field in retained in the self-energy Re H, then Z,,, = = 1.
This will be assumedto be the casefurther on.

Using the formulas(9.3) and(9.6) one finds

iLI<(X,p) = ~o(E~—p0)f(X,p) + ~6(E~+p0)[f(X, —p) + i], (9.9a)

iLI>(X,p) = ~~(E~—p0)[f(X,p) + 1] + ~~(E~+p0)f(X, _p). (9.9b)

Expressing the current (3.18) with the Green functions of the form (9.3) one
finds

d
3p -

j~(X) = _2f ~ p~[f(X,p) -f(X,p) + 1] +iK~*(X))a~/~(X)>.
(27T) 2E~

(9.10)

The integral from eq. (9.10) is divergent and in the vacuum limit (f(X, p),
f(x, p) —* 0), where the currentfor the physical reasonsshouldbe zero, it gives

d3p

This type of divergences, which also appear in the tadpole contributions, is well
known in the field theory. In the case of the vacuum OFT they do not appear
because of the operator normal-ordering present in the Green function definition

[121.Upon subtracting of the vacuum value from the right-hand side of eq. (9.10),
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the currentbecomes

j~(X)= _2f d3p p~[f(X,p) -f(X,p)] +i(~*(X)~<~(X)).
(2~-)2E~

(9.11)

In a similar way, one has to subtract the vacuumpart to obtain the finite

expressionof the energy—momentumtensor(3.19). Then,onegets for the realand
complexfields, respectively:

d3p
T~(X)=2f p~p~f(X,p)- ~ (9.12a)

(2w) 2E~

d3p -

T~(X) = 2f ~ p~pe[f(X,p) +f(X,p)] -

(2~r)2E~

(9.12b)

The mean-field self-energies(7.3) and (7.5) corresponding to the tadpole dia-
gramsshouldalsobe renormalized.After subtractingthe vacuumvalueswe get the

self-energiesof real andcomplexfields, respectively:

HMF(x) = ~ = _~g2fd4x~LI+(x,x~)d(x~),(9.13a)

HMF(x) = —gd(x), (9.13b)

where d(x) equals

d3p

d(x) = 2f ~ (9.14a)

for the real fields and

d-3p -

d(x) = 1 (21T)32E~[f(x,p) +f(x,p)] (9.14b)

for the complex ones. In the nonrelativistic limit, d(x) multiplied by 2m is equal to
the particle density.

The real-field self-energy (9.13a) requires a further discussion. Let us express
the Green function LIc(x, y) in terms of the distribution functions. From eq. (5.21a)

one finds

LI’~(x,y)=zi~.açuum(x,y)~ (9.15)
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where

c r d4p ~LIvacuum(X, ~ = ~ (2~)~p2 — m2 + i0~

d3p x+y
LI~edium(X, y) = —if (2~)32E~(e~~ + e~))f( 2 ,p).

Upon substituting the function LIc(x, y) of the form (9.15) into (9.13a), one finds
two terms of the mean-field self-energy corresponding to the vacuumand medium

parts of LIc(x, y). The arguments analogous to that presented after eq. (7.1) lead us
to the conclusion that ~ can be ignored.

10. Transport equations

In sects. 7, 8 we have expressed the self-energies through the free Green

functions by means of the perturbative expansion. Treating these Green functions
as exact ones and substituting the self-energies into eqs. (5.11) and (5.12) we get
the closed set of equations. However, one should remember that these equations
are valid up to the order of g2 for the complex fields and to g4 for the real ones.

The final form of transport equations satisfied by the distribution functions is
obtained by substituting the Green functions of the form (9.9) into eq. (5.11) with
an explicit form of the self energies.

10.1. COMPLEX FIELDS

Let us first obtain an expressionfor the right-hand-sideof eq. (5.11). From eq.
(8.1) onefinds that

e(p
0)[H <(X,p)LI> (X,p) —H> (X,p)LI<(X,p)]

d
4k d4q d~r

= — ( _j~)21f 4 ~(2~)~~(p + k — q — r)

(2~-) (2w) (2w)

x[LI<(X q)LI<(X r)LI>(X k)LI>(X p)

—LI> (X,q)LI> (X,r)LI<(X,k)LI<(X,p)]

g2ir d3k d3q d3r
= — —6(E —~o)f (2~)~

2E~ ‘~ (2~)32Ek(27T)32Eq (27T)32Er

x[~(4)(p+k_q_r)[f(x,q)f(x,r)[f(x,p)+1][f(x,k)+1]

-[f(X,q) + 1][f(X,r) + 1]f(X,p)f(X,k)1
±~4)(p~k+q —r)[J(X,q) + 1]f(X,r)[f(X,p) + 1]f(X,k)

-f(X,q)[f(X,r) + 1]f(X,p)[f(X,k) + i]]

+[~~4)(p_k_r+r)[f(x,q)[j(x,r)+1][f(x,p)+1]f(X,k)

- [f(X,q) + 1]f(X,r)f(X,p)[f(X,k) + 1111. (10.1)
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On deriving eq. (10.1) we have changed the sign of antiparticle four-momenta.
Subsequently,we have ignored terms as proportional to ~4kp + k + q + r),

— k — q — r), or ~4)(~ — k — q — r). Since all four-momentaare on the mass
shell and the zero componentsof them are positive, these terms give zero
contributionto the integral from eq.(10.1).

Finally, changingthevariablesk ~-‘ q in the secondterm and r ~ q in the third

one,eq.(10.1) canbe rewritten as

e(p~)[H<(X,p)LI>(X,p)—H>(x,p)LI<(x,p)]

d3k d3q d3r
= ~~(E —~o)f (2~)~

2E~ ‘~ (2~)32Ek(27T)32Eq (27T)32Er

x~4~(p+k—q —r)

x [~M
1~2[f(x,p)f(x,k)[fx,q + 1] [f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1] [f(X,k) + 1]]

+2lM2I
2[f(X,p)f(X,k)[f(X,q) + 1][f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1][f(X,k) + iJ}}, (10.2)

where M, is the particle—particleamplitude scatteringand M
2 is the antipar-

ticle—particleamplitude scattering;

M, =M2= —ig.

The left-hand-sideof eq. (5.11)can also be split into two parts corresponding to

particles and antiparticles, respectively, and finally the transport equation for the
particle distribution function is obtained

[p’~a + ~gB~d(X)3~]f(X,p)

d
3k d3q d3r

= ~f ~ (2~)~3~(p + k — q — r)
(2~-)2Ek(2rr)2Eq (27T) 2E~

x{~~M,~2[f(x,p)f(x,k)[f(x,q)+ 1J[f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1][f(X,k) + ii]

+ lM
2j

2[f(X,p)f(X,k)[f(X,q) + 1}[f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1][f(X,k) + ii]], (10.3a)

where d(X) is given by eq. (9.14b).
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Analogously we get the transport equation for the antiparticle distribution
function

[p~a~+ ~

d3k d3q d3r
= ~f 3 3 3 (2~)4~~~(p+ k — q — r)

(2ir) 2Ek (27r) 2Eq (2~-)2Er

x[~~M,~2[J(x,p)J(x,k)[f(x,q)+1][f(x,r)+1]

-f(X,q)f(X,r)[f(x,p) + 11[f(X,k) + 111

+ M
2~2[f(X,p)f(X,k)[f(X,q) + 11[f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1][f(X,k) + 1111. (10.3b)

10.2. REAL FIELDS

The derivation of the transport equation of the real-field distribution function
proceeds as in the complex-field case. However, the form of the self-energies (8.3)
is now more complicated. The difficulty is to recognizethe sum of nine terms like
LIc(X, q)LIa(X, k) as the squared amplitude for particle—particle scattering. One
should remember that according to the relation (3.14) iLIa(X, k) is a hermitian
conjugate of iLIc(X, k). After quite long manipulations involving changesof the
momentum variables one finds

— }~3.~HMF(X)3~If(X,p)

d
3k d3q d3r

= ~f 3 ~ p + k — q — r)
(2~r)2Ek (27T)~2Eq(2~r)32E~

X IM(k,p,q,r)l2[f(X,p)f(X,k)[f(X,q) + 1][f(X,r) + 1]

-f(X,q)f(X,r)[f(X,p) + 1][f(X,k) + 1]], (10.4)

where the mean-field self-energy is given by eq. (9.13a) and the amplitude
M(k,p, q, r) is

M(k,p, q, r) = i( —ig)2[LI~(x,q —p) + LIc(X, p — r) + LIc(X, k +p)}. (10.5)

This amplitudecorrespondsto the sumof diagramsshown in fig. 9. Becausethe
on-shell part of the free Greenfunction LIc(X, p), eq.(5.21), doesnot contribute

I
Fig. 9. Thediagramsfor thelowest-orderscatteringamplitudein the 43-model.
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to the amplitude (10.5), the function LI’~(X,p) effectively coincides with the
vacuumFeynmanpropagator.

The transportequationsfollowing from the pairing approximation,which are

satisfied by the distribution functions, can be immediately obtained from eqs.
(6.5a)and(6.6a).Theseequations,however,are not very interestingbecauseof the
lack of collision terms.

On writing down eqs.(10.3) and (10.4)we haveachievedour goal to derive the
kinetic equations.

11. Discussionand summary

Our derivation of the transportequationsis basedon severalrestrictiveassump-
tions andapproximations.Let usnow discussthe most importantof them keeping
in mind that theseassumptionsand approximations,on one hand,impose some

restrictions on the physical systemswhich can be describedin the frameworkof
transporttheory, but on the otherhandtheylimit the amountof information about
the systemwhich can be obtainedfrom this theory.

The essentialsimplifications havebeenmadein sect. 5 wherewe haveassumed
that LI(X, u) is a slowly varying function of X and it is strongly peakedfor u 0.
This assumptioncanbewritten as a condition

a a a a 2
LI(X,p)j>>~~~LI(X,p)~>> (~~)LI(X,p) >> ..., (11.1)

which is equivalent to the requirement

LIX~LIp~>>1, (11.2)

where LIX~’ and LIp’~are the characteristiclengthsat which the function LI(X, p)
variesin position andmomentumspace.In more standardunits theright-hand-side
of inequality(11.2) equalsh.

If LI(X, p) providesthe exactdescriptionof a single-particlesystem,therelation
(11.2) cannotbe satisfiedsince LIX’2 1/LIp’~in this case.For a single-particle

system condition (11.2) is equivalent to the one which justifies the classical
descriptionof the system,i.e. the descriptionwith poor position and/or momen-
tum resolutions.Therefore,to satisfy condition (11.2), the single-particlefunction
LI(X, p) shouldcarry the information averagedover the space-timecells which are
much larger than the single-particle de Broglie wavelength. In the case of a
many-particlesystemthe function LI(X, p) carries only the averagedinformation
due to the very meaningof LI(X, p). Consequently,the size of the averagingcell
canbe, in principle, smallerthana single-particlede Broguewavelength.
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One should remember that condition (11.1) should be also fulfilled at the
macroscopic level, i.e. the distribution function, which cariesonly averagedinfor-
mation,shouldsatisfy the relation

a a a a 2

If(X,p)I>>~~~f(X,p)~>>(~~)f(X,p) >> .... (11.3)

Becausethe distribution of a many-particle system is never momentum indepen-
dent (LIp~never approachesinfinity), the requirement(11.3) limits the kinetic
description to systemswhere the rate of the temporal changesis much smaller
than the particleenergies.

In sect.5 we haveassumedthat the self-energysatisfiestheconditionanalogous
to (11.1), i.e.

a a a a 2

~ (~~)H(X,p) >> .... (11.4)

The characteristic length LIp~, at which the self-energy H(X, p) varies in four-
momentumspace, corresponds to the inverse space-time interaction range. There-
fore, the requirement LIX~LIp~>> 1, applied to the self-energycase, demands
shortnessof the space-timeinteractionrange when comparedwith the system’s

space-time unhomogeneity scale.
The conditions (11.1) and (11.4) justify the expansion in gradients and, in

particular, the formulas (5.2)—(5.6). Deriving the transport equations we have kept

only the quantitieswhich are of no more than the secondorder in gradients.
However, the mean-fieldandcollision parts of self-energyhavebeentreatedin a
different way. In the case of the mean-field self-energy we have taken into account

the gradient terms and we have neglected analogous terms of the collision
self-energy. Such a procedure is justified when the interaction in the system is
weak and the perturbative expansion is allowed, since the mean-field contribution
appears at a lower order in coupling constant than the collision one.

On calculating perturbatively the self-energy, we have extensively made use of
the mass-shellconstraintsfor the free Greenfunctions LI> <~(X,p). As hasbeen
shown following eq. (5.16) the functions, LI> <kX, p) are finite only for the
on-shell momenta,if the functions LI> <kx, p) weakly dependon X on the scale
of the particle Compton wave. It appears when the ensemble averaging present in
the definition of LI>~<kX,p) is performed over the space-time cells the size of
which is much greater than the particle Compton length.

Also when the functions H > <kX, p) havebeen calculated in the second order
in coupling constant, it has been assumed, that incoming four-momentum p
satisfies the free-field relation p2 = m2. This has allowed us to neglect several
diagrams because of energy—momentum conservation which, in particular, forbids
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the decayA —‘ B + C when the massesof the particlesA, B and C are equal to
each other. When p

2 = m*2 and m* differs from m, our analysis remains valid as
long as thedifferencebetweenm* and m is much smallerthan m. This is the case
for a perturbativeinteraction of massive fields. When one considers massless fields,
our arguments do not hold since a small (perturbative)modification of the particle
dispersionrelationcanmaketheprocess,which is forbiddenin vacuum,allowedin

a medium. An exampleis Cherenkovradiation which plays an importantrole in
the transport theory of electrodynamic plasma, see e.g. ref. [4].

The derivation of transport equation usually leads to the so-called BBGKY
hierarchyof kinetic equations,seee.g. ref. [3],which is further truncatedunderthe
assumptionsof smallnessof interparticlecorrelationsin the system.In our deriva-

tion the BBGKY hierarchyhas not appearedbecausein the perturbativeexpan-
sion the correlationsareassumedto vanishin the remotepast[5]. In that caseany
correlations in the systemcan be expressedwith integrals extendingover the
historyof the system,andcontainingonly single-particlefunctions.

At the end let us recapitulateour considerations.We have startedwith the
definition of the contour Green function and its exact equation of motion — the
Dyson—Schwinger equation. Then, making some assumptions on the Green func-
tion properties,which we discussedin this section,we haveobtainedthe approxi-
mate equationsof motion of the functions LI> <~. Theseequations,which have
beenrecognizedas the transportequationand the mass-shellequation,haveno
meaningunless the self-energiesare determined.For the self-energieswe have
consideredthe pairing approximationandthe perturbativeexpansion.The pairing
approximation,asthe perturbativeexpansionin the lowest order,hasprovidedthe
equation where the interactioneffects enter only through the mean field. The
nonvanishingcontributions to the collision self-energieshavebeenfound in the
next to the lowest order calculations.However, the analysisof the (~4*)2 model

happenedto be much simpler than that of the ~Y one. Subsequently,we have
introduced the distribution functions defined only for on-shell four-momenta.
Finally, expressingthe functions LI> <~ throughthe distribution functionswe have
arrived at the transportequations.
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