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Summary.  - -  The formalism of statistical mechanics of particles slower 
than light has been considered from the point of view of the application 
of this formalism for the description of tachyons. Properties of ideal gases 
of tachyons have been discussed in detail. After finding general formulae 
for quantum, Bose and Fermi gases the classical limit has been considered. 
I t  has been shown that Bose-Einstein condensation occm~s. The tachyou 
gas of bosons violates the third principle of thermodynamics. Degenerated 
Fermi gas has been considered and in this case the entropy vanishes at 
zero temperature. Difficulties of formulating covariant statistical me- 
chanics have been discussed. 

PACS. 14.80. - Other and hypothetical particles. 

1.  - I n t r o d u c t i o n .  

I n  th i s  p a p e r  we consider  p rope r t i e s  of the  ideal  gases of q u a n t u m  a n d  

classical t a c h y o n s - - p a r t i c l e s  fas te r  t h a n  l ight  (~-3). 

There  are two aspects  of s t u d y i n g  these  h y p o t h e t i c a l  par t ic les .  I n  order  

(*) To speed up publication, tile author of this paper has agreed to not receive tile 
proofs for correction. 
(1) For a review of tachyons see E. RECAMI and R. MI(INANI: Riv. Nuovo Cimento, 
4, 209 (1974), see also (2,3). 
(2) Proceedings o] Session <, Taehyons, Monopoles a~d Related Topics ,~, Eriee, 1976, 
edited by E. R~CAMI (North-Holland Publishing Company, Amsterdam, 1978). 
(3) P. CALDIROLA and E. Rv.CAMI: Causality and Taehyons i~t Relativity, in Italia~ 
Studies in  the Philosophy and Science, edited by M. L. DALLA CHIARA (D. Reidel Pub- 
lishing Company, Boston, Mass., 1980), p. 249-298. 
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to  propose  the  exper iment  t h a t  could give an answer  to  the  question on the  
existence of tachyons,  theoret ical  invest igat ions are needed. I t  should be  stressed 
t h a t  a theoret ical  suppor t  of the  ma jo r i ty  of expe r imen t s  (4) which have  been 
carr ied out  is ve ry  weak (~). Thus their  negat ive  resul t  cannot  be counted  as 
conclusive. The problem is t h a t  there  is no sa t i s fac tory  model  of in te rac t ing  
tachyons ,  thus  there  are not  any  indications of how to construct  a de tec tor  
of t achyons  (*). On the  o the r  hand,  s tudying  t achyons  is in teres t ing f rom a 
pure  theore t ica l  poin t  of view. There  are m a n y  p rob lems  such as, e . g ,  the  
appl icabi l i ty  (level of universal i ty)  of the  scheme of the  theory  of part icles slower 
t h a n  l i g h t - - b r a d y o n s  for t he  description of tachyons.  I n  the  case of s tat is t ical  
mechanics  being considered there  are some concrete  questions. For  examp1% 
is the  th i rd  principle of t he rm odynam i cs  satisfied b y  t achyon  gases? Does 
the  Bose-Einstein  gas of t achyons  condensate  a t  low t empera tu re?  Or a more  
general  quest ion:  is i t  possible to formula te  covar ian t  s tat is t ical  mechanics  of 
t achyons  b y  the  simple extens ion  formal ism proposed for b radyons  (~)? 

I n  this pape r  we give answers to the above  questions. 

2. - T a c h y o n ,  w h a t  is  i t? 

The free t aehyon  is described by  the  spacelike four -momentum,  p~, lying 

on the  single-sheeted hyperbolo id  

p ~ p ~  = - -  m ~ , 

where m is the  real  t a chyon  res t  mass.  F r o m  the  above  s t a t emen t  i t  follows 
t h a t  the  energy of t achyon  E~ is connected wi th  m o m e n t u m  p by  the  formula  

~ : % / p 2  m 2 . 

Because [Pl ~- P >~ m, the  energy  is a lways real. We  use the  uni ts  where c ---- h 
= k = 1, ~ = 1/2~. Our met r ic  is ( + ,  - - ,  - - ,  - -) .  The  sign of a zero componen t  

of a spacelike vector  can be  changed by  Lorentz  t ransformat ion .  Thus  the  
tachyon,  which has  a posi t ive  energy and  t rave ls  forward  in t ime  in one f rame,  
can, hav ing  a negat ive  energy,  t rave l  backward  in t ime  in another  moving  
f rame.  This makes  i t  possible to  construct  a causal  loop (1.z). Both  pa radox ia l  
facts,  negat ive  energy and  mot ion  backward  in t ime  can be excluded f rom the  

(4) For extensive list of experiments see a bibliography by V. F. P~R~P~LITSA : Preprints, 
ITEP-100, ITEP-165, (Moscow, 1980). 
(*) For some considerations concerning the tachyon detector see A. 0. BARUT, G. D. 
MACCARO~V. and E. R]~CAMI: ~ u o v o  C i m e n t o  A ,  71, 509 (1982). 
(5) B. TOUSCHEK: ~UOVO Ci~nento B, 58, 295 (1968). 
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theory by  applying the  re in terpre ta t ion  principle (s), according to  which a 
negat ive-energy t achyon  travell ing backward in t ime has to  be regarded as a 
posit ive-energy ant i taehyon travel l ing forward in t ime. The above postulate  
solves causal paradoxes (~.3). 

In  some cases i t  is useful to introduce the  inverse veloci ty of a taehyon,  
~ v -~. Wi th  this variable the energy and momen tum of a tachyon are ex- 

pressed as follows (7): 

E __ 
mu / ' - -  m 

At low energy, ~<< 1 ((~ nonrelat ivist ie l imit  ~>), we get  

(1) E = + p = + + 

3. - Some basic notions of statistical mechanics of tachyons. 

In  our considerations we follow the  well-known Huang ' s  book (8). We 
s tar t  f rom u microeanonical ensemble and the postulate  of (( a p r i o r i  equal 
probabilities )) of different microscopic states which lead to the same macroscopic 
one. We do not  see any reason for changing this fundamenta l  postulate in 
the  case of tachyons.  Wi thou t  any  differences, we define the  en t ropy  of a system 
and the  t empera tu re  of a subsystem through the entropy.  In  this way one 
finds a canonical ensemble and a par t i t ion  function of N particles QN. For  the 

classical sys tem we have 

f d3~ ,I~. d3qN Q ~ ( V ,  T )  = d3p~ "'" ~,N~ u~ "" exp [ - - f i l l ( p 1 ,  . . . , p N ,  q l ,  . . . ,  q~)] 
N~ 

with V the  volume of the system, f l - l =  T the tempera ture  and H ( p 1  ... p # ,  

ql ... qN) the  t tami l tonian  of N particles depending on their  momenta ,  p~, and 
positions, q~: The integration is performed over momenta  greater  t h an  the 

rest  masses of taehyons.  
For  quan tum systems one finds 

Q (v, 
n 

where & is the energy of the system in state n. 

(6) 0.  M. lP. BILANIUK, V . K .  DESIII'ANDE and E. C. G. SVDARSHAN: Am. J. Phys., 
30, 718 (1982). 
(~) A . F .  ANTIPPA: XUOVO Cimento A, 1O, 389 (1972). 
(s) K. HCANG: Sta t i s t ica l  Mechanics  (John Wiley and Sons, Inc., New York, N. u 
1963). 
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I t  is possible to find the  par t i t ion funct ion of the  ideal gas of classical 
tachyons  (9). In  this paper,  however,  the classical gas is considered as a l imiting 
case of quan tum gases. Thus, we introduce a grand canonical par t i t ion  func- 
tion, 3 :  

The fugaci ty  z, which is re la ted to the chemical potent ia l  # by  the equal i ty  

z = e x p  [fl~], 

can be el iminated due to  the  equat ion 

(2) N = z ~ In 

where /r has to be t reated as an average number  of tachyons in the system. 
The connection with thermodynamics  is expressed through the formulae 

(3) pV---- T ln  ~, U--  ~f l ln~,  

where p is the pressure and U the internal  energy of the gas. 

4 .  - T h e  i d e a l  g a s e s .  G e n e r a l  f o r m u l a e .  

Assuming tha t  the number  of particles in the same s ta te  is 0 or 1 for fermion 
tachyons  and 0, 1, 2 ... for  boson tachyons,  one finds (s) a grand par t i t ion  
funct ion for ideal Fermi-Dirac (upper sign) and Bose-Einstein (lower sign) 
gases: 

v, r)  = exp [ •  Z exp E-- 
P 

g is the  number  of internal  degrees of freedom of a particle.  Using formulae (2) 
and (3), we get 

pV  
----- ~ g ~ In [1 ~= z exp [-- flE~]], 

-2- 

(4) 2V = g ~ [z- '  exp [flE~] ~ 1] -1 , 
p 

u = g Z ~ [~ -1  exp [~E~] • 1]-1. 
P 

(9) S. MRSWCZY~SKI: Preprint, E2-83-476 (Dubna, 1983); Lett. Nuovo Cimento, 38, 
247 (1983). 
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The  a b o v e  series a re  c o n v e r g e n t  a n d  N is pos i t ive  w h e n  0 < z < co for  f e rmions  
and  0 < z < l  fo r  bosons .  

I f  V--> 0% sums  (4) can  be  changed  in to  in tegra ls ,  n a m e l y  

Z ~ Vfd~p. 
P 

:For bosons  we  a s s u m e  t h a t  z ~ 1. T h e  case z = 1, B o s e - E i n s t e i n  condensa t ion ,  
is d iscussed in sect.  6. 

Thus  

(5) 

P 
= • 3p In [1 -k z exp  [--flEa]I, 

f ~-~ = g d~p(~-~ exp [~E,,] _+ 1)-~ ,  

y = g d3pE , ( z  -~ exp  [fiE,] 4- 1) -~ . 

E x p a n d i n g  t h e  func t ions  u n d e r  in tegra l s  (5) in t he  series of powers  of  
z exp  [flEp], one  finds 

(6) 

P 

N 

U 
V 

4:zg,n~T ~ ( T  1) "+I _ _  ,t . - I  n" ~.2(nflm)z , 

4zlg'm"T " ~;~ (=~ 1) . ~  
.~i ?l 

[ S.2( nflm ) - -  n flm S~,( nf lm ) ] z" .  

W e  h a v e  used  t h e  equa l i t y  (lo) 

f y 1 dyy'- e x p  [ - - x  V~y~---i] • dt cosh2t  exp  [ - - x  s i nh t ]  ---- x So..(x). 

1 0 

S~(x)  is t h e  so-cal led L o m m e l  f u n c t i o n  (~0). D i f fe ren t i a t ion  is deno ted  b y  
! 

pr ime .  S02(x ) can  be  expressed  t h r o u g h  a n o t h e r  L o m m e l  func t ion  accord ing  
to  t he  f o r m u l a  (~o) 

~'! . ' P  

'Sl'v(x) = x $',v(x) ~- (p - - ~  - - 1 ) S , - I , , + I ( x ) .  

(1o) [. S. GRADSHTEYN and I .M. RYZHIK: Tables o] [~tegrals, Series a~,d Products, 
edited by A. JAFFREY (Academic Press, New York, N .Y . ,  1965). 
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In order not to complicate the form of our results, we do not use, however, 
this formula. 

For a gas of relativistic bradyons formulae (6) are the same, although the 
Lommel functions So~(x) have to be changed into the Macdonald functions 
Ks(x) (,~,1~). 

5 .  - C l a s s i c a l  l i m i t .  

Considering eqs. (5), one observes that  the fugacity z strongly decreases 
~hen the density, N]V, is going to zero and/or the temperature increases to 
infinity. Thus, ~or N/V--> 0 and/or fl-> 0, one can approximate series (6) 
by the first terms 

_P 
-~ -= 4zcgm ~ TS,~(flm)z , 

:Y 

U 4z~gmPT~[Sop(flm) flmS~o2(fim)]z. 
V 

Eliminating z from the above formulae, we get the equation of state 

and the internal energy 

p . V = N . T  

U : N m T  (1 --  tim S~2(flm)~ 

The specific heat, defined as follows: 

C v ~ , 

is expressed by the formula 

S,2(flm ) Lflm 

(11)  S. BELEI~KIJ and L. D. LAI~DAU: Usp. Fiz. ~Vauk, 56, 309 (1955); also in Collevted 
Papers o]L. D. ]Landay, edited by D. TER HAAR (Gordon and Breach, New York, N.Y., 
1965). 
(13) j .  GOSSET, J . I .  KArUSTA an4 G.D. WESTFALL: Pls, ys. Re~). C, IS,  844 (1978). 
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I n  two e x t r e m e  cases x > > l  and  1/x>>1, So2(X) can be approx ima ted  as 

(7) S~2(x) = 

2 
- 9 0 ( l n x )  for 1 - > > 1 ,  

X 

1 o(1) 
x -9 ~ for x > > l .  

Let  us compare  the  above expression with  the  analogous approx imat ions  for 

the  Macdonald funct ion:  

-~ + O(x ~ In x) 

~ exp [ - -x]  1 + 

for 1 - > > i ,  

x>>l  

Because K2(x) and  So2(X) are app rox ima te  b y  the  same funct ion for x - +  O, 
the  gases of b radyons  and  t achyons  are very  similar a t  a h igh- tempera ture  
limit. Namely ,  for both  gases, we have  

U ~ _ 3 . N . T ,  c ,~,_3. 

(The equat ion  of s ta te  is the  same at  any  tempera ture . )  The above result  is 

obvious if one recalls t h a t  a h igh-energy t achyon  as well as a b radyon  behaves  
as a luxon- -mass les s  particle.  

More detai ls  on the  ideal gas of classical t achyons  can be  found in our pre- 
vious pape r  (~3). 

6 .  - B o s e - E i n s t e i n  c o n d e n s a t i o n .  

For  bosons, sums (4) cannot  be  changed into integrals  (5) when z ~ I ,  be- 
cause the  t e rms  related to E~ ---- 0 can give finite contr ibut ions to the  series. 
Thus we wri te  

= g V ( d ~ p ( z - ,  exp [~B~] - 1 ) - '  + <no>, N 
d - 

where 

Z 

O~o> = i - - -~"  

The finite p a r t  of particles is in the  lowest-energy state,  Bose-Einstein con- 

(13) S. CHANDI~ASEKgAR: Au Introduction to the Study o/ Stellar Structure (Dover, 
New York, N.Y., 1939), Chapter X. 
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densat ion occurs when 

(8) <no> = 2r - -  g V ( d 3 p ( e x p  [fiE,] - -  1) -~ > O. 
d 

Using (6), one finds 

(9) <no} = 2Y-- 4 ~ g m  ~ T V  i 
So2(nfim) 

n = l  n 

S .  M R 6 W C Z Y I ~ S K  I 

<no} = N - -  4 :~gmT 2 V~(2) 

wi th  $(s) the  I~iemann zeta-funct ion (~o): 

~(s) =~.=~ - - ,  ~(2) = -6-' ~(3) = 1.202 . . . .  
= n s 

Final ly  we find t h a t  the  Bose-Einstein condensat ion occm's a t  temperaf~tres 
lower t h a n  the  critical one, Tr or/and a t  densit ies higher t han  the  critical 

dens i ty  Ca: 

\ 2 ze3gmV]  ' ~~ - -  -3 z fJgml ' ""  

l~ow we focus our a t t en t ion  on the  propert ies  of the  gas whell ~ condensed 

phase  exists,  z = 1. One finds t h a t  

< n o >  1 _ ( I ' )  ~ 
N ~ " 

Thus a.t I ' =  0 there  is the  condensed phase only. Formulae  (6) wi th  ~ low- 

t e m p e r a t u r e  form of S02 (7) look like 

P N U 
~l-- ~ = 4 z g m T ~ $ ( 3 )  , -~  = 4 z g m T 2 $ ( 2 )  , -~  = 8zgmTa$(3) .  

The equat ion  of s ta te  is the  following: 

~(3) ;v~ .  

As the  sum in (9) is a monotonicMly decreasing funct ion of fl, one expects  t h a t  
condit ion (8) can be fulfilled a t  low tempera tu re .  Thus we app rox ima te  So~ 
by  the  a sympto t i c  form (7). I n  this way, one gets  
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The il~ternal energy and the specific heat  arc expressed by  the  formulae 

~(3) $(3) 

Since the ent ropy,  S, of a sys tem is defined by  

(lo) 
T 

% : - T d l ' ,  
D 

the  en t ropy  of the system is logari thmically divergent at  T = 0. Thus the 
third principle oJ thermodynamics is not satisfied by the Bose gas o] tachyons. 

E n t r o p y  at  zero temperatm'e  is related to the degenerat ion of the ground 
state  of the  system. The zero-energy tachyon  carries a momen tum equal to 
its mass. Thus the  ground state  of one tachyon is strongly degeneIated.  Conse- 
quently,  the  ground state  of N bosons is stronger degenerated and the  en t ropy 
at  T = 0 differs f rom zero. 

7. - Degenerated  Fermi-Dirac  gas.  

%Vhen tim >>1 and fl/~ >>1, i t  is seem tha t  only the  energies of tachyons up 
to the value of chemical potential ,  /~, significantly contr ibute  to integrals (5). 
This means tha t  the particles occupy the lowest-energy levels. Such a gas 
is called degenerated.  

Le t  us consider the Fermi  energy, #F, which, b y  definition, equals the  
chemical potent ia l  at  zero tempera ture .  The integral  determining the den- 
si ty (5) at  T ~ 0 looks like 

~F 

(11) 57 = 4n dpp 2 -~ -~ zg[Pi:, --m3] 
V ' 

m 

where 

Thus 

pl,  = + 

To discuss the propert ies  of the  degenerated tachyon gas, we consider two ex- 
t reme cases: the  (( nonrelativistic )> limit m/#r. >> 1 and the  (( u]trarelativistic )> 
limit m/#F<< 1. 
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A)  (~ Nonrelativistie ~> ease. Substi tut ing (1) in (5) and taking into account  
the first nonvanishing order  of ~, we get 

(12) 

co 

If p = -~ :zg'm" d~(z -~ exp [tim,;] -}- 1) 1 _ _  

0 

co 

-~ = 4~gm d~vl(z-~ exp [flm~]] + 1) -1 , 

0 

co 

-~ = 4 zgm rlrl2(z -1 exp [time] q- 1) -~ . 

0 

To obtaill  the expression for pressure, we have firstly integrated par t ia l ly  
integral  (5). Since fl/z>>l, we have approximated  z ~-1 by  z. 

For  computing integrals (12), we use the Sommerfeld lemma ('3) accord- 
ing to which 

(13) 

f d u ( z  -1 exp [u -k 1]) -~ ~ d2k . . . .  : ~(u0) + 2 ~ r  ~(u) + o(1/2), 
k = l  

0 

Uo= lnz~ 

en : k" - -  ( 1 - -  21-,,) ~ ( n ) ,  c2 = - - .  
k=1 12 

~(u) in the regular funct ion and ~(0) = 0. 
In  the  case under  consideration series (13) contains one t e rm only. Thus 

(14) 

p = ~ zgm" Lflm = o ,  

[ -~ = 2zgmt ,  ~ 1 +-~ 

ru _ a4 ~am~3 [1 + ~ ~JT']. 
We have  omit ted  the te rms  0(�89 

We are led to a ve ry  curious result:  the  pressure of the  degenerated gas 
of fermion tachyons decreases to  zero when m/g  F >>1. Le t  us underl ine t h a t  
the pressure is never  negative. This follows from the  faot t h a t  for fermions the  
funct ion under  integral (5) is nonnegative.  
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Put t ing  T = 0, one gets 

(]5) ~.LF z 
2z~g I m] " 

The above formula  is an approximat ion of (11) for m/~F>>l. 
and (14), we find 

~t =/~v 1 6 /~ + 0  

V = 5 ~ g m ~ F  1 + 5 - ~  + ~  _~ . 

Comparing (15) 

The specific hea t  is expressed by  

cv ~-- ~ ~3 ml~, " V T .  

Because c~ (T----0) ~ O, en t ropy  (10) vanishes at  zero tempera ture .  Thus 
the third principle o/ thermodynamics is satis]ied by the Fermi gas o] tachyons. 
The degenerat ion of the ground s ta te  of the  system of tachyons  described 
previously is, in the case of fermions, suppressed b y  Pauli  quenching. 

B) (~ Ultrarelativistic, case. For  i~v/m >>1 we can use an approximat ion 

In  this l imit  the  gas of tachyons  is equivalent  to t h a t  of massless fermions, 
e.g. neutrinos.  Thus, wi thout  comments ,  we give only some formulae,  which 
have been found in the same way  as those in the  previous subsection: 

lav----~4~gV] ' F:luv i 3 /~ + 0  , 

1 
p V = ~  U, 

V = ~g~ ~ + 3 ~ ~ + 0 

4 3 '~T 

We have found the  well-known equat ion of state for the gas of massless particles. 
The pressure is sure to  differ f rom zero even at  T = 0 and the  third principle 
of the rmodynamics  is satisfied. 
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8. - Diff icult ies  o f  f o r mul a t i o n  o f  covariant  s tat i s t i ca l  m e c h a n i c s  o f  tachyons .  

An invar iant  par t i t ion  function,  playing a central  role in the  covar iant  
stat ist ical  mechanics of bradyons  (5), for a classical ideal gas looks like 

(16) 

1 
Q,v --~ - -  ~d 'P  exp fl"Pt,]a(P") N ! J  " [ -  

It  It a(P,') ~ (V~,p, ~(p,,,p, --  nF-) O(p~) d4p,) 6 ('' P "  - -  p~ . 

P# is the  four-momentum of the system and fl~ is the four-vector which is 
(1/T, 0, 0, 0) in the  rest f rame of the  syslem. Analogously V~ in the rest  f rame 
is equal  to  (V, 0, 0, 0). The expression under  mult ipl icat ion mark  is an analogue 
of the  n o n i n w r i a n t  phase-space element  Vd3p~. 

For  bradyons the dist inction between those with negative and these with 
positive energies is Lorentz  invar iant  because positive- and negative-energy 
bradyons lie on separated sheets of a hyperboloid.  Thus the function O(p~) which 
(( chooses ~) bradyons with posit ive energy is Lorentz  scalar. For  tachyons  which 
lie on ,~ single-sheeted hyperboloid  i t  is not  the case. The sign of a zero com- 
ponen t  of a four-momentum can be changed by  Lorentz  t ransformation.  Thus 
the theta- funct ion violates Lorentz  invariance. In tegra l  (16) would be invar iant  
wi thout  the  0-function. However ,  in this case, the integral  is divergent  due to 
the  contr ibut ion of negative energies of taehyons.  A detailed discussion of the 
phase-space integrals of t aehyons  can be found in ref. (~). 

The problem discussed above is an example of an apparent  conflict between 
the covariance requirements  and acceptabil i ty to theory  tachyons with positive 
energy only. The formulat ion of the covariant  stat ist ical  mechanics of taehyons  
probably  needs fundamenta l  modifications of the  formalism of bradyons.  

9. - Conclus ions .  

Le t  us recapitulate our results. We have considered the formalism of sta- 
t ist ical mechanics of bradyons  restr icted to the  systems at  rest and we have 
acknowledged tha t  this formalism is applicable to tachyons.  Afterwards we 
]lave discussed the propert ies  of the  ideal gases. We have not  found any  
anomalies besides two results which are significantly different f rom those of 
bradyons.  Namely  the en t ropy  of the Bose gas does not  vanish at  zero tem- 
pera ture  and the pressure of the degenerated Fermi  gas decreases to zero. 

(14) S. MR6WSZY]~SKI: Zruovo Cime,;io A, 78, 415 (1983). 
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W e  a r e  f a c e d  wi~h r a t h e r  f u n d a m e n t a l  diff icul t ies  in  a n  a t t e m p t  to  c o n s t r u c t  

t h e  c o v a r i a n t  s t a t i s t i c a l  m e c h a n i c s  of t a e h y o n s .  T h e  f o r m a l i s m  of b r a d y o n s  

occurs  to  b e  u n a p p l i c a b l e  to  s u p e r l i g h t  pa r t i c l e s .  U n f o r t u n a t e l y  th i s  n e g a t i v e  

r e su l t  cas t s  a s h a d o w  oft our  p r e v i o u s  c o n s i d e r a t i o n s  b e c a u s e  t h e  s u b s t a n t i a l  

p r o p e r t i e s  of  t a e h y o n s  m a n i f e s t  t h e m s e l v e s  a t  L o r e n t z  b o o s t s  (*). 

(*) I t  is possible tha t  the author 's  scepticism is not to ta l ly  justified since the situation 
in relativist ic s ta t is t ical  mechanics for bradyons is not quite clear, see, e.g.D. TER HAArt 
and H. WERGELAND: :Phys. Rep.  C, 1, 31 (1971). 

�9 R I A S S U N T O  (*) 

Si ~ considerato il formalismo della meccanica stat ist ica di part icelle pi6 lente dell', 
lute  dal punto di vista dell 'applieazione di questo formalismo alla desorizione dei 
tachioni. Le proprietb~ dei gas ideali di tachioni  sono state discusse in dettaglio. Dopo 
aver t rovato formule generali per  gas quantici,  di Bose e di Fermi,  si ~ eonsiderato il 
l imite classico. Si ~ mostrato che avviene condensazione di Bose-Einstein. I gas taehionico 
di bosoni viola il terzo prineipio della termodinamica.  Si b eonsiderato un gas di Fermi 
degenerato ed, in questo caso, l ' en t ropia  si annulla a tempera tura  zero. Si sono diseusse 
le difficolt~ di formulazione della, meeeaniea stat is t iea covariante.  

(*) Traduzione a eura della Redazione. 

Pe3IoMe He rlo~y,/erlo. 


