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Summary. — The formalism of statistical mechanics of particles slower
than light has been considered from the point of view of the application
of this formalism for the description of tachyons. Properties of ideal gases
of tachyons have been discussed in detail. After finding general formulae
for quantum, Bose and Fermi gases the classical limit has been considered.
It has been shown that Bose-Einstein condensation occurs. The tachyon
gas of hosons violates the third principle of thermodynamics. Degenerated
Fermi gas has been considered and in this case the entropy vanishes at
zero temperature. Difficulties of formulating covariant statistical me-
chanies have been discussed.

PAC(S. 14.80. — Other and hypothetical particles.

1. — Introduction.

In this paper we consider propertics of the ideal gases of quantum and
classical tachyons—particles faster than light (*-3).
There are two aspects of studying these hypothetical particles. In order

(*) To specd up publication, the author of this paper has agreed to not receive the
proofs for correction.

(1) For a review of tachyons see E. Recamr and R. MiaNaNT: Riv. Nuove Cimento,
4, 209 (1974), see also (2:3).

(2) Proceedings of Session « Tachyons, Monopoles and Related Topics», Erice, 1976,
edited by E. Recamr (North-Holland Publishing Company, Amsterdam, 1978).

(®) P. Carpirora and E. RecaMmi: Causality and Tachyons in Relativity, in Italian
Studies in the Philosophy and Secience, edited by M. L. DarLLa CHiara (D. Reidel Pub-
lishing Clompany, Boston, Mass., 1980), p. 249-298.
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to propose the experiment that could give an angwer to the question on the
existence of tachyons, theoretical investigations are needed. It should be stressed
that a theoretical support of the majority of experiments (¢) which have been
carried out is very weak (). Thus their negative result cannot be counted as
conclusive. The problem is that there is no satisfactory model of interacting
tachyons, thus there are not any indications of how to construct a detector
of tachyons (*). On the other hand, studying tachyons is interesting from a
pure theoretical point of view. There are many problems such as, e.g., the
applicability (level of universality) of the scheme of the theory of particles slower
than Yight—bradyons for the description of tachyons. In the case of statistical
mechanics being considered there are some concrete questions. For example,
is the third principle of thermodynamics satisfied by tachyon gases? Does
the Bose-Einstein gas of tachyons condensate at low temperature? Or a more
general question: is it possible to formulate covariant statistical mechanics of
tachyons by the simple extension formalism proposed for bradyons (5)?
In this paper we give answers to the above questions.

2. — Tachyon, what is it?

The free tachyon is described by the spacelike four-momentum, p#, lying
on the single-sheeted hyperboloid

PEPu = — m?,

where m is the real tachyon rest mass. From the above statement it follows
that the energy of tachyon E, is connected with momentum p by the formula

E,=vVprt—m?.

Because |p| = p>m, the energy is always real. We use the units where ¢ =h =
=k =1, # = 1/2x. Our metric is (4, —, —, —). The sign of a zero component
of a spacelike vector can be changed by Lorentz transformation. Thus the
tachyon, which has a positive energy and travels forward in time in one frame,
can, having a negative energy, travel backward in time in another moving
frame. This makes it possible to construct a causal loop (+2). Both paradoxial
facts, negative energy and motion backward in time can be excluded from the

{4 For extensive list of experiments see a bibliography by V. F. PEREPELITSA: Preprints,
ITEP-100, ITEP-165, (Moscow, 1980).

(*) For some considerations concerning the tachyon detector see A. 0. Barur, G. D.
MAaccArRONE and E. Recami: Nuovo Cimento A, 71, 509 (1982),

{5) B. TouscHEK: Nuovo Cimenio B, 58, 295 (1968).
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theory by applying the reinterpretation prineiple (%), according to which a
negative-energy tachyon travelling backward in time has to be regarded as a
positive-energy antitachyon travelling forward in time. The above postulate
solves causal paradoxes (¥3).

In some cases it is useful to introduce the inverse velocity of a tachyon,
n = v~L. With this variable the energy and momentum of a tachyon are ex-
pressed as follows (7):

mn m

B=—— S
Vi—yp’ 1—pe

At low energy, n< 1 (« nonrelativistic limit »), we get

(1) E=m(n+00*)), p=m(l+3}p+0@nY).

3. — Some hasic notions of statistical mechanics of tachyons.

In our considerations we follow the well-known Huang’s book (). We
start from a microcanonical ensemble and the postulate of «a priori equal
probabilities » of different microscopic states which lead to the same macroscopic
one. We do not see any reason for changing this fundamental postulate in
the case of tachyons. Without any differences, we define the entropy of a system
and the temperature of a subsystem through the entropy. In this way one
finds a canonical ensemble and a partition function of N particles Qy. For the
classical system we have

3. 3 3 3
Qu(V, T) :fd P14 pll;;(,l G exp [—SH(pyy -y Pry Guy o5 Gv)]
with V the volume of the system, §-1 = T the temperature and H(p, ... pxy,
q; ... qy) the Hamiltonian of N particles depending on their momenta, p,, and
positions, g,: The integration is performed over momenta greater than the
rest masses of tachyons.

For quantum systems one finds

Qu(V, T)= 2 exp [— fe.],

where ¢, is the energy of the system in state n.

(¢) 0.M.P. Binaniuk, V. K. DusapaxDpE and E.C.G. SuDARSHAN: Am. J. Phys.,
30, 718 (1982).

() A.F. AnTiPPA: Nuovo Cimento A, 10, 389 (1972).

(8) K. Huane: Statistical Mechanics (John Wiley and Sons, Ine., New York, N. Y.,
1963).
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It is possible to find the partition function of the ideal gas of classical
tachyons (°). In this paper, however, the classical gas is considered as a limiting
case of quantum gases. Thus, we introduce a grand canonical partition func-
tion, =

B V, T)= 3 #Qu(V, T)

N=1
The fugacity 2z, which is related to the chemical potential u by the equality
z = exp [Bul ,

can be eliminated due to the equation

where N has to be treated as an average number of tachyons in the system.
The connection with thermodynamics is expressed through the formulae

(3) pV=TIhZ, U=——hZ,

where p is the pressure and U the internal energy of the gas.

4. — The ideal gases. General formulae.

Assuming that the number of particles in the same state is 0 or 1 for fermion
tachyons and 0, 1,2 ... for boson tachyons, one finds (}) a grand partition
funetion for ideal Fermi-Dirac (upper sign) and Bose-Einstein (lower sign)
gases:

B, V, T)y= exp [ g S [1+ Z exp [— 1]
p

¢ is the number of internal degrees of freedom of a particle. Using formulae (2)
and (3), we get

%,I—/ = + g > In[1+zexp[—pE,l],
P
(4) N = g% [¢texp [fE,] +1]7%,
U = ¢>E[z'exp[pE,] +1]".
P

(®) 8. MréwczyXski: Preprint, E2-83-476 (Dubna, 1983); Lett. Nuove Cimento, 38,
247 (1983),
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The above series are convergent and N is positive when 0 <2< oo for fermions
and 0<z<1 for bosons.
If V - oo, sums (4) can be changed into integrals, namely

E»Vfd“p.

For bosons we assume that 2 << 1. The case z = 1, Bose-Einstein condensation,
is discussed in sect. 6.

Thus
P
7= + gfdap In[1 4 zexp[—BE,]],
N .
(5) v = ﬂf d’p(z~t exp [AB,) £ 1),
U . - -1
v= 9 A°p B, (¢ exp [BE,] & 1)-*.

Expanding the funetions under integrals (5) in the series of powers of
2 exp [fE,], one finds

g = 4ngm21'§:1(q:izn+l Spa(nffm)zn
(6) % = 4:zgm2Tn: S5 113 " Spa(nfm)z"
Tli = 4ngm2T2§(ji7llE [8a{npm) — nfim S (nfm)jen .
We have used the equality (9)
fdyy" exp [—zVyr —1] = wdt cosh?t exp [—x sinh ] = a—lv Sa(@) .

1 0

Sw(z) is the so-called Lommel function (). Differentiation is denoted by
prime. S,,(x) can be expressed through another Lommel function according
to the formula ()

81y(@) = = 8(®) + (1t — ¥ —1) Sy (@) .
&

(*%) L[.S. GraDSHTEYN and I.M. RyzmIK: Tables of Inlegrals, Series and Products,
edited by A. JAFFREY (Academic Press, New York, N. Y., 1965).



184 S. MROWCZYNSKI

In order not to complicate the form of our results, we do not use, however,
this formula.

For a gas of relativistic bradyons formulae (6) are the same, although the
Lommel functions Se(x) have to be changed into the Macdonald functions
Ky(x) (2112).

5. — Classical limit.

Considering egs. (5), one observes that the fugacity 2 strongly decreases
when the density, N/V, is going 1o zero andjor the temperature increases to
infinity. Thus, for N/V — 0 and/or  — 0, one can approximate series (6)
by the first terms

= dmgm? T8y, (fm)z,

= dmgm* I'S,,(fm)z,

= 4mgm? T*[So(fm) — pm Soz(fm)]2 .

<lg <= =k

Eliminating z from the above formulae, we get the equation of state

pV=N-T

and the internal energy

B Sl m)
U=Nml (1 —fm soz(ﬁm)) '

The specific heat, defined as follows:
_1(
cv - N aT u’

. 2 va(m) 02(Bm)]?
¢ =1+ (pm) Suwm)*[ﬂm Saz<ﬂm)] '

is expressed by the formula

(1) 8. BerLexg1s and L. D. Lanpavu: Usp. Fiz. Nauk, 56, 309 (1955); also in Collected
Papers of L. D. Landay, edited by D. TER Haar (Gordon and Breach, New York, N.Y.,
1965).

(12} J. Gosser, J.I. Karusta and G.D. Westrarr: Phys. Rev. C, 18, 844 (1978).
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In two extreme cases x>>1 and 1/z>1, Sp(r) can be approximated as

2 1

E—I—O(Inw) for 0—0>>1,
(7 Spa (@) = 1 1

- +0(—2) for > 1.

x x

Let us compare the above expression with the analogous approximations for
the Macdonald funetion:

2 1
—2+0(w2lnw) for —>» 1,
x @

r) = -
V% exp [— ] [1 + 0 (0—10)] for x> 1.

Because K,(x) and Sy(x) are approximate by the same function for x — 0,
the gases of bradyons and tachyons are very similar at a high-temperature
limit. Namely, for both gases, we have

Ky

U=~3-N-T, c,~3.

v

(The equation of state is the same at any temperature.) The above result is
obvious if one recalls that a high-energy tachyon as well as a bradyon behaves
as a luxon—massless particle.

More details on the ideal gas of classical tachyons can be found in our pre-
vious paper (12).

6. — Bose-Einstein condensation.

 For bosons, sums (4) cannot be changed into integrals (53) when 2z~ I, be-
cause the terms related to E, = 0 can give finite contributions to the series.
Thus we write

N =gV [dsp(et exp [BB,] — 1) + (o,

where

]
(Mg = 1%

The finite part of particles is in the lowest-energy state, Bose-Einstein con-

(13) 8. CHANDRASEKHAR: An Introduction to the Study of Stellar Structure (Dover,
New York, N.Y., 1939), Chapter X.
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densation occurs when
®) (ney = N — gV [ap(exp [BB,] — 1) > 0.

Using (6), one finds

Spa(nfm)

(9) (e = N — dagm* TV S -

n=1

As the sum in (9) is a monotonically decreasing function of 8, one expects that
condition (8) can be fulfilled at low temperature. Thus we approximate S,
by the asymptotic form (7). In this way, one gets

gy = N — dangmT?VE(2)
with {(s) the Riemann zeta-function (°):

{(s)= vt £(2) = ~ &(3) =1.202 ....

< ops? 6’

Finally we find that the Boge-Einstein condensation occurs at temperatures
lower than the eritical one, 7', orjand at densities higher than the critical
density g,:

o 3N ¢ 2 3 ra
e (W’) S

Now we focus our attention on the properties of the gas when a condensed
phase exists, #=1. One finds that

Thus at 7' = 0 there is the condensed phase only. Formulae (6) with a low-
temperature form of S, (7) look like

% = dmgmT?{(3), % = dagmT?{(2), % = 8agmT3{(3).

The equation of state is the following:
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The internal energy and the specific heat are expressed by the formulae

£(3)
£(2)

Nr,  e—2%) 1461

U=2 £2)

Sinee the entropy, S, of a system is defined by
T
Cy
(10) SszTdT,
0

the entropy of the system is logarithmically divergent at 7' = 0. Thus the
third principle of thermodynamics is not satisfied by the Bose gas of tachyons.

Entropy at zero temperature is related to the degeneration of the ground
state of the system. The zero-energy tachyon carries a momentum equal to
its mass. Thus the ground state of one tachyon is strongly degenerated. Conse-
quently, the ground state of N bosons is stronger degenerated and the entropy
at T == 0 differs from zero.

7. — Degenerated Fermi-Dirac gas.

When fm >1 and fu>>1, it is seen that only the energies of tachyons up
to the value of chemical potential, u, signifieantly contribute to integrals (5).
This means that the particles occupy the lowest-energy levels. Such a gas
is called degenerated.

Let us consider the Fermi energy, p,, which, by definition, equals the
chemical potential at zero temperature. The integral determining the den-
sity (5) at T = 0 looks like

Dy
N 4 \
(11) - = 1y f dpp* = 5 wglpy — '},
where
Py = (i + m?)?
Thus

To discuss the properties of the degenerated tachyon gas, we consider two ex-
treme cases: the «nonrelativistic» limit m/u,>1 and the «ultrarelativistic »
limit m/pu, < 1.
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A) « Nonrelativistic » case. Substituting (1) in (5) and taking into account
the first nonvanishing order of 7, we get

@

_ﬁé md 21 o ) *l_y_
p = 3 gm U‘dn(~ exp [fmy] + 1) m] ,
0

oo

N
(12) 7 = dngm? dnn(- exp [fmy] + 1),

0
U [ee]
7= 4ngm4fdnn2(2‘1 exp [fmy] +1)71.

0

To obtain the expression for pressure, we have firstly integrated partially
integral (5). Since fu >>1, we have approximated z 41 by z.

For computing integrals (12), we use the Sommerfeld lemma (%) accord-
ing to which

w

) ja @© dzx
fdu(Z'l exp [# + 1J)#1§—Z = @(%) + 2}; Czkw‘p(“) _ +0(1/2),
0
(13) uo=1n2,
S EDE g -
0" ——k=1 k" - (1 21 )c(n) b 02 — 12 ¢

@(u) in the regular function and ¢(0) = 0.
In the case under consideration series (13) contains one term only. Thus

4 1
p = mgm! [E—ﬁ] =0,

We have omitted the terms O(3).

We are led to a very curious result: the pressure of the degenerated gas
of fermion tachyons decreases to zero when m/u,>1. Let us underline that
the pressure is never negative. This follows from the faot that for fermions the
function under integral (5) is nonnegative.
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Putting 7' = 0, one gets

(15) m-z( ad )*.

2ngVm

The above formula is an approximation of (11) for m/@,>>1. Comparing (15)

and (14), we find
w2 T? Vs
— =5 o)

4 . n T T+
=15 5+ o))

The specific heat is expressed by

Jr
v
|4

co=$mmu VT,

Because ¢, (I = 0) = 0, entropy (10) vanigshes at zero temperature. Thus
the third principle of thermodynamics is satisfied by the Fermi gas of tachyons.
The degeneration of the ground state of the system of tachyons described
previously is, in the case of fermions, suppressed by Pauli quenching.

B) « Ultrarelativistic » case. For u,/m>>1 we can use an approximation
mZ
m=r+0(5)

In this limit the gas of tachyons is equivalent to that of massless fermions,
e.g. neutrinos. Thus, without comments, we give only some formulae, which
have been found in the same way as those in the previous subsection:

3N \# e T ik
‘uF_(‘lngV) ) #—ﬂr[1~§ﬁ+0(ﬁ)]y

PV=30,

U [, .2.,T T4

7“”"”?[”3” #§'+O(ﬂ$)]’
e, ~ %nagyi‘VT .

We have found the well-known equation of state for the gas of massless particles.
The pressure is sure to differ from zero even at T = 0 and the third principle
of thermodynamics is satisfied.



190 8. MROWCZYNSKI

8. - Difficulties of formulation of covariant statistical mechanics of tachyons.

An invariant partition function, playing a ceentral role in the covariant
statistical mechanices of bradyons (3), for a classical ideal gas looks like

1
0= o f &P exp [— frPulo(Pr),
(16) i
o (%) = [T (V. pt8(popt —m) O(p%) dip,) aw(P" zp.)-

=1 =1

Pr ig the four-momentum of the system and f# is the four-veetor which is
(1/T, 0, 0, 0) in the rest frame of the system. Analogously V# in the rest frame
is equal to (V, 0, 0, 0). The expression under multiplication mark is an analogue
of the noninvariant phase-space element Vd3p;.

For bradyons the distinction between those with negative and these with
positive energies is Lorentz invariant because positive- and negative-energy
bradyons lie on separated sheets of a hyperboloid. Thus the function 6(p?) which
« chooses » bradyons with positive energy is Lorentz scalar. For tachyons which
lie on a single-sheeted hyperboloid it is not the case. The sign of a zero com-
ponent of a four-momentum can be changed by Lorentz transformation. Thus
the theta-function violates Lorentz invariance. Integral (16) would be invariant
without the §-function. However, in this case, the integral is divergent due to
the contribution of negative energies of tachyons. A detailed discussion of the
phase-space integrals of tachyons can be found in ref. (14).

The problem discussed above is an example of an apparent conflict between
the covariance requirements and acceptability to theory tachyons with positive
energy only. The formulation of the covariant statistical mechanics of tachyons
probably needs fundamental modifications of the formalism of bradyons.

9, — Conclusions.

Let us recapitulate our resuits. We have considered the formalism of sta-
tistical mechanics of bradyons restricted to the systems at rest and we have
acknowledged that this formalism is applicable to tachyons. Afterwards we
have discussed the properties of the ideal gases. We have not found any
anomalies besides two results which are significantly different from those of
bradyons. Namely the entropy of the Bose gas does not vanish at zero tem-
perature and the pressure of the degenerated Fermi gas decreases to zero.

(14) 8. MrOWSzYNSKI: Nuovo Cimenio A, 78, 415 (1983).
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We are faced with rather fundamental difficulties in an attempt to construet
the covariant statistical mechanies of tachyons. The formalism of bradyons
occurs to be unapplicable to superlight particles. Unfortunately this negative
result casts a shadow on our previous considerations because the substantial
properties of tachyons manifest themselves at Lorentz boosts ().

(*) Tt is possible that the author’s scepticism is not totally justified since the situation
in relativistic statistical mechanics for bradyons is not quite clear, see, e.g. D. TER HAAR
and H. WERGELAND: Phys. Rep. C, 1, 31 (1971).

® RIASSUNTO ()

8i & considerato il formalismo della meccanica statistica di particelle pid lente della
Iuce dal punto di vista dell’applicazione di questo formalismo alla descrizione dei
tachioni. Le proprietd dei gas ideali di tachioni sono state discusse in dettaglio. Dopo
aver trovato formnle generali per gas quantici, di Bose e di Fermi, si & considerato il
limite classico. Si & mostrato che avviene condensazione di Bose-Einstein. I gas tachionico
di bosoni viola il terzo principio della termodinamica. Si & considerato un gas di Fermi
degenerato ed, in questo caso, I'entropia si annulla a temperatura zero. Si sono discusse

le difficoltd di formulazione della meccanica statistica covariante.

(*) Traduzione a cura della Redazione.

Pestome He moiyd¥eHO.



