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The contour Green function technique is used to derive the relativistic transport equations
of neutral and charged scalar fields with the interaction lagrangian densities proportional to ¢*
and (¢$*)?, respectively. The mean field and the collision terms in the equations are discussed
in detail.

1. Introduction

Transport theory based on kinetic Boltzmann-type equations offers a natural
framework to study nonequilibrium phenomena, whereas quantum field theory
(QFT) provides the underlying dynamics for most physical systems. Therefore, the
Lagrange equations of QFT should be the starting point for a derivation of
transport theory, and we shall here perform such an analysis of the relativistic
kinetic equations.

There are several fields of application of these equations in cosmology and
astrophysics. However, of particular importance are nuclear collisions, where at
low and intermediate initial energics one deals with hadron degrees of freedom
(see e.g. ref. [1]), while at high energies the dynamics should be described in terms
of quarks and gluons [2]. In fact, transport theory methods have been successfully
used for a long time in the physics of nucleus—nucleus collisions over a wide range
of energies [1, 2], although one usually makes drastic simplifications or approxima-
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tions to make the problem tractable, and quite often ad hoc assumptions are
introduced to obtain an adequate description of experimental data. Thus, there is
a double motivation for the derivation of the equations: firstly, the derivation
shows which assumptions and approximations lead to the transport theory, and
hence to what systems the theory can be applied. Secondly, the derivation indicates
how to improve the theory by going beyond the approximations. This latter aspect
is particularly important in the case of the systems with highly nontrivial dynamics,
e.g. quark—gluon plasmas which are governed by quantum chromodynamics and
where the simple intuitive arguments usually used to advocate one or another form
of transport equation fail, and one has to employ a formal scheme to find the
equation [2].

Although we are interested in physical theories like quantum electrodynamics,
quantum chromodynamics, or the Walecka model of nuclear forces, we start with
much simpler models of scalar fields to elucidate the problem and to form a basis
for future considerations. Therefore, our present study is mainly of methodological
character.

The derivation of relativistic transport equations by means of so-called reduction
formulae has been described in detail by de Groot et al. [3]. In our study we use
the Green function technique developed by Kadanoff and Baym [4], see also ref.
[5). There are only a few papers where this technique has been applied to
relativistic systems: DuBois and Bezzerides have studied the electrodynamic plasma
[6], the Walecka model has been analyzed by Li et al. [8] and by Botermans and
Malfliet [8], and Li and McLerran considered the ¢> model [7]. However, we find
the studies [7, 8] far from complete. Recently, the (¢¢*)* model has been carefully
studied by Calzetta and Hu [9]. In a somewhat different context the transport of
scalar fields has been also discussed by Carruthers and Zachariasen [10] and by
Cooper and Feigenbaum [11].

The general scheme of our derivation is as follows: we start with the definition
of the contour Green function, the time arguments of which lie on the contour in a
space of complex time. After discussing its properties and relevance to the study of
nonequilibrium systems, we write down the exact Green function equations of
motion — the Dyson-Schwinger equations, which are the direct consequence
of the Lagrange field equations. Assuming the macroscopic quasi-homogeneity of
the system described, we perform the gradient expansion of the Dyson—Schwinger
equations, i.e. expand in macroscopic variations. To make the resulting equations
useful we must approximate the self-energies. Two types of approximations are
discussed — the so-called pairing approximation and a perturbative expansion in
the coupling constant. We discuss the latter case in detail and find significant
differences between the ¢ and (¢ ¢*)> models. The problem of renormalization is
treated rather superficially since the only divergent expressions, which explicitly
appear in our considerations are those related to tadpole diagrams. These infinite
terms can be removed by means of simple physical arguments without referring to
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a more formal renormalization approach. We are not faced with the characteristic
self-energy divergences known from vacuum field theory, because in our scheme
only the finite imaginary parts of self-energies enter the quantity of interest.
Further in our derivation we define the distribution functions and discuss their
connection with the Green functions. Finally, we obtain the transport equations
satisfied by the distribution functions. With the aid of the definitions introduced in
sects. 2 and 3, more concrete formulation of the problem studied in this paper is
given at the end of sect. 3.

In summary, we develop a scheme to derive the relativistic transport equations
from QFT, and apply it to the simplest case of scalar fields. Although the scheme
is a first approximation to the problem, it provides an insight into transport theory,
which might be very useful in studies of more physical systems. Our work also
suggests a method to improve the scheme to obtain more general transport
equations.

In this article we use the units where #=c = 1. The signature of the metric
tensor is (+,—,—,— ).

2. Preliminaries

Since the lagrangian density is the starting point of QFT considerations let us
begin by writing down the lagrangians of the models of interest. We choose the
lagrangian density of the scalar neutral (real) field ¢(x) in the standard form [12]

1
L(x) = 30$d,d — ym’¢p° T (2.1)

where m is the mass of the boson represented by the field ¢ and g is the coupling
constant. The lagrangian density of the charged (complex) field is [12]

1
L(x) =3"¢*d, ¢ — m’dp*d +gﬁ(¢¢*)2. (2.2)

The lagrangians (2.1) and (2.2) lead to the field equations

[049, + m?| b(x) = g3d*(x) (2.3)

for a neutral field, and
[049, +m?|p(x) =gid?(x)*(x), (2.42)
[049, +m?]p*(x) = gLdb(x)d*2(x), (2.4b)

for charged fields.
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Due to the invariance of the lagrangian (2.2) under U(1) global transformations,
there is a conserved current which reads

(X)) =id*(x)3,(x). (2.5)

Let us also write down the energy-momentum tensors of neutral and charged
fields, respectively:

T (x) = 0p(x)d"d(x) —g*"L(x),
TH(x) = 0"¢*(x)d"¢(x) +3"¢*(x)*d(x) —g*"L(x).
Subtracting from the above energy—momentum tensors the total derivative terms
7040"(¢%(x)) — 509, (¢*(x))
and
349" (*(x) p(x)) — "3, (d*(x)p(x)),

respectively, we get the energy—momentum tensors which for noninteracting fields
are of the form convenient for our purposes:

TE(x) = —t(x)d* Fd(x),  T(x) = —1b*(x)3* 3¢(x), (2.6a,b)

where the fields are assumed to satisfy eqs. (2.3) and (2.4), respectively.
The systems of scalar fields are quantized by postulating the following commuta-
tion relations [12]

[6(1,%),6(1,9)] = —i8(x —y),
[¢(r,x), (2, y)] =0
for real fields (the dot denotes the time derivative), and
[67(2, %), 6(1, )] = —i6P(x~y),
[6(x), ()] =0, [¢*(x),d*(y)] =0

for complex fields.
Let us also introduce the singular operator D(x, y) defined for real and complex
fields, respectively, as

[6(x).6(¥)] =iD(x,y),  [o*(x),¢(»)] =iD(x.y), (2.7),(2.8)
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Fig. 1. The contour along the time axis for an evaluation of the operator expectation values.

which for free fields is a c-number function, and it equals [12]

4

iD(x, y) =f (2 )4 e—ik(x—y) 27T§(k2 _ mZ)(@(kU) _ @( _ko))
d*k _ .
= fm(e—lk(x—y) _ elk(xfy)) , (2_9)

where k* = (w, k) and w = (m? + k%)'/2.

3. Green functions, their properties and interpretation

The central role in our considerations is played by the contour Green function

iA(Cx, y) S (F(x) 8 (9)) = (b(x))(d*(¥)), (3.1)

where (...) denotes the average over an ensemble at time ¢,, which is usually
identified with minus infinity; 7 is the time-ordering operation on the directed
contour shown in fig. 1. The parameter ¢, is shifted to +o in calculations. An
infinitesimal positive or negative imaginary parameter is attributed to the real-time
arguments locating them on the upper or on the lower branch of the contour. The
ordering operation is defined as

To(x)d*(y) = (x4, o) () $*(¥) + O( vy, x0) $*(¥)b(x) ,

where O(x,, y,) equals 1 if x, succeeds y, on the contour, and it equals 0 when x,
precedes y,. The need to introduce contour Green functions for the description of
nonequilibrium systems is discussed in e.g. ref. [5]. As seen from eq. (3.1) the
product of the field expectation (classical) values is subtracted from (T¢(x)p*(y))
in the Green function’s definition. Therefore, the Green function corresponds to
field fluctuations around the classical value.
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Apart from the function (3.1) we use four other functions with pure real-time
arguments defined as follows:

i4” (x,7) Z (1) (1)) — (S(x))(* (), (3.2)
i4%(x,9) Z(*(9)d(x)) — ($(x))($*(¥)). (33)
i8°(x, y) (TG *(9)) = (H(1))($*()), (3.4)
i4%(x, y) E(T*(2)*(1)) — (b(2))(S"(¥)). (35)

where T is chronological time ordering and T? is antichronological time ordering
defined as

T ()% () = O(xo = y0) 6(x)6*(¥) + Oy —x) 6*(¥)b(x),

T (x)6*(y) Z O(yy—x,) (x)*(¥) + (x4~ v0)* (V) (x) .

The definitions of the Green functions for the real fields are analogous to eqgs.
(3.1)—(3.5) with ¢*(y) being replaced everywhere by ¢(y). The functions (3.2)-(3.5)
are related to A(x, y) in the following manner

A(x,y)=4(x,y) for x,,y, from the upper branch, (3.6)
A*(x,y)=4A(x,y) for x,,y, from the lower branch, (3.7)

A7 (x,y)=4(x,y) for x, from the upper branch and
y, from the lower one, (3.8)

A<(x,y)=4(x,y) for x, from the lower branch and
y, from the upper one. (3.9)

One further finds the following relations

A%(x,y) =0(xy—y)A7 (x,y) +O(yg—x0)A~(x,y), (3.10)
A%(x,y) =0O(yo—xo) A% (x,y) + O(x5—y5) A" (x, ), (3.11)
(147 (x,9)) =i8” (x,9),  (i4<(x,3)) =id<(x,y), (3.12),(3.13)

(id'(x,y)) =ia(x,y), (3.14)
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where t denotes hermitian conjugation, i.e. complex conjugation with an exchange
of the Green function arguments. Because of the relations (2.7) and (2.8) the
following identity holds:

A>(xsy)_A<(x’y):<D(X’Y)>‘ (315)
For the real fields the Green functions have a specific property
A7 (x,y)=4%(y,x). (3.16)

The Green function A°(x, y) describes the propagation of a disturbance in which
a single particle is added to the many-particle system at space-time point y and
then is removed from it at a space-time point x. An antiparticle disturbance is
propagated backward in time. The meaning of A%(x, y) is analogous but particles
are propagated backward in time and antiparticles forward. In the zero-density
limit A°(x, y) coincides with the Feynman propagator [12].

The physical interpretation of functions A~ {x,y) and A<(x, y) is more trans-
parent when one considers Wigner transforms defined as

A><<)(X’p)d=effd4u ePUATC (X + tu, X - tu). (3.17)

One then finds that the current (2.5) and free-field energy—momentum tensors
(2.6) averaged over the ensemble can be expressed as

d* -
j#(X) = —f(zwp)w“m(x,p)+i<¢*(X)>a,L<¢(X)>, (3.18)
dp oo
TEX) = [ P i (Xop) =3 (CX)FFB(X)), (3.19%)
d*p o o
TE(X) =2 [ ——5p#p"iA<(X, p) = X" (X)YFF(H(X)). (3.19b)
(27)

Eq. (3.19a) applies to the real fields while eq. (3.19b) applies to the complex ones.
The meaning of the terms containing {¢) is evident. They describe the current, or
the energy-momentum tensor related to the nonvanishing expectation (classical)
values of the fields, or in other words, the current and the energy-—momentum
carried by classical fields.



352 S. Mrowczyriski, P. Danielewicz / Transport theory of scalar fields

From egs. (3.18) and (3.19) one sees that iA“(X, p) corresponds to the density
of particles with four-momentum p in a space-time point X, and consequently, it
is a quantum analog of a classical distribution function. This interpretation is
supported by the fact that iA<(X, p) is hermitian [eq. (3.13)], however it is not
positively definite and the probabilistic interpretation is only approximately valid.
One should also observe that, in contrast to the classical distribution functions,
iA<(X, p) can be nonzero for the off-shell four-momenta.

Now we are in the position to explain the objective of our considerations.
Starting from the Lagrange equations (2.3) and (2.4) we are going to derive the
equations which describe the evolution of Green functions A4”¢<), and then
convert the obtained equations into the transport equations satisfied by distribu-
tion functions. Our aim is realized in several steps. First we write down the exact
equation of the function A(x,y). This equation gives us the equations of 4~ (<.
We approximate the self-energies which enter these equations and we achieve our
goal on expanding the equations in macroscopic variations. The discussion of the
self-energy approximations constitutes the essential part of our considerations. In
sect. 10 we discuss the assumptions and approximations leading to the transport
equations.

4. Green function equations of motion

From egs. (2.3) and (2.4) and definition (3.1) one finds two equations of motion
of the contour Green function

[a;a;’_'_mZ]A(x,y) = _8(4)(x,y) + fcd4x'ﬂ(x,x')A(X', )’) ’ (41)

(o0 + m2] ACx, y) = =09(x,9) + [ 4 ACe ) I(y), - (42)

where the integration over x} is performed on the contour. The function 8§W(x,y)
is defined on the contour as

dM(x—y) for x,, y, from the upper branch,
8®(x,y) =10 for x,, y, from the different branches,

—-8®(x—y) for x,,y, from the lower branch.
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The self-energy I1(x, x') can be defined as

[ d% IT(x, ) A, 9) < —igh((FP(x)6()) = (B (1) X((3))) (4.3)
C
for the real fields, and
[ 4% e, ¥) A, ) = —igh((T92 (1) 4°(1)67(3))
—(¢*(x)d*(x))($*(y)))  (4.3b)

for the complex fields. Because the Green function of the free fields Ay (x,y)
satisfies the equation

[8;‘8: + mZ]AO(x, y)=—-8%9(x,y)
we can now rewrite egs. (4.1) and (4.2) in the symbolic operator notation
Aj'A=1-14A, Ay'A=1-AIT
and obtain the familiar form of the Dyson-Schwinger equation
A=A,—-A,11A. (4.4)
Let us split the self-energy into three parts according to the formula

(x,y) =HMF(X)5(4)(X,Y) +H>(x,y)@(x(,,y0) +H<(xa)’)@()’07xo)~
(4.5)

As we shall see later, I\, corresponds to the mean-field effects while I7~(<)
provides the collision terms in the transport equations. Therefore, we call IT,,r the
mean-field self-energy and IT (<’ the collisional self-energy.

Using the relations (3.8), (3.9) and eq. (4.5), egs. (4.1) and (4.2) can be
manipulated to yield the equations of motion of the functions 4~ and A<, known
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as the Kadanoff-Baym equations [4]:
(828 + m? — Mye(0)] 47 (x,9) = [ 4% 1> (x, ¥)[4%(x',v) = 47 (x',9)]

+fj0 d*'[ 17 (x,x)y =M <(x,x)]A> (x',y),
(4.6)
(060 + m? — ()] 4 (x,9) = [ 4% 1< (x, 2)[ 47 (x,¥) = 47 (x', )]
+fj0d4x’[H>(x,x’) — I <(x,x)]A<(x",y),
(4.7)
(o602 + m® ~ Iy (1] 47 (xy) = [ d% 47 G )T (', y) =117 (x',9)]
+ [ a7 (6 1) = A%, ) I (2, 9),
(4.8)
[0+ m? ~ ()] 4% (x,3) = [t 4 ()= (', 9) =117 ()]

+fxu d*x[A” (x,x) —A<(x,xYJT<(x',y),

(4.9)
where the integration limits are for the time variable.
Upon defining the functions
def
I (x,y) =(IT7(x,y) —H~(x,9))0(xy—Y,), (4.10)
def
I (x,y) = = (11" (x,y) =1 *(x,7)) 0(yy ~ %) (4.11)

and functions A* and A~ in the analogous way, the Kadanoff-Baym equations
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can be rewritten in the form which is more appropriate for our purposes

[0 + m® ~ Iy (x)] 47 (x, )

= [&*[IT> (x, x) A~ (¥, y) 1T (2,20 A7 (&, 9)] - (4.12)
[a8; +m? — Mye(x)] A% (x, ¥)

= [d T (2, x)A5(x', ) + T < (x,2)A" (2, 3)], (4.13)
[9¢92 + m® = ()] 47 (x, )

= [ (47 (2, x) T (&, y) + 4% (x, )T (2, y)], (4.14)

[aﬂaﬁ'+m2_nMF(Y)]A<(x7)’)

= [d AT (e, )T = (x',9) + A (x, )T (2, y)], (4.15)

where the time integration runs from —o to +o. Let us stress that the
Kadanoff-Baym equations (4.6)-(4.9) or (4.12)—(4.15) are exact and they are
equivalent to the field equations of motion.

For further convenience we also write down the equations satisfied by the
functions A*

[8;8;+m2]Ai(x,y) = —69(x—y) +/d4x’Hi(x,x’)Ai(x',y), (4.16)

[afal{+m2]Ai(x,y) = —8(x~-y) +fd4x/Ai(x,x’)Hi(x’,y). (4.17)

5. Towards transport equations

The transport equations are derived under the assumption that the Green
functions A(x, y) and the self-energies I1(x, y) weakly depend on the sums of
arguments and that they are significantly different from zero only when the
differences of arguments are close to zero. To express these properties it is
convenient to define a new set of variables as

A(X,u)=A(X —3u, X+ 3u).
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Then, let us assume that A(X, u) and IT(X, u) vary slowly with X and are strongly
peaked for u=0. Due to this assumption one can, in particular, approximate
ACX +u,u) as

A(X+u,u)=A(X,u) +u* A(X,u). (5.1)

X+
This assumption is discussed in sect. 11, where we analyze the whole procedure of
the derivation of kinetic theory.

The Kadanoff-Baym equations are converted into transport equations imple-
menting the above approximation and performing the Wigner transformation
(3.17) of all Green functions and self-energies.

The approximation is introduced and the transformation is performed automati-
cally by means of the following easily derivable formulas

/d“x’f(x, xNg(x',y)

L[ (X.p) 3g(X.p) 3f(X,p) 38(X,p)

(X, p)e(X.p) +iz o X" TXF P , (5.2)
1 0h(X) dg( X,
K80 X g(X,p) —ig T B (s
1 ah(X) dg( X,
K809 8K p) iy D B (s
0f(x,3) = (=ip* + 30)F(X, p), (55)
4 (x,y) = (ip* +39*)f(X, p), (5.6)

where X = (x +y)/2 and the functions f(x,y) and g(x, y) satisfy the assumption
discussed above.
Using the formulas (5.2)-(5.6) one can change eqs. (4.12)—(4.15) into the form

[}aﬂau —ip*3, —p? + m? — My ( X) + 30, I e ( X)a;] A% (X, p)

=7 (X,p)A (X,p) +II"(X,p)A” (X, p), (5.7)
[$049, —ip*d, —p? +m® — e ( X) +i%9, Mye( X)3¢] A< (X, p)

=II"(X,p)A~(X,p) +11~(X,p)A (X,p), (5.8)
[19%9, + ip*9, — p* + m? — I\ ( X) — 33, e ( X)34 | 47 (X, p)

=47 (X,p)II"(X,p) +A"(X,p)I~(X,p), (5.9)

[40"0, +ip*d, —p +m?* — Hye(X) — i50, Myp( X )34 A< (X, p)
=AY (X,p)[T=(X,p) +A~(X,p)IT"(X,p). (5.10)
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On the right-hand-sides of egs. (5.7)-(5.10) we have neglected the gradient terms
like those from eq. (5.2). This approximation is discussed in sect. 11.

Subtracting eq. (5.9) from eq. (5.7) and eq. (5.10) from eq. (5.8), respectively, one
finds

[ p#9, = 36,y (X)35] 47 (X, p)
=i;[I<(X,p)A”(X,p) - 11" (X,p)A~(X.p)],  (5.11)
where we have used the equality
o (X,p)-II"(X,p)=01"(X,p) -1 ~(X,p)

and an analogous equality for A* and A~, which follow from the definitions (4.10)
and (4.11).

Summing eq. (5.7) with eq. (5.9), and eq. (5.8) with eq. (5.10), respectively, one
finds

[5049, —p? +m* = Iy (X )] 4> XX, p)
=3 [I7 (X, p)[A7(X, p) +47(X, p)]
+ [T (X, p) + 117 (X, p)]4” (X, p)]. (5.12)

The sum A*(X, p) + A7(X, p) can be expressed as

> ’ < ’
AT (X,p)+A~(X,p) =—1—,Pfdw’ 4 (X’w’p), A"(X, @ p) .
i o —w
There is also an analogous formula for the self-energies.

Egs. (5.11) and (5.12) are called the transport equation and the mass-shell
equation, respectively. In order to make them definite one has to determine the
self-energies. This is the subject of sects. 6, 7 and 8.

The conservation laws satisfied in the models represented by the lagrangian
densities (2.1) and (2.2) impose certain restrictions on the approximations in egs.
(5.11) and (5.12).

Let us first discuss the conservation of current (2.5), that can be represented as
in eq. (3.18). The two parts of current (3.18) — the fluctuation part and the classical
part, are conserved separately when

(¢*(x))(*(x)d*(x)) = ($(x))($(x)$**(x)) = 0.

This relation holds in the case of the pairing approximation discussed in sect. 6
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and also follows from the perturbative expansion analyzed in sects. 7 and 8. From
now on we assume that the above relation holds.

Since the function A~ (X, p) satisfies eq. (5.11), the conservation of the fluctua-
tion current leads to the requirement

4

d
f(2;4[17<(X,p)A>(X,p) ~II7(X,p)A<(X,p)] =0. (5.13)

Because we have assumed that the functions 4~ (<)X, p) vanish at infinite
four-momenta, the mean-field self-energy has been eliminated from eq. (5.13).

In kinetic theory one usually assumes [3] that the energy-momentum tensor can
be approximated only by the kinetic part, which is given by eq. (2.6). Then, the
energy—momentum conservation provides the relation

4

d
f(zwp)“p“[ﬂ<(X’p)“>(X’P) — 117 (X, p)A<(X,p)] =0. (5.14)

Before analyzing further egs. (5.11) and (5.12) let us briefly discuss the noninter-
acting fields. In this case the transport and mass-shell equations are

p*3,A4” <)X, p) =0, (5.15)
[4043, —p* + m?| 4~ (X, p) =0. (5.16)

However, it should be stressed that for free fields egs. (5.15) and (5.16) can be
obtained from the Lagrange equations without using the approximations discussed
at the beginning of this section.

Eq. (5.15) might be identified with the classical relativistic kinetic equation (see
e.g. [3]), however, following eq. (5.16), the Green function A~ <)(X, p) can be
nonzero for the off-shell four-momenta. Nonetheless, the kinetic theory deals with
the system characteristics averaged over scales larger than the particle Compton
wavelength of the order of m~!. Formally, we impose the condition

1
|A>(<)(X,p)| - _;n_23u3MA>(<)(X’p) , (5.17)

which is further discussed in sect. 11. We then get from (5.16)
(p?—m?)A” (X, p) =0. (5.18)

Condition (5.17) makes the Green functions A~ (<)X, p) zero for the four-

momenta which do not satisfy the mass-shell equation p*=m?.
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Let us also discuss the equations of Green functions A“®(X, p). For the
noninteracting fields the equations analogous to (5.15) and (5.16) are

p*3,A(X,p) =0,  [40%9, —p*+m?|A(X,p) = —1. (5.19), (5.20)

For the function 4*(X, p) the right-hand-side of an equation analogous to (5.20)
equals 1. Let us also mention that the functions A“®( X, p) are X-independent in
the vacuum QFT [12] because of the translational invariance assumed. Imposing
the condition (5.17) on the functions A“®(X, p), the solutions of egs. (5.19) and
(5.20) and the analogous solutions for function A*(X, p), can be written as

A(X,p) = 2 +0(-py)A~(X,p) +0(p,)A~(X,p), (521a)

—m>+i0*

s———+0(-py)A"(X,p) +O(p,)A~(X,p), (521b)
—m-—i0

AN(X,p)=—

p

where the functions A~ (<X X, p) satisfy the equations (5.15) and (5.18). The
solution (5.21a) admits the standard Feynman propagator initial conditions [12].
The form of the solutions (5.21) has been chosen to satisfy the relations

(3.10)-(3.14).
From the solutions (5.21) one can also find that

A*(X,p)=p2_m21+l.p00+, A‘(X,p)=p7_mz_—ip00+, (5.22a,b)
where we have used the identities
AT(X,p)+A7(X,p)=4%(X,p) —A(X,p)
AT(X,p) —A7(X,p)=4"(X,p) -4~ (X,p), (5.23)

which directly follow from the definitions of functions A* and A", In the case of
noninteracting fields, the relation (3.15) can be written as

iA”(X,p) —id~(X,p) = 2775(172_’”2)(@(170) - @(_Po))s (5.24)

cf. eq. (2.9).

6. The pairing approximation

Let us now go back to eq. (4.3) defining the self-energies. Following refs. [10, 11]
we approximate the expectation values of the field operator products with the sum
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of products of expectation values of products of no more than two operators, i.c.
with the sum of all possible pairings. Physically it means that interparticle correla-
tions are neglected. Then, for the real fields one finds

(T (x)d(y)) = (X)) d(¥)) + (($2(x)) — ((xX) YN D(¥))
+ 2 (D UTd(x)d(¥)) — (d(x)B(¥)))  (6.1)

and
[ A TT(x, x) A, ¥) = gA(X) A(x, 7)),
where
A(x) =(d(x)).
Therefore

II(x,y) =g8®(x,y) A(x)
and one finds by means of eq. (4.5), that the approximation (6.1) gives
Hye(x) =gA(x) and > (x,y)=H<(x,y)=0. (6.2)
The analogous approximation to (6.1) for the complex field reads
(T (x)d*(x)d*(¥)) = ($*(x)$*(x))(d*(¥))
= ($(x)Y(*(x))($*(¥)) + (($*(2)) = ($(x) Y d*(x)(d*(¥))
+2({b(x)6*(x)) = (B(x))($*(x)))(b(x))(*(¥))
+ (X)) (To*(x)d*(9)) — (*(x))($*(¥)))
+2((Td(x)*(¥)) = (S(X))(¢*(¥)))((x))($*(x))
+2((B(x)$*(x)) = (B(x)X(S*(x)))
X((To(x)d*(¥)) = ((x)){($*(¥)))
+((2(x)y = (X)) (Td*(x)d*(¥)) = (B*(x))($*(¥)))
=)y * (X)) P*(¥)) = ((7(x)) — (D(x) D) $* (X)) (" (¥,
—2(¢P(x)$*(x2)) = (S(x) X (X)) D(x))($*(¥))
=2((Th(x)d*(¥)) = {b(x))(*(¥)))($(x) $*(x))
+ (B ()Y (T (x) () — (d*(x) D (¥))).
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In addition, we assume here that the commuting fields like ¢*(x), ¢*(y) are
independent from each other, i.e. the expectation value of the product of such
fields equals the product of the expectation values of the fields. Then,

(Tp*(x)d*(x)d*(¥)) = (d*(x)p* (X)X B(¥))
= 2((Td(x)d*(¥)) — (d(X) M *(¥)I N P(x)*(x)) (6.3)
and

J 40 T, ) A, y) = (147 (x,0) + ()P A, y)

where, as in the real field case,
A(x) ={d(x)).

The Green function A(x, y) is not well defined for x =y and must be renormal-
ized. To fix the way in which the renormalization will be carried out, we substitute
the function A <(x, x) for the function A(x, x). As we shall see, using the function
A~ (x, x) instead of A<(x, x) leads to the same result after renormalization.

The mean-field self-energy is

Mye(x) =8 (i47 (x, x) + |4(x)I*). (6.4)
The transport and the mass-shell equations in the pairing approximation are

[ p#9, — 389, A(X)3#|A> (X, p) =0, (6.5a)
[£049, —p? +m? —gA(X)]| 4> (X, p) =0, (6.5b)

for the real fields and
[ p*6, — 320,(iA= (X, X) + |A(X)*)ax] 4> (X, p) =0, (6.6a)
[5049, —p>+m? —g(iA=(X, X) + |A(X)?)] 4> <(X,p) =0, (6.6b)

for the complex fields.
To make both sets of egs. (6.5) and (6.6) complete, one has to add the equation
for the generation of the field A(x). In the case of real fields this equation, which

directly follows from eq. (2.3), is

[040, + m?| A(X) =g3[id< (X, X) +4%(X)]. (6.7)
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For the complex fields one has to approximate the right-hand-side of a similar
equation following from eq. (2.4) as in eq. (6.3). Then, one finds

[0, + m*| A(X) =g3[2iA< (X, X)A(X) +A*(X) A*(X)], (6.8a)
[0%0, + m?| A*(X) = g5[2i4< (X, X) A*(X) + A(X ) A**(X)]. (6.8b)

Eq. (6.8b) is conjugated with respect to eq. (6.8a).

It is interesting to consider egs. (6.7) and (6.8) for homogenous (equilibrium)
systems. Then, the Green function A< and the field A are X-independent. In this
case eq. (6.7) provides

m*  (m! 12
Ai=?i(—g—2—m<) . (6.9)

Solution A4, should be rejected on the basis of the following physical argumenta-
tion. This solution gives a finite value of the field A in the limit of zero density, i.e.
when A<=0. To cure this the vacuum contribution equal to 2m?*/g can be
subtracted from the solution A4 ,. However, another problem remains. The effec-
tive mass, defined according to eq. (5.12) as

m*2=m? — Iy, (6.10)

has strange behaviour when a system density and /or coupling constant increases.
Namely, the real part of m*? equals 2m? at the point where the self-energy
acquires an imaginary part, cf. egs. (6.2) and (6.9). On the contrary, the solution
A _ behaves in agreement with physical intuition. At zero density A _= (. When an
imaginary contribution to Il appears the effective mass equals zero. Such
behaviour is well known in the theory of strong fields, see e.g. ref. [13]. The
appearance of a self-energy imaginary part signals instability due to particle—anti-
particle pair generation from a vacuum.
Finally, the mean-field self-energy of a homogenous neutral field system is

Hye=m?— (m* —ig?a<)'"?,

which in the small coupling limit gives

g2

HMF=iWA< . (6.11)
Let us now consider a homogenous complex field system. Then, one finds the
solution of egs. (6.8) to be
mZ
|A|?=2— —2iA~, (6.12)
g
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which should be renormalized to give a zero value of the field A4 at zero density. It
is an interesting feature of eq. (6.12) that after the renormalization, |A|* is
independent of the coupling constant, i.e. the field A does not vanish in the zero
coupling limit. However, the mean-field self-energy is coupling-constant dependent
and it equals

My = —igA= . (6.13)

7. Perturbative approach to the mean field

As discussed e.g. in refs, [5, 9], the contour Green functions admit a perturbative
expansion very similar to that known from the vacuum QFT [12]. One difference is
that the time integrations do not run from —oo to + oo, but along the contour. The
top of the contour (¢,,,.) must be above the largest time argument of the evaluated
Green function. In practice, ¢, is shifted to —o and ¢, to +o. The second
difference is the appearance of the tadpoles, i.e. the loops formed by single lines
which do not appear in the vacuum QFT, because of the operator normal ordering
present in the Green function definition. A tadpole corresponds to the Green
function of space-time arguments equal to each other. However, the Green
function A(x, x) is not well defined and we ascribe the function iA<(x, x) to each
tadpole. One should note that A<(x,x) = A~ (x, x), because the function D(x, y)
from eq. (2.9) equals zero for x =y. The renormalization of tadpole graphs is
briefly discussed in sect. 9.

The definition of a Green function (3.1) suggests that the perturbative expansion
should be constructed not around the zero value of field ¢{(x), but rather around
the zero value of field ¢(x) = ¢(x) — A(x), where A(x) = (¢(x)). Substituting the
field ¢(x) into the lagrangian densities (2.1) or (2.2) we find that the field ¢(x)
interacts with the field A(x). For example, in the case of real fields we have the
couplings proportional to ¢2(x)A(x) and to ¢(x)A%(x). A finite expectation value
of a field can appear for several reasons. It may happen due to symmetry
breakdown as in the Higgs model, see e.g. ref. {14], or due to finite particle density
as in the Walecka model [15]. However, as long as the field A(x), or more
precisely, the self-energy due to interaction with this field, is of perturbative
character, i.e. it disappears when the coupling constant goes to zero, the perturba-
tive expansions around ¢(x) —A(x) = 0 and around ¢(x) = 0 are expected equiva-
lent. Below we consider the latter case.

The Green functions which enter the Feynman diagrams correspond, as usual,
to the noninteracting fields and the respective free functions satisfy eqgs. (5.15),
(5.16) and (5.19), (5.20). To simplify the notation we omit the index 0 everywhere.

It follows from eq. (5.18) that the functions A~ ¢<)(X, p) of noninteracting fields
are different from zero only for on-shell four-momenta. In the case of interacting
fields this is not strictly true, but one expects that this is approximately true when
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(a) (b) :
Fig. 2. The lowest-order diagrams for the self-energy in the ¢* model.

the perturbative expansion is justified. Then, on calculating the self energies
IT17 <)X, p) we are interested in their values only for on-shell momenta. As we
will see below this situation essentially simplifies calculations. However it occurs
only in the case of massive fields studied here, see sect. 11.

In this section we consider the lowest-order (in coupling constant) contributions
to the self-energies. As we shall see these contributions correspond to the mean
field effects.

In the case of real fields the lowest-order self-energy, represented by the graph
shown in fig. 2a, is

HO(x,y) = —it(—ig)*8¥(x —y)f d*x id(x,x)id<(x', x").
c

It should be noted that the expression corresponding to a respective diagram
should be multiplied by a coefficient —i in order it gives the self-energy.
On locating the argument x on the upper branch of the contour, one finds

I (x,y)=—itg?“(x —y)fd4x’[A°(x, XA (x',x") —A<(x,x)A%(x',x)],

(7.1)
where the time integration runs from —o to +%. On using eq. (5.21) one can
prove that an equivalent result is obtained if the x argument is located on the
lower branch.

Let us discuss the second term from eq. (7.1). On performing the Wigner
transformation, one finds that this term is proportional to

jd4x'A<(x,x')A<(x',x')

d¥p  d% oy x+x'
=f(2 ) d*x’emints “)A<(—2 ,p)A<(x',k). (7.2)
o T

One observes that the main contribution to the integral from (7.2) comes from x’
which is close to x. Therefore, in accordance with the approximations made in
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sect. 5, we expand the functions from eq. (7.2) around x’ =x, neglecting the second
and higher gradients. Then, one finds
1

/d4x’A<(x,x’)A<(x’,x’)=f (A<(x,p=O)A<(x,k)

(2m)*
+i(349,A<(x,p=0))A<(x, k)

+idkA< (x,p = 0)8#A<(x,k)).

The function A< (x, p=0) and its momentum derivative equal zero if we impose
the mass-shell constraints on the Green functions. Consequently, the second term
from eq. (7.1) gives zero contribution. One finds that the integral (7.2) differs from
zero when the characteristic length of space-time variation of the functions
A~ (<)(x, p) is comparable with the characteristic inverse particle four-momentum.
However, as discussed in sect. 5, see also sect. 11, such quickly varying functions
have been excluded from our considerations. Thus, the self-energy (7.1) gives the
mean field term as

Iye(x) = —i%gz‘/‘d“x’Ac(x, x)A<(x',x'). (7.3)
Let us note that eq. (7.1) can be rewritten by means of the function A", and
then the mean-field self-energy equals
Hyp(x) = —i%ngd“x’A*(x,x’)A<(x’,x’).
The graph from fig. 2b corresponds to
My(x,y) = —izg’A(x, y) A(y, x)
with no contribution to the mean-field self-energy, cf. eq. (4.5), and
Iy (x,y) = —iggA” (x,y) A< )(y, x). (7.4)

One can notice that the self-energies (7.4) equal zero when the functions A~ (<)
are nonzero only for the on-shell momenta.

The lowest-order contribution to the self-energy for complex fields which
corresponds to the graph from fig. 3 is

H(xay) = ~i(—ig)6(4)(x, y)iA<(x,x)

Q

Fig. 3. The lowest-order diagram for the self-energy in the (¢¢*)* model.
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pe—a

Fig. 4. The second-order diagrams for the self-energy in the (¢¢$*)? model.

giving
My (%) = —igA<(x,x). (7.5)
Let us compare the results (7.3) and (7.5) with those obtained in sect. 6. The
pairing approximation should be equivalent to the perturbative one when a
coupling constant goes to zero. One immediately finds that the self-energy (7.3)

calculated for a homogeneous system reproduces the result (6.11). Further, eq.
(7.5) coincides with eq. (6.13).

8. Higher-order self-energies

In this section we calculate next-to-lowest-order perturbative contributions to
self-energies (for the complex fields this is the contribution of order g while for
the real ones it is of order g*). In that way we will get the lowest-order
nonvanishing contributions to the collision self-energies.

8.1. COMPLEX FIELDS

The second order contributions to the self-energy are represented by the two
diagrams shown in fig. 4. One should remember that the self-energy defined as in
eq. (4.4) relates only to one-particle-irreducible diagrams. The graph from fig. 4a
corresponds to the mean field, and is of higher order than (7.5); it is neglected
here. The diagram (b) gives

My(x,y) = —i(—ig)*3iA(x, y)id(x, y)iA(y, x),
which provides
Iy (x,y) = = (—ig) 34 (%, y) 4™ (2, ) 4%y, x) .
Upon introducing the Wigner transformation one obtains

d*k ﬂ] d*r
(2m)* (2m)* (2m)

Hb>(<)(X,p)= _(_l-g)2%f 4(277)45<4>(p+k—q—r)

X A% X, q)A” (X, r) A< X, k). (8.1)
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(a) % (b) (c) %

(d) (e)

Fig. 5. The fourth-order diagrams for the self-energy in the ¢* model.

It can be easily checked that the self-energies (8.1) satisfy the current and
energy—momentum conservation conditions (5.13) and (5.14).

8.2. REAL FIELDS

The fourth-order contributions to the self-energy are represented by five one-
particle-irreducible graphs shown in fig. 5. The contributions from diagrams (a)
and (b) give the higher-order mean-field terms and are neglected. The other
diagrams in fig. 5 require more careful analysis.

Up to now we have calculated the contour self-energy and then used definition
(4.5) to extract the functions ITy, I~ and IT = expressed in terms of A°, 4%, A4~
and A<. In the case of more difficult diagrams, such as those from fig. 5, the latter
step can be quite difficult. Therefore it is better to calculate IT~ and II < from
the beginning by means of the following graphical method.

We draw a line dividing the plane into parts, left and right, that correspond to
the two time-branches, the left part to the chronological (upper) branch and the
right part to the antichronological (lower) branch. Then we draw all topologically
distinct diagrams locating the interaction vertices on both half-planes in all
possible ways. For example, on calculating the self-energy IT ~ (x, y) related to the
diagram from fig. Sc we place the x point in the left half-plane and the y point in
the right one. The remaining two vertices can be placed in four possible ways as it
is shown in fig. 6. By virtue of the relations (3.6)-(3.9), the lines in the diagrams
are identified with the functions iA¢, iA%, iA” and iA= according to the following
rules:

(i) When both end points are at the left (right) side of the plane, the line
represents iA° (i A?).

(ii) When the start point is at the left (right) side of the plane and the end point
is at the right (left) side, the line represents iA~ (i4<).

We perform integration over the vertex positions with the time integration running
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| i
J [
| |
1 |
Fig. 6. The diagrams for the self energy IT ~¢ <) corresponding to the graph from fig. 5c.

from —o to +o. With each integration of a vertex placed on the antichronological
(right) half-lane, there is associated a factor —1.

Because the functions IT~¢<Xx, p) are only considered for momentum argu-
ments that satisfy the mass-shell constraints, and the functions A~ (<X X, p) are
finite only for the arguments that satisfy such a constraint, it is possible to isolate
the diagrams which give a zero contribution as a result of energy—-momentum
conservation.

Now we can return to the analysis of the diagrams from fig. 5. The graphs for
the self-energy IT~ corresponding to the diagram from fig. 5c are shown in fig. 6.
One finds that each of them provides zero contribution if the arguments of the
functions represented with the lines crossing the plane division line, satisfy the
mass-shell constraints.

The graphs for the self-energy I > corresponding to the graphs from fig. 5d and
fig. Se are shown in fig. 7 and fig. 8, respectively. We immediately find that among
the eight graphs only three give a finite contribution. Namely, the graphs from fig.
7c, fig. 8c and fig. 8d. The sum of these graphs yields

d*k  dYq  d*r

— 2w) o p+k—qg-r
(277)4(277)4(277')4( Yo ptk—q-—r)

I>(X,p) = -(-ig)'; [

XATCX,q)A” (X, r)A<C(X, k)
X [ZAC(")(X,p —NAO(X,p—q)

+AC(X, p—r) A X, p—1)]. (8.2)
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(a) | (b) |
! |

| |
| |
c} : {d) ;

o r

Fig. 7. The diagrams for the self-energy [T > <’ corresponding to the graph from fig. 5d.

(a) (b)

|
I
|
{c) : (d)

2o eSS

Fig. 8. The diagrams for the self-energy IT > (<’ corresponding to the graph from fig. Se.

In the more involved but explicitly causal analysis [16], the functions A%® are
replaced by the functions A (7). All these functions differ only in their imaginary
parts [see eqs. (5.21) and (5.22)] that vanish for the off-shell function arguments,
making the distinction between the functions irrelevant for our purposes.

The perturbative expansion of contour Green functions, as other field-theory
perturbative expansions, suffers from the appearance of infinite expressions. The
specific divergences are due to the tadpole diagrams. We discuss them in sect. 9,
where the distribution functions are introduced. The renormalization is based on
the physical argument that the tadpole contributions should vanish in the vacuum
limit, i.e. these contribution should be compensated by respective counterterms.
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Divergences other than tadpole divergences have not explicitly appeared in our
considerations due to our practical approach to the problem. The mean-field
divergent diagrams from fig. 4a and fig. 5a have been neglected since they are not
of leading order. The contributions from the rest of graphs in figs. 4 and 5 were
finite because we imposed the mass-shell constraints.

The discussion of the renormalization procedure of the contour Green function
expansion for the ¢*-model is given in ref. [9].

9. Distribution functions

The derivative term in eq. (5.12) and the term proportional to IT~¢<) may be
considered as of higher order [5] than the other terms in the mass-shell equation
within the gradient expansion (5.1). Upon dropping these terms, the mass-shell
equation can be written as

[p2—m?+Re (X, p)| 4> (X, p) =0, (9.1)

where Re II(X, p) = T, (X, p) + 2(IT*,(X, p) + I (X, p)).
The particle energy E,(X) is defined as the positive solution, p = (E,, p), of the
equation
p?—m*+Rell(X,p) =0, (9.2a)

and the antiparticle energy EP(X ) as the positive solution of the equation
p?—m?+Rell(X,—p)=0, (9.2b)

with p = (E,, p). If only the mean field is retained, then E, = E,=(p*+m**)'/?,
where m*3(X) = m?* — H (X).

The distribution functions of particles f(X,p) and of antiparticles f(X, p)
defined only for on-shell four-momenta, are introduced with

O(py)iA<(X,p) =0(py)2mwd(p>—m’+Re lI(X,p))f(X,p)

Z
= ——0(E, =po)f(X,p), (9.3a)

P

O(pg)id” (X, —p) =0O(py)2md(p>—m>+Re lI( X, —p))f(X,p)

= 5B, ) (X (9.30)

P

Here the factors Z, and Z, are

1 aRell(X,p
Z7l=1+ ( ) , (9.4a)
£ 2E apg

2

po=E,
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and

1 dRell(X,—-p)
Zil=1+—= . (9.4b)
’ 2E, ap,

po=E,

The function A<(X, p) for p, <0 and A~ (X, p) for p,>0, may be further
expressed with f(X, p) and f(X, p) by making use of the relation (5.23). Specifi-
cally, upon Wigner transformation and dropping the gradient terms eqs. (4.16) and
(4.17) provide

(pz_m2+HMF(X) +Hi(XaP))Ai(X7P) =1.
One further observes [5] that

Re 1 *(X,p)=3(II"(X,p) +IT7(X,p)),
1 1
Im IT*(X,p) = iE(U+(X,p)—H’(X,p))= iz(ﬂ>(X,p)—H<(X,p))-

However, the self-energies IT~(<) vanish at the zeroth order in the gradient
expansion, and consequently

A*(X,p)=(p*~m?+Rell( X, p) iip(,0+)_l,

where the infinitesimal imaginary terms are the remanents of Im IT =. Finally, one
finds from the relation (5.23)

1A>(X7p) _iA<(X’p) =2776(p2_m2+ReH(X’p))(@(pO) —@(_p(]))s
(9.5)

cf. eq. (5.24).
From relation (9.5) and definition (9.3), we obtain

O(py)id” (X, p) =O(py)2wd(p?—m?>+RelI( X, p))[ f(X,p) +1]

o 5, =P F(Xp) 1], (9.68)

p

O(py)id<(X,—p)=0(py)2ms(p>—m>+Rell( X, —p))[f(X,p) +1]

Zp‘n'

E!’

8(E, —po)[f(X.p) +1]. (9.6b)
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In the case of real fields, particles and antiparticles are indistinguishable. The
relation (3.16) for the Wigner-transformed functions takes the form

A7 (X,p)=4°(X,—p). (9.7)

Eqgs. (4.1) and (4.2) may be used to show that IT~ <) satisfy a relation analogous
to eq. (3.16). This further implies that

RelIl”(X,p)=RelIl (X, —p). (9.8)
From egs. (9.2), (9.7) and (9.8) we then have E,=E, and Z, = Z,, and finally

f(X,p)=f(X,p).

When only the mean field in retained in the self-energy Re I, then Z, = z =L
This will be assumed to be the case further on.
Using the formulas (9.3) and (9.6) one finds

iA<(X,p) = 7-3(E, = po) (X, p) + 7-8(E, +po) (X, =p) 1], (99)

14 p

iA”(X,p) = }—577—5(5,; —p)lF(X,p) +1] + Elﬁ(Ep +po)f(X,—p). (9.9b)

pr

Expressing the current (3.18) with the Green functions of the form (9.3) one
finds

3

e d’p “ F i b* 5
j#(X) = —mep [£(X, p) =F(X, p) + 1] +i(¢* (X)) (S(X)).

(9.10)

The integral from eq. (9.10) is divergent and in the vacuum limit (f(X, p),
f(X, p) — 0), where the current for the physical reasons should be zero, it gives

_f (277) E

This type of divergences, which also appear in the tadpole contributions, is well
known in the field theory. In the case of the vacuum QFT they do not appear
because of the operator normal-ordering present in the Green function definition
[12]. Upon subtracting of the vacuum value from the right-hand side of eq. (9.10),
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the current becomes
3
X)) = = f(2 =T PLACX, p) = (X, )] +i(d*(X))T (X))
(9.11)

In a similar way, one has to subtract the vacuum part to obtain the finite
expression of the energy—momentum tensor (3.19). Then, one gets for the real and
complex fields, respectively:

d3 o o

T (X0 =2 oK)~ K ONF(X)) (912)
d? - o o

T4 (X) = Zfﬁpw[ﬂx,p) +F(X, )] = H*(X)FFH(X)).

(9.12b)

The mean-field self-energies (7.3) and (7.5) corresponding to the tadpole dia-
grams should also be renormalized. After subtracting the vacuum values we get the
self-energies of real and complex fields, respectively:

Hye(x) = —%ngd“x’A"(x,x')d(x') =—1g [d“x’A*(x x)d(x'), (9.13a)

Hyp(x) = —gd(x), (9.13b)

where d(x) equals

d(x)=2 ¢ 9.14
(x)—f(z)ZEf( .p) (9.14a)
for the real fields and
3p _
d(x) =fm[f(x,1?) +f(x,p)] (9.14b)

for the complex ones. In the nonrelativistic limit, d(x) multiplied by 2m is equal to
the particle density.

The real-field self-energy (9.13a) requires a further discussion. Let us express
the Green function A°(x, y) in terms of the distribution functions. From eq. (5.21a)
one finds

Ac(x y) vacuum(x7 y) +A;1¢dium(x’ y)’ (915)
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where
d4p e~ iptx=y)

(2 )4 pz—m2+i0Jr ’

B (%, ¥) = [

Bgunl5,9) = =i [ (e e (222 )

mum (2 ) 2E 2
Upon substituting the function A°(x, y) of the form (9.15) into (9.13a), one finds
two terms of the mean-field self-energy corresponding to the vacuum and medium
parts of A°(x, y). The arguments analogous to that presented after eq. (7.1) lead us

to the conclusion that ITJ"™™ can be ignored.

10. Transport equations

In sects. 7, 8 we have expressed the self-energies through the free Green
functions by means of the perturbative expansion. Treating these Green functions
as exact ones and substituting the self-energies into egs. (5.11) and (5.12) we get
the closed set of equations. However, one should remember that these equations
are valid up to the order of g? for the complex fields and to g* for the real ones.

The final form of transport equations satisfied by the distribution functions is
obtained by substituting the Green functions of the form (9.9) into eq. (5.11) with
an explicit form of the self energies.

10.1. COMPLEX FIELDS

Let us first obtain an expression for the right-hand-side of eq. (5.11). From eq.
(8.1) one finds that

O(py)[I = (X, p)A>(X p) -7 (X,p)A~(X,p)]
2 d'q d'
= — L w)te® k—-qg—r
(—ig)* [(2)(2)(2)4( )8 p+k—q—r)
X[A°(X,q)A<(X,r)A” (X, k)A” (X, p)
—A”(X,q)A” (X, r)A<(X,k)4<(X,p)]
gl dk d3q d3r

2E, p‘])/(z Y2E, (2m)2E, (27)2E,
x[89(p+k—q-r)[f(X,q)f(X,r)[F(X,p) + J[f(X, k) +1]
—[f(X,q) + [ F(X,r) + 1] f(X, p)F( X, k)]

+89(p —k+q-r)[[F(X,q) +1]F(X,r)[f(X,p) + 1] f(X, k)
—f(X, ) [ f(X,r) + 1] f(X, p)[ (X, k) +1]]
+[89(p—k—r+r)[f(X,@)[f(X.r) +1][f(X,p) + 1] f(X,k)
~[f(X.q) + 1A X. ) (X, p) [ F( X, k) +1]]]. (10.1)

(2m)*
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On deriving eq. (10.1) we have changed the sign of antiparticle four-momenta.
Subsequently, we have ignored terms as proportional to 8 (p +k+q+r),
8 p—k—q~—r), or 8P p—k—q—r). Since all four-momenta are on the mass
shell and the zero components of them are positive, these terms give zero
contribution to the integral from eq. (10.1).

Finally, changing the variables k «> ¢ in the second term and r « ¢ in the third
one, eq. (10.1) can be rewritten as

O(p)[IM=(X,p)A>(X,p)—117(X,p)A~(X,p)]
- dk d’q d3r

=2E5E,,—p0)f 3 3 3

, (2m)2E, (2m)2E, (27)2E,

(2m)*

X8 p+k—q-r)
X (1M, 2L £(X, p) F(X K (X, q) + 1] [F(X,r) +1]
(X, @) f(X, ) [F(X,p) + ][ f(X, k) +1]]
+2IM 1P F(X, ) F(X ) [ f(X,a) + 1] [f(X,r) + 1]

—f(X. ) f(X.r)[£(X,p) + 1] [f(X, k) +1]]], (10.2)

where M, is the particle-particle amplitude scattering and M, is the antipar-
ticle—particle amplitude scattering;

M,=M,= —ig.

The left-hand-side of eq. (5.11) can also be split into two parts corresponding to
particles and antiparticles, respectively, and finally the transport equation for the
particle distribution function is obtained

[ p*0, + 389,d(X)ax] f( X, p)

]f d’k d’q
) (2m)2E, (27)2E, (27)2E,

2m)'8(p+k—q-r)

X [HMPLAX, )X K [F(X,q) + 1] [£(X,r) +1]
(X, @) F(X, ) (X, p) + 1] [F(X, k) +1]]
+ M (X, P) (X K[ f(X,q) + 1] [ F(X,r) +1]

X, ) f(X,r)[£(X,p) + 1] [ f(X.k) +1]]], (10.3a)
where d(X) is given by eq. (9.14b).
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Analogously we get the transport equation for the antiparticle distribution
function

[ p*a, + 189, d(X)ax] F( X, p)
_ lf d3k d’q d3r
") (2w)2E, (2m)2E, (27)2E,

(2m)*6D(p+k—q—r)

X [3IM, 2 (X, ) F(X, k) [ F(X,q) + 1] [ f(X.r) +1]
—f(X,a) (X, [ F(X,p) + ][ F( X, k) +1]]
+ ML [ F(X, ) F(XK) [ F(X,a) + 1] [£(X,r) +1]
~f(X, @) F(X.)[f(X, p) +1][£(X, k) +1]]] . (103b)

10.2. REAL FIELDS

The derivation of the transport equation of the real-field distribution function
proceeds as in the complex-field case. However, the form of the self-energies (8.3)
is now more complicated. The difficulty is to recognize the sum of nine terms like
A(X, q)A*(X, k) as the squared amplitude for particle—particle scattering. One
should remember that according to the relation (3.14) iA*(X, k) is a hermitian
conjugate of iA°(X, k). After quite long manipulations involving changes of the
momentum variables one finds

[ p#a, — 1o, My ( X)o*] (X, p)

f d3k @ d3r

2m) 6 (p+k—qg—r
(27)*2E, (2m)2E, (277-)32E,( y ol a-r)

[SIES

X Mk, p,q, )WLA(X, p)F(X, ) f(X,q) +1][f(X,r) +1]
—f(X, ) f(X,r)[f(X,p) +1][f(X, k) +1]], (10.4)

where the mean-ficld self-energy is given by eq. (9.13a) and the amplitude
M(k, p,q,r) is

M(k,p,q,r) =i(—ig)2[A°(x,q —p)+A(X,p—r) +A(X,k+p)]. (10.5)

This amplitude corresponds to the sum of diagrams shown in fig. 9. Because the
on-shell part of the free Green function A°(X, p), eq. (5.21), does not contribute

<

Fig. 9. The diagrams for the lowest-order scattering amplitude in the ¢>-model.
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to the amplitude (10.5), the function A°(X,p) effectively coincides with the
vacuum Feynman propagator.

The transport equations following from the pairing approximation, which are
satisfied by the distribution functions, can be immediately obtained from egs.
(6.5a) and (6.6a). These equations, however, are not very interesting because of the
lack of collision terms.

On writing down eqs. (10.3) and (10.4) we have achieved our goal to derive the
kinetic equations.

11. Discussion and summary

Our derivation of the transport equations is based on several restrictive assump-
tions and approximations. Let us now discuss the most important of them keeping
in mind that these assumptions and approximations, on one hand, impose some
restrictions on the physical systems which can be described in the framework of
transport theory, but on the other hand they limit the amount of information about
the system which can be obtained from this theory.

The essential simplifications have been made in sect. 5 where we have assumed
that A(X, u) is a slowly varying function of X and it is strongly peaked for u = 0.
This assumption can be written as a condition

2
) 0
Al X, > —A(X, > — ] A(X, > ..., (11.1
30X )| 73 5, A(Xp) (axﬂap#) (X.p) (11.1)
which is equivalent to the requirement
AX*Ap, > 1, (11.2)

where AX* and Ap* are the characteristic lengths at which the function A(X, p)
varies in position and momentum space. In more standard units the right-hand-side
of inequality (11.2) equals 4.

If A(X, p) provides the exact description of a single-particle system, the relation
(11.2) cannot be satisfied since AX* ~1/Ap* in this case. For a single-particle
system condition (11.2) is equivalent to the one which justifies the classical
description of the system, i.e. the description with poor position and /or momen-
tum resolutions. Therefore, to satisfy condition (11.2), the single-particle function
A(X, p) should carry the information averaged over the space-time cells which are
much larger than the single-particle de Broglie wavelength. In the case of a
many-particle system the function A(X, p) carries only the averaged information
due to the very meaning of A(X, p). Consequently, the size of the averaging cell
can be, in principle, smaller than a single-particle de Broglie wavelength.
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One should remember that condition (11.1) should be also fulfilled at the
macroscopic level, i.e. the distribution function, which caries only averaged infor-
mation, should satisfy the relation

)
—f(X,p)

X >
[F(X. )| > | o o,

3 1\2
> (aX“Z):) f(X,p)i>.... (11.3)

Because the distribution of a many-particle system is never momentum indepen-
dent (Ap, never approaches infinity), the requirement (11.3) limits the kinetic
description to systems where the rate of the temporal changes is much smaller
than the particle energies.
In sect. 5 we have assumed that the self-energy satisfies the condition analogous
to (11.1), i.e.
> (

The characteristic length Ap*, at which the self-energy II(X, p) varies in four-
momentum space, corresponds to the inverse space-time interaction range. There-
fore, the requirement AX*Ap, > 1, applied to the self-energy case, demands
shortness of the space-time interaction range when compared with the system’s
space-time unhomogeneity scale.

The conditions (11.1) and (11.4) justify the expansion in gradients and, in
particular, the formulas (5.2)-(5.6). Deriving the transport equations we have kept
only the quantities which are of no more than the second order in gradients.
However, the mean-field and collision parts of self-energy have been treated in a
different way. In the case of the mean-field self-energy we have taken into account
the gradient terms and we have neglected analogous terms of the collision
self-energy. Such a procedure is justified when the interaction in the system is
weak and the perturbative expansion is allowed, since the mean-field contribution
appears at a lower order in coupling constant than the collision one.

On calculating perturbatively the self-energy, we have extensively made use of
the mass-shell constraints for the free Green functions A~ <)X, p). As has been
shown following eq. (5.16) the functions, A” (<X X, p) are finite only for the
on-shell momenta, if the functions A~ (<)(x, p) weakly depend on X on the scale
of the particle Compton wave. It appears when the ensemble averaging present in
the definition of A”(<)(X, p) is performed over the space-time cells the size of
which is much greater than the particle Compton length.

Also when the functions 1T ”(<)(X, p) have been calculated in the second order
in coupling constant, it has been assumed, that incoming four-momentum p
satisfies the free-field relation p?=m?2 This has allowed us to neglect several
diagrams because of energy-momentum conservation which, in particular, forbids

d
—H(X,p)

n(x, >
[T1(X, p)| 0X* dp,

2
— | m(x (114
T ap“) (X,p)|> (11.4)
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the decay A — B + C when the masses of the particles A, B and C are equal to
each other. When p?=m*? and m* differs from m, our analysis remains valid as
long as the difference between m* and m is much smaller than m. This is the case
for a perturbative interaction of massive fields. When one considers massless fields,
our arguments do not hold since a small ( perturbative) modification of the particle
dispersion relation can make the process, which is forbidden in vacuum, allowed in
a medium. An example is Cherenkov radiation which plays an important role in
the transport theory of electrodynamic plasma, see e.g. ref. [4].

The derivation of transport equation usually leads to the so-called BBGKY
hierarchy of kinetic equations, see e.g. ref. [3], which is further truncated under the
assumptions of smallness of interparticle correlations in the system. In our deriva-
tion the BBGKY hierarchy has not appeared because in the perturbative expan-
sion the correlations are assumed to vanish in the remote past [5]. In that case any
correlations in the system can be expressed with integrals extending over the
history of the system, and containing only single-particle functions.

At the end let us recapitulate our considerations. We have started with the
definition of the contour Green function and its exact equation of motion - the
Dyson-Schwinger equation. Then, making some assumptions on the Green func-
tion properties, which we discussed in this section, we have obtained the approxi-
mate equations of motion of the functions A~(<). These equations, which have
been recognized as the transport equation and the mass-shell equation, have no
meaning unless the self-energies are determined. For the self-energies we have
considered the pairing approximation and the perturbative expansion. The pairing
approximation, as the perturbative expansion in the lowest order, has provided the
equation where the interaction effects enter only through the mean field. The
nonvanishing contributions to the collision self-energies have been found in the
next to the lowest order calculations. However, the analysis of the (¢¢*)> model
happened to be much simpler than that of the ¢ one. Subsequently, we have
introduced the distribution functions defined only for on-shell four-momenta.
Finally, expressing the functions 4~ (<’ through the distribution functions we have
arrived at the transport equations.
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manuscript. P.D. acknowledges partial support from National Science Foundation
under Grant PHY®8905933, and St.M. from Deutsche Forschungsgemeinschaft
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